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Abstract

In this paper, we consider the forbidden state problem in discrete event systems modeled by Petri

nets with uncontrollable and/or unobservable transitions. To handle the interleaving of uncontrollable and

unobservable transitions, we first use the reverse net to compute a set of weakly forbidden markings (i.e.,

a set of markings from which forbidden markings can be reached by firing uncontrollable transitions).

We then use basis markings to represent the set of consistent markings for Petri nets with acyclic

unobservable subnets (or unobservable subnets with certain cycles). We determine the control policy by

checking if a possible subsequent basis marking belongs to the set of weakly forbidden markings; if

so, we disable the corresponding (controllable) transition. The setting in this paper generalizes previous

work by allowing partial observation, partial control, and a finite number of arbitrary forbidden states.
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I. INTRODUCTION

A discrete event system (DES) is a dynamic system that evolves in accordance with the abrupt

occurrence, at possibly unknown and irregular intervals, of physical events [1]. Such systems

arise in a variety of contexts, including manufacturing, robotics, vehicular traffic, and computer

systems, as well as communication networks.

In many DESs, there may exist system states that are undesirable (e.g., a deadlock state

from which there are no further state transitions, or a state that is reached through faulty state

transitions). When certain activity in the system can be enabled/disabled, the problem of devising

a control strategy to enable/disable transitions so as to avoid forbidden states is called the

forbidden state problem and was first introduced by Ramadge and Wonham in [2] in the context

of finite automata. Later, this problem was also studied in the Petri net framework. When the

set of forbidden states can be represented by linear inequalities (this is possible, for example,

when the constraint relates to limited resources in manufacturing systems), many methods apply

(e.g., [3]–[6]). Though this assumption is not always viable, there are relatively few works on

the control of Petri nets that address arbitrary forbidden state specifications [7]–[10]. Most of

these earlier approaches exhibit some limitations: for example, the plant is restricted to cyclic

controlled marked graphs in [7] and to bounded Petri nets in [8]–[10].

In this paper we study the arbitrary forbidden state problem in a general Petri net setting, where

transitions can be uncontrollable and/or unobservable and the net is not necessarily bounded. The

problem is challenging in that (i) there can be interleaving of uncontrollable and unobservable

transitions; (ii) possible system states are not unique due to unobservable transitions; (iii) the

set of forbidden states can be an arbitrary set of finite cardinality; (iv) it is not clear when and

how control actions should be taken since uncontrollable transitions could take place at any

time (perhaps without even being observed). Given an arbitrary finite set of forbidden markings,

we first compute (offline) the set of weakly forbidden markings which effectively allows us to

deal with uncontrollable transitions. An online observer computes basis markings, introduced

in [11], [12] to represent consistent markings, and the control policy is determined by checking

whether one of the subsequent possible basis markings belongs to the set of weakly forbidden

markings. A similar setup was considered in [13] but the authors did not solve the problem

of basis marking updating (or reduced state estimate set updating according to the terminology



of [13]). While resolving the above issues, the work in this paper also generalizes the results

in [11], [12] in that it allows the use of basis markings to represent the set of consistent markings

in unobservable subnets with certain types of cycles; our approach also generalizes the results

in [10] by allowing partial observation in Petri nets that are not necessarily bounded.

II. PRELIMINARIES

A. Basic Concepts of Petri Nets

In this subsection we recall notation and basic concepts about Petri nets. For more details,

refer to [14].

Definition 1 A Petri net structure is a 4-tuple N = (P, T, Pre, Post), where P = {p1, p2, ..., pn}
is a set of n places; T = {t1, t2, ..., tm} is a set of m transitions; Pre : P × T → N0 and

Post : P × T → N0 are the pre– and post–incidence functions that specify the arc weights (N0

is the set of nonnegative integers); C = Post− Pre is the incidence matrix.

The set of all input (or output) places of a transition t ∈ T is defined as •t = {p ∈
P |Pre(p, t) > 0} (or t• = {p ∈ P |Post(p, t) > 0}). Similarly, the set of all input (or output)

transitions of a place p ∈ P is defined as •p = {t ∈ T |Post(p, t) > 0} (or p• = {t ∈
T |Pre(p, t) > 0}). A Petri net structure is a state machine if for any transition t, |•t| = |t•| = 1

and all arc weights are 1. An elementary cycle of a state machine is a nonempty sequence

x1x2 · · · xk which satisfies xi ∈ P ∪ T , xi+1 ∈ x•i for i = 1, ..., k − 1 and x1 ∈ x•k, and no xi

occurs more than once in the sequence [15]. A Petri net structure is acyclic if it has no directed

circuits.

A marking is a vector M : P → N0 that assigns to each place a nonnegative integer number

of tokens. Pictorially, places are represented by circles, transitions by bars and tokens by black

dots. We use M(p) to denote the number of tokens in place p. A Petri net G = 〈N,M0〉 is a

net structure N with an initial marking M0.

A transition t is state-enabled at marking M if M ≥ Pre(·, t), which is denoted by M [t〉.
A state-enabled transition t may fire yielding the marking M ′ = M + C(· , t), where C(· , t)
denotes the column of matrix C that corresponds to transition t. In this paper, we assume that

only one transition can fire at any instant. A k-length firing sequence from marking M is a

sequence of transitions σ = ts1ts2 · · · tsk
, tsi

∈ T , such that M [ts1〉M1[ts2〉M2 · · · [tsk
〉M ′; this is



denoted by M [σ〉M ′ and we say σ is state-enabled at marking M . The final marking M ′ can

also be calculated by the following state equation

M ′ = M + C~y, (1)

where ~y ∈ Nm
0 is called the firing vector of σ and satisfies ~y(i) = ki if transition ti appears

ki times in σ. The mapping from σ to ~y is denoted by π : T ∗ → Nm
0 , i.e., ~y = π(σ). An m-

dimensional vector ~x of nonnegative integers is called a transition invariant if C~x = ~0, indicating

that the firing of a sequence of transitions with firing vector ~x leaves the marking of the Petri

net unchanged.

A marking M is reachable in 〈N,M0〉 if there exists a firing sequence σ such that M0[σ〉M .

The set of all markings reachable from M0 defines the reachability set of 〈N,M0〉 and is denoted

by R(N,M0). A Petri net 〈N, M0〉 is bounded if there exists a positive constant K such that

∀M ∈ R(N,M0), ∀p ∈ P , M(p) ≤ K. A Petri net is structurally bounded if it is bounded for

any initial marking.

B. Petri Nets with Uncontrollable and/or Unobservable Transitions

We assume that the set of transitions T is partitioned in two distinct ways: i) T = Tc∪Tuc and

Tc ∩ Tuc = ∅, in which Tc (or Tuc) consists of all controllable (or uncontrollable) transitions; ii)

T = To∪Tuo and To∩Tuo = ∅, in which To (or Tuo) consists of all observable (or unobservable)

transitions. Uncontrollable transitions are transitions that cannot be disabled by a supervisor.

For example, state transitions in chemical reactions are usually uncontrollable, and actuator (or

other) failures can also be modeled by uncontrollable transitions. Unobservable transitions are

transitions that cannot be directly observed given current sensor availability (no sensors exist for

such transitions). In this paper, we adopt the common assumption that Tc ⊆ To (or equivalently,

Tuo ⊆ Tuc) [13].

The firing of each observable transition t causes a sensor to generate a unique label t; however,

the firing of an unobservable transition goes unrecorded. More formally, we define the observation

mask Po : T ∗ → T ∗
o as i) Po(ε) = ε, where ε is the empty string; ii) for all σ ∈ T ∗ and t ∈ T ,

Po(σt) = Po(σ)t if t ∈ To and Po(σt) = Po(σ) otherwise. Finally, we use mo (or muo) to denote

the cardinality of set To (or Tuo), and Co (or Cuo) to denote the restriction of the incidence

matrix to To (or Tuo).



Definition 2 Given a Petri net G = 〈N,M0〉 with N = (P, T, Pre, Post) and T = To ∪ Tuo,

we define the set of markings that are consistent with a sequence of observed labels ω ∈ T ∗
o as

C(ω) = {M ∈ Nn
0 |∃σ ∈ T ∗ : M0[σ〉M, Po(σ) = ω}.

Remark 1 Note that since we assume Tc ⊆ To, the set C(ω) only depends on ω and not on the

history of control actions that may have been taken (in general, if some unobservable transitions

are controllable, then the history of control actions can influence C(ω) via the enabling/disabling

of unobservable but controllable transitions).

To handle uncontrollable and unobservable transitions, we need the concepts of the T ′-induced

subnet [16] and the reverse net [17].

Definition 3 Given a net structure N = (P, T, Pre, Post), and a set of transitions T ′ ⊆ T , we

define the T ′-induced subnet of N as NT ′ = (P, T ′, P re′, Post′) where Pre′ (or Post′) is the

restriction of Pre (or Post) to P × T ′.

In this paper, we use the Tuc-induced subnet (also called uncontrollable subnet) and the Tuo-

induced subnet (also called unobservable subnet).

Definition 4 Given a net structure N = (P, T, Pre, Post), N ′ = (P, T, Pre′, Post′) is said to

be its reverse net if Pre′ = Post and Post′ = Pre.

III. PROBLEM FORMULATION

In the forbidden state problem we consider, the system is modeled by a Petri net G = 〈N, M0〉
with uncontrollable transitions Tuc and/or unobservable transitions Tuo. Our goal is to determine

a maximally permissive control policy (which is defined shortly) based on the observation of a

sequence of observable transitions ω such that the system is guaranteed to avoid entrance to any

state in a finite set of forbidden states MF . Moreover, we assume that the net G satisfies the

following assumptions:

A1 the unobservable subnet (namely, the Tuo-induced subnet) is acyclic;

A2 the reverse net of the uncontrollable subnet (namely, the reverse net of the Tuc-induced

subnet) is structurally bounded and the set of forbidden markings MF has finite cardinality;

A3 Tuo ⊆ Tuc.



To define the supervisory control policy, we take the set of possible control actions at the

given point (i.e., after having observed sequence ω) to be all possible subsets of controllable

transitions. More formally, we define the control set as U = {u |u ⊆ Tc}, where u is called a

control value. A controllable transition t is said to be control-enabled1 if t ∈ u. If a transition t is

both state-enabled and control-enabled, it is enabled and can fire following the state equation (1).

A supervisory control policy f is a function f : R(G) → U which specifies the control

value u at any reachable marking M ∈ R(G). To handle unobservable transitions, we need to

extend the definition of f from a single marking to a set of consistent markings. As several

control policies may realize the same control goal, we try to find the maximally permissive

control policy. In this paper, we adopt the optimality criterion in [13], [18], i.e., for each set

of markings C(ω) (consistent with the observation of sequence ω), we want the control value

f(C(ω)) to be such that the set of enabled transitions is as large as possible while ensuring that

forbidden markings will never be visited. Therefore, given an observed sequence of transitions

ω ∈ T ∗
o , the control policy is defined as f(C(ω)) ⊆ U . Note that control action at the current step

applies to any marking consistent with ω because all unobservable transitions are allowed to fire

after the observation of ω (as Tuo ⊆ Tuc). Therefore, our definition of control policy f(C(ω)) is

consistent regardless of the previous control decisions that have been made.

IV. CHARACTERIZATION OF CONSISTENT MARKINGS

To determine the control policy f , we need to know all possible current states (namely, C(ω))

given an observed sequence of labels ω. One simple idea is to enumerate all these markings

(the number of consistent markings increases at most polynomially in the length of the observed

sequence of labels [19]). However, under Assumption A1 given in Section III, the set of consistent

markings can be characterized more concisely using a subset of consistent markings called basis

markings [11], [12]. A relaxation of Assumption A1 is discussed in Section VI.

Definition 5 Let G = 〈N, M0〉 be a Petri net with unobservable transitions Tuo. Given a sequence

ω of observed transition labels, a basis marking Mb,ω is a marking reached from the initial

marking M0 by firing ω and all those unobservable transitions that are strictly necessary to

enable ω.

1In this paper, uncontrollable transitions are always control-enabled by convention.



Under Assumption A1, given any observed sequence of labels ω, it is possible to determine

a set of basis markings Mb,ω such that the set of consistent markings satisfies

C(ω) = {M ∈ Nn
0 | ∃Mb,ω ∈Mb,ω,

∃σ ∈ T ∗
uo : Mb,ω[σ〉M} (2)

(c.f. Theorem 4.7 of [12]). The result is important in that basis markings can be used not only

to represent the set of consistent markings but also to determine the control policy. The latter

will become clearer in Section V.

Now we consider how to compute the set of basis markings given an observed sequence of

labels. First, we need the concept of minimal explanations.

Definition 6 Given a marking M and an observable transition t ∈ To, we define the set of

explanations of t at M as

Σ(M, t) = {σ ∈ T ∗
uo |M [σ〉M ′, M ′ ≥ Pre(·, t)}

and we define

Y (M, t) = {~e ∈ Nmuo
0 | ∃σ ∈ Σ(M, t) : π(σ) = ~e}

as the e-vectors (or explanation vectors), i.e., the firing vectors associated to the explanations.

Similarly, we define the set of minimal explanations of t at M as

Σmin(M, t) = {σ ∈ Σ(M, t)|@ σ′ ∈ Σ(M, t) : π(σ′) � π(σ)}

and we define

Ymin(M, t) = {~e ∈ Nmuo
0 |∃ σ ∈ Σmin(M, t) : π(σ) = ~e}

as the corresponding set of minimal e-vectors.

The following algorithm [11], [12], when applied to nets whose unobservable subnet is acyclic,

computes the set Ymin(M, t) and terminates after finding all vectors in Ymin(M, t).

Algorithm 1 [Computation of Ymin(M, t) in acyclic unobservable subnets]

1. Let Γ :=
CT

uo Imuo×muo

A B

where A := (M − Pre(·, t))T , B := ~0 T
muo

.



2. While A ≥ 0T

2.1 Choose an element A(i∗, j∗) < 0.

2.2 Let I+ = {i | CT
uo(i, j

∗) > 0}.

2.3 For all i ∈ I+

2.3.1 add to [A | B] a new row

[A(i∗, ·) + CT
uo(i, ·) | B(i∗, ·) + ~e T

i ]

where ~ei is the i-th canonical basis vector.

2.4 Remove the row [A(i∗, ·) | B(i∗, ·)] from the table.

End while

3. Remove from B any row that covers other rows.

4. Each row of B is a vector in Ymin(M, t).

Using Algorithm 1, the set of basis markings can be computed recursively as follows: initialize

Mb,ε = {M0}, and ∀ω ∈ T ∗
o , ∀t ∈ To, calculate Mb,ωt via the recursion

Mb,ωt = {M | ∃M ′ ∈Mb,ω,∃~e ∈ Ymin(M
′, t) :

M = M ′ + C(·, t) + Cuo~e}. (3)

V. SUPERVISOR SYNTHESIS

A. Existence of Maximally Permissive Supervisor

The presence of uncontrollable transitions complicates the forbidden state problem because we

also need to prevent the current state from reaching certain states that are not explicitly forbidden.

As we will see, once we enter such states, we will never be able to control the system and ensure

that the current state is legal. We call such markings weakly forbidden markings [7].

Definition 7 Given a Petri net G with uncontrollable transitions Tuc and unobservable transitions

Tuo such that Tuo ⊆ Tuc, and given a set of forbidden markings MF , the set of weakly forbidden

markings with respect to MF is given by W (MF ) = {M | ∃M ′ ∈ MF ,∃σ ∈ T ∗
uc : M [σ〉M ′}.

The set of weakly forbidden markings W (MF ) can be computed using the following propo-

sition (c.f. [8]).



Proposition 1 Given a Petri net G with uncontrollable transitions Tuc and unobservable transi-

tions Tuo (such that Tuo ⊆ Tuc), and given a set of forbidden markings MF , the set of weakly

forbidden markings is given by

W (MF ) =
⋃

M∈MF

R(N ′
Tuc

,M),

where N ′
Tuc

is the reverse net of the Tuc-induced subnet.

Following Proposition 1, we can obtain W (MF ) by computing all markings reachable from MF

in the reverse net of the Tuc-induced subnet. The computation of W (MF ) may be complicated as

W (MF ) is not necessarily finite and the computation essentially involves reachability analysis.

However, under Assumption A2 made in Section III, the set of weakly forbidden markings is

finite.

The existence of the maximally permissive control policy can be determined by checking

whether M0 /∈ W (MF ), which can be directly deduced from Theorem 2 in [20]. More specif-

ically, if M0 /∈ W (MF ), then there is a maximally permissive control policy. Note that this

condition is also necessary. That is to say, if M0 ∈ W (MF ), there is no control policy which

can guarantee that the system will never reach a forbidden state.

Now we consider how to check if M0 ∈ W (MF ). Suppose the number of weakly forbidden

markings is l. One method is to compare M0 with every marking M in W (MF ); it will take n×l

comparisons, which can be problematic if l is large. Another way to check whether M0 ∈ W (MF )

is to use a binary search algorithm [21]. Before searching, we can sort the markings in W (MF )

elementwise: first sort these markings in ascending order of their first components; then sort

markings that have the same first components in ascending order of their second components;

and so on. Having sorted the markings in W (MF ), we can examine if the initial marking M0

is in the set of weakly forbidden markings using a modified binary search algorithm (we call

it componentwise binary search). To analyze the complexity of this approach, let x1 denote

the number of markings that have the same first component M0(p1), x2 denote the number of

markings that have the same first component M0(p1) and the same second component M0(p2),

..., and xn denote the number of markings that are identical to M0. Note that2 xn is either 1 (i.e.,

M0 ∈ W (MF )) or 0 (i.e., M0 /∈ W (MF )). We search the first component of M0 in the sorted

2This is the worst case scenario as it might be the case that xi = 0 for some i < n.



marking set according to their first components using the binary search algorithm and this can

be done in at most3 log2(l − (x1 − 1)) + 1 comparisons; we then search the second component

of M0 using the binary search algorithm only in the sorted markings that have the same first

components as M0(p1) and this can be done in at most log2(x1 − (x2 − 1)) + 1 comparisons;

we keep doing this until the last component. The total number of comparisons needed is upper

bounded by B = log2(l − (x1 − 1)) + log2(x1 − (x2 − 1)) + · · · + log2(xn−1 − (xn − 1)) + n.

Using the arithmetic-mean/geometric-mean inequality4 [22], we have

B = log2((l − (x1 − 1)) · (x1 − (x2 − 1)) · · ·

· (xn−1 − (xn − 1))) + n

≤ n log2(
l + n

n
) + n

which is O(n log l) if l À 1.

Note that the resulting O(n log l) complexity does not depend on the specific values of

x1, · · · , xn. Also note that we did not take into account the effort spent in sorting the set of

weakly forbidden markings because this componentwise binary search strategy will also be used

online when we determine the control policy (and therefore, the cost of sorting is amortized over

all these computations as well).

B. Determination of Control Policy

In this subsection, we determine the maximally permissive supervisor using the state estimate

(namely, basis markings) and componentwise binary search.

The basic idea is the following. Given the sequence of (observable) transitions seen so far,

we keep track of the set of basis markings. At the current step, we compute the set of the

subsequent basis markings for each controllable transition t and we disable t if at least one of

the subsequent basis markings is in the set of weakly forbidden markings (recall that the control

action at the current step determines which controllable transition to enable – this way we are

guaranteed that a controllable transition that we meant to disable does not take place). Once a

3The last term 1 takes special cases into account (e.g., x1 = l, or x1 = l − 1, etc).
4For any n nonnegative real numbers x1, x2, . . . , xn, the arithmetic-mean/geometric-mean inequality is

∑n
i=1 xi

n
≥

n
√∏n

i=1 xi.



new transition label is observed, we update the set of basis markings based on this label and

then determine the next control action. The complete two-stage algorithm is given below.

Algorithm 2 [Supervisor Synthesis]

Input: A Petri net G with uncontrollable transitions Tuc, unobservable transitions Tuo (such that

Tuo ⊆ Tuc), a finite set of forbidden markings MF , and a streaming sequence of observed labels

ω.

Output: A control value u at each observation.

Stage 1: Offline Checking of Supervisor Existence

1) Compute the set of weakly forbidden markings W (MF ) using the reverse net of the Tuc-

induced subnet.

2) Check if M0 ∈ W (MF ) using componentwise binary search. If M0 /∈ W (MF ), the supervisor

exists; else, exit.

Stage 2: Online Determination of Control Policy

1) Let ω = ε and Mb,ω = {M0}.

2) Let TF = ∅.

For every t ∈ Tc

Compute Mb,ωt based on Mb,ω using Eq. (3).

∀M appearing in Mb,ωt, if M ∈ W (MF ) (this can be

checked using componentwise binary search), then

TF = TF ∪ {t}.

3) Output the control value u = Tc\TF at the current step.

4) Wait until an observable transition t fires.

5) Compute Mb,ωt based on Mb,ω using Eq. (3); let ω = ωt.

6) Goto Step 2.

At Step 2 in Stage 2, we determine the control value at the current step by examining if some

subsequent basis marking is a weakly forbidden marking; at this step, we can also store M(ωt)

if t ∈ u so that we do not need to recompute it at Step 5 when/if the subsequent observed label

is t.

We show the correctness of the algorithm by proving the following two facts:



1) ∀t ∈ u given at Step 3 in Stage 2, the firing of t will not drive the system from a legal

state to any forbidden state. Suppose there exists a marking M consistent with ωt (namely

M ∈ C(ωt)) such that M ∈ W (MF ); then, there exists a basis marking Mb,ωt, from which

M is reached by firing a sequence of unobservable transitions, such that Mb,ωt is in W (MF )

based on the definition of W (MF ). Therefore, t should have been disabled according to

Step 2 in Stage 2; a contradiction. The fact shows that the control policy is permissive.

2) ∀t ∈ Tc\u, the firing of t can in fact result in a forbidden state because there exists a

marking M , which is consistent with ωt (actually it is a basis marking) and is in W (MF ),

i.e., it can uncontrollably reach a forbidden marking. This fact shows that the control policy

is maximally permissive.

VI. EXTENSION TO OTHER UNOBSERVABLE SUBNETS

In Section III, the unobservable subnet was assumed acyclic. Under this assumption, we can

use Algorithm 1 to calculate minimal e-vectors so that we can compute a set of basis markings.

However, intuitively, we can also compute the set of such basis markings even for unobservable

subnets with cycles, as illustrated in the following example.

Example 1 We consider the unobservable subnet shown in Fig. 1. Suppose the initial state of the

subnet is M0 = (1 0 0 0 2 0)T and t is an observable transition. The set of minimal explanations

Σmin(M0, t) as defined in Section IV cannot be found using Algorithm 1 directly because this

subnet is not acyclic. It is easy to see that the only minimal explanation is t4t2, which results in

the basis marking M = (0 0 0 0 1 0)T . It can also be verified that the set of markings consistent

with σ = t can be represented using Eq. (2). If we examine the unobservable subnet in Fig. 1

more carefully, there is a transition invariant (0 0 1 1 1)T . Thus, any minimal e-vector should

not cover the invariant based on the definition of minimal e-vectors. ¥

One way to generalize the idea in Example 1 is to use the following assumption in place of

A1:

A1′ the unobservable subnet is a state machine.

Note that an elementary cycle in a state machine represents a transition invariant ~x because for

any transition in a state machine, there is exactly one input place and one output place (with all

associated arcs having unit weight). Therefore, any minimal e-vector ~e should not cover such
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Fig. 1. Unobservable subnet with cycles.

a transition invariant ~x (otherwise, the e-vector is not minimal). This condition can be used as

a criterion to stop further calculation when we try to apply Algorithm 1 to Petri nets of which

unobservable subnets are state machines.

Before we modify Algorithm 1, we first compute all elementary cycles in the unobservable

subnet under Assumption A1′. Assume there are q such cycles and denote the set of firing (binary)

vectors corresponding to these cycles by Γ = {~γ1, ~γ2, · · · , ~γq}, i.e., ~γj(i) = 1 if transition ti

appears in cycle j and ~γj(i) = 0 otherwise. Note that ~γj is a transition invariant for j =

1, 2, · · · , q. The modified algorithm is given below.

Algorithm 3 [Computation of Ymin(M, t) in unobservable subnets that are state machines]

1. Let Γ :=
CT

uo Imuo×muo

A B

where A := (M − Pre(·, t))T , B := ~0 T
muo

.

2. While A ≥ 0T

2.1 Choose an element A(i∗, j∗) < 0.

2.2 Let I+ = {i | CT
uo(i, j

∗) > 0}.

2.3 For all i ∈ I+

2.3.1 compute a row

[A(i∗, ·) + CT
uo(i, ·) | B(i∗, ·) + ~e T

i ]. If there

does not exist a j ∈ {1, . . . , q} such that



B(i∗, ·) + ~eT
i ≥ ~γj , then add the row to [A | B].

2.4 Remove the row [A(i∗, ·) | B(i∗, ·)] from the table.

End while

3. Remove from B any row that covers other rows.

4. Each row of B is a vector in Ymin(M, t).

In Algorithm 3, we simply check if the temporary e-vector covers some ~γj; if it indeed covers

one, we can discard it because it cannot produce a minimal explanation. The algorithm stops in

a finite number of steps because the firing vector of the rows we add cannot contain repetitive

components in Γ and hence are in finite number.5 The fact that Algorithm 3 gives all minimal

e-vectors can be proved in a manner similar to the way Algorithm 1 was proved in [11].

Theorem 1 Given a Petri net satisfying Assumption A1′ and an observed sequence of labels ω,

a set of basis markings Mb,w can be calculated using Algorithm 3 and Eq. (3) such that the set

of consistent markings is

C(ω) = {M ∈ Nn
0 | ∃Mb,ω ∈Mb,ω,∃σ ∈ T ∗

uo :

Mb,ω[σ〉M}.

We just give a sketch of the proof. i) If the Tuo-induced subnet is an acyclic state machine,

then the result is a direct application of Theorem 12 in [12]. ii) If the Tuo-induced subnet is

a state machine with cycles, we observe (see Theorem 6.2 in [23]) that in a state machine a

marking M is reachable from M0 with a sequence σ iff it is also reachable with a sequence σ′

where π(σ′) ≤ π(σ) and π(σ′) 6≥ ~x for all transition invariants ~x. In other words, if a marking

is reachable it is also reachable with a minimal firing sequence whose firing subnet is acyclic.6

Thus the result of Theorem 12 in [12] also applies to Tuo-induced subnets that are state machines.

Theorem 1 shows that the set of consistent markings for Petri nets with unobservable subnets

that are state machines can also be represented using basis markings. Therefore, the results in

5Another way to realize this is the following: as a minimal e-vector cannot cover the vector corresponding to any elementary

cycle, the algorithm is equivalent to computing minimal e-vectors in some acyclic state machine. Therefore, the algorithm must

terminate.
6The firing subnet of a net is the subnet containing all transitions {t ∈ T | σ(t) ≥ 0} and all their input output places [23].



Section V can also be applied to Petri nets satisfying Assumptions A1′, A2 and A3.

VII. CONCLUSIONS

In this paper, we consider the arbitrary forbidden state problem in DESs modeled by Petri

nets. Under the assumption that Tuo ⊆ Tuc and some conditions on the unobservable subnet and

the uncontrollable subnet, we show that basis markings can be used not only to represent the

set of consistent markings but also to determine the control policy. We also propose an online

algorithm that utilizes componentwise binary search to determine the control policy based on

the sequence of observed labels.

Note that in this paper, there is no structure on the set of forbidden markings; if there is, we

might be able to compute the set of weakly forbidden markings more efficiently. Also note that

there might be deadlocks in the system under the control policy. Investigating these aspects will

be part of our future work.
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