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Abstract

In previous works we presented a procedure based on integer programming to identify a Petri net,

given a finite prefix of its language. In this paper we show how to tackle the same problem using linear

programming techniques, thus significantly reducing the complexity of finding a solution. The procedure

we propose identifies a net whose number of places is equal to the cardinality of the set of disabling

constraints. We provide a criterion to check if the computed solution has a minimal number of places,

and, if such is not the case, we discuss two approaches to reduce this number.
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I. INTRODUCTION

Identification is a classical problem in system theory: given an observed behavior, it consists

in determining a system whose behavior approximate the observed one.

In the context of Petri nets, it is common to consider as observed behavior the language of the

net, i.e., the set of transition sequences that can be fired starting from the initial marking. Assume

that a language L ⊂ T ∗ is given, where T is a given set of n transitions. Let this language be

finite, prefix-closed and let k an integer greater than or equal to the length of the longest string

it contains. The identification problem we consider consists in determining the structure of a net

N , i.e., the matrices Pre, Post ∈ Nm×n, and its initial marking M0 ∈ Nm such that the set of

all firable transition sequences of length less than or equal to k is Lk(N,M0) = L.

Note that the set L explicitly lists positive examples, i.e., strings that are known to belong

to the language, but also, implicitly, defines several counterexamples, namely all those strings

of length less than or equal to k that do not belong to the language. Thus from the observed

language one can construct a set of enabling constraints E , i.e., a set of pairs (y, t), such that

transition t should be enabled after sequence σ has fired, where y is the firing vector of σ, and

a set of disabling constraints D, i.e., a set of pairs (y, t) such that transition t should not be

enabled after sequence σ has fired, where y is the firing vector of σ.

In previous work [1] we showed that this problem (and a related series of more general

identification problems) can be solved using integer programming. The main drawback of this

approach is its computational complexity, in the sense that the number of variables grows

exponentially with the length of the longest string in L, and problems of this kind may easily

become intractable.

In this paper we show how to tackle the same problem using linear programming techniques,

thus significantly reducing the complexity of solving an identification problem. The main idea

is to look for particular solutions of the identification problem that are called D-canonical, i.e.,

nets with a number of places equal to the cardinality of the set D. We show that: (a) if a given

identification problem has solution, then it also has a D-canonical solution; (b) this particular

solution can be computed solving a linear programming problem.

The procedure we propose identifies a net whose number of places is equal to the cardinality

of the set of disabling constraints, which may be large, although an equivalent net with a much



smaller number of places may exist. We provide a criterion to check if the computed solution

has a minimal number of places, and, if such is not the case, we discuss two approaches to

reduce this number.

In an on-line learning context, that is usually adapted in the traditional identification paradigms,

positive and negative examples are presented to the learner on-the-fly. The learner holds a

current hypothesis/model that supports all positive examples (and none of the negative examples)

provided thus far. This problem, that from a computational point of view is easier than that

considered in this paper, can be solved using our procedure considering only positive examples

and negative examples and giving no constraints on strings that are neither positive nor negative

examples.

Among previous approaches for Petri net identification (see [1] for a detailed discussion) we

would like to recall the work of Hiraishi [2], Meda and Mellado [3], [4], Bourdeaud’huy and Yim

[5], Dotoli et al. [6], [7], Li et al. in [8], Chung et al. [9]. We also mention the approach based

on the theory of regions whose objective is that of deciding whether a given graph is isomorphic

to the reachability graph of some free labeled net and then constructing it (see Badouel and

Darondeau [10] for a survey).

II. PRELIMINARIES

In this section we first recall the Petri net formalism used in the paper, referring to [11] for

a comprehensive introduction to Petri nets.

Then we define a special class of linear constraint sets and prove an important property of

such a class, that will be useful in the solution of our identification problem.

A. Background on Petri nets

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m

places; T is a set of n transitions; Pre : P ×T → N and Post : P ×T → N are the pre– and

post– incidence functions that specify the arcs; C = Post− Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each place of a P/T net a nonnegative

integer number of tokens, represented by black dots. We denote M(p) the marking of place p.

A P/T system or net system 〈N, M0〉 is a net N with an initial marking M0.



A transition t is enabled at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ =

M + C(· , t) = M + C ·~t, where ~t ∈ Nn is a vector whose components are all equal to 0 except

the component associated to transition t that is equal to 1. We write M [σ〉 to denote that the

sequence of transitions σ is enabled at M , and we write M [σ〉 M ′ to denote that the firing

of σ yields M ′. Note that in this paper we always assume that two or more transitions cannot

simultaneously fire (non-concurrency hypothesis).

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .

In such a case the state equation M = M0 + C · ~σ holds, where ~σ ∈ Nn is the firing vector of

σ, i.e., the vector whose ith entry represents the number of times the transition ti is contained

in σ. The set of all markings reachable from M0 defines the reachability set of 〈N, M0〉 and is

denoted R(N,M0).

Given a Petri net system 〈N, M0〉 we define its free-language1 as the set of its firing sequences

L(N,M0) = {σ ∈ T ∗ | M0[σ〉}.

We also define the set of firing sequences of length less than or equal to k ∈ N as:

Lk(N,M0) = {σ ∈ L(N, M0) | |σ| ≤ k}.

Finally given a language L ⊂ T ∗ and a vector y ∈ Nn we denote

L(y) = {σ ∈ L | ~σ = y}

the set of all sequences in L whose firing vector is y.

B. Special constraint sets

We define a special class of linear constraint sets (CS).

Definition 1: Given A ∈ Rm×n and b ∈ Rm, consider the linear constraint set:

C(A, b) = {x ∈ Rn | Ax ≥ b}.

The set C(A, b) is called:

• ideal: if x ∈ C(A, b) implies αx ∈ C(A, b) for all α ≥ 1;

1As it will appear in the next subsection, free specifies that no labeling function is assigned to the considered Petri net system.



• rational: if A ∈ Qm×n and b ∈ Qm, i.e., if the entries of matrix A and of vector b are

rational. ¥

The following result provides a simple characterization of ideal CS’s.

Proposition 2: A linear constraint set C(A, b) is ideal if b ≥ 0.

Proof. Since Ax ≥ b ≥ 0 then for all α ≥ 1 it holds A(αx) ≥ Ax ≥ b, hence it is ideal. ¤
Proposition 3: If a CS is ideal and rational, then it has a feasible solution if and only if it

has a feasible integer solution.

Proof. The if part is trivial.

To prove the only if part, we reason as follows. If there exists a solution there exists a basis

solution xB , i.e., such that

xB = A−1
B b,

where AB is obtained by A selecting a set of basis columns.

If the CS is rational the entries of AB and b are rational, hence the entries of A−1
B and of xB

are rational as well.

If the CS is ideal, we just need to multiply the rational vector xB by a suitable positive integer

to obtain an integer solution. ¤

III. P/T NET IDENTIFICATION

The problem we consider in this paper can be formally stated as follows.

Problem 4: Let L ⊂ T ∗ be a finite prefix-closed language2, and

k ≥ max
σ∈L

|σ|

be an integer greater than or equal to the length of the longest string in L. We want to identify

the structure of a net N = (P, T, Pre, Post) and an initial marking M0 such that

Lk(N, M0) = L.

The unknowns we want to determine are the elements of the two matrices Pre, Post ∈ Nm×n

and the elements of the vector M0 ∈ Nm. ¥
Associated to an identification problem are the two sets defined in the following.

2A language L is said to be prefix-closed if for any string σ ∈ L, all prefixes of σ are in L.



Definition 5: Let L ⊂ T ∗ be a finite prefix-closed language and let k ∈ N be defined as in

Problem 4.

We define the set of enabling conditions

E = {(y, t) | (∃σ ∈ L) : |σ| < k, σ ∈ L(y), σt ∈ L}
⊂ Nn × T

(1)

and the set of disabling conditions

D = {(y, t) | (∃σ ∈ L) : |σ| < k, σ ∈ L(y), σt 6∈ L}
⊂ Nn × T.

(2)

¥
Clearly, a solution to Problem 4 is a net 〈N, M0〉 such that:

• for all (y, t) ∈ E transition t is enabled after the firing of all σ ∈ L(y), i.e., M0[σ〉My[t〉,
where My = M0 + C · y represents the marking reached after the firing of sequence σ.

• for all (y, t) ∈ D transition t is disabled after the firing of σ ∈ L(y), i.e., M0[σ〉My¬[t〉.
We can characterize the number of places required to solve our identification problem.

Definition 6: Let L be a finite prefix-closed language on alphabet T , whose words have length

less than or equal to k. Given the set of disabling conditions (2) let mD = |D|.
We say that a Petri net system 〈N,M0〉 with set of places P and Lk(N, M0) = L, is D-

canonical if

1) |P| = mD;

2) there exists a bijective mapping h : D → P such that, for all (y, t) ∈ D, place p = h(y, t)

satisfies

My(p) , M0(p) + C(p, ·) · y < Pre(p, t),

i.e., place p disables t after any σ ∈ L(y). ¥

In simple words, a net system 〈N,M0〉 is D-canonical if a different place is associated to

each element in the set of disabling constraints D.

Proposition 7: Let L be a finite prefix-closed language on alphabet T , whose words have

length less than or equal to k.

If there exists a net system 〈Ñ , M̃0〉 such that Lk(Ñ , M̃0) = L, then there exists a net system

〈N, M0〉 that is D-canonical.



Proof. Let

P(y,t) = {p ∈ P̃ | M̃0(p) + C̃(p, ·) · y < ˜Pre(p, t)}

be the set of all places of Ñ that disable transition t after sequence σ ∈ L(y) has occurred

(here C̃ is the incidence matrix of Ñ ). For each pair (y, t) ∈ D let h(y, t) be one place arbitrary

selected from P(y,t); let P be the set of selected places and m = |P|.
Two different cases may occur.

Case 1: m = mD, i.e., a different place has been selected from any set P(y,t). In such a case

we define N as the net obtained from Ñ removing all places not in P (if any), and assume

M0 as the restriction of M̃0 to places in P . We claim that Lk(N,M0) = L. In fact, since we

have removed some places from 〈Ñ , M̃0〉 then L(Ñ , M̃0) ⊆ L(N,M0). On the other hand, by

construction we know that for all words wt of length less than or equal to k it holds

wt 6∈ L(Ñ , M̃0) =⇒ wt 6∈ L(N, M0),

hence Lk(N, M0) = Lk(Ñ , M̃0) = L.

By construction, a different place in P is associated to any couple (y, t) ∈ D, thus proving

that 〈N, M0〉 is D-canonical.

Case 2: m < mD, i.e., some place p ∈ P has been selected from P(y,t), P(y′,t′), P(y′′,t′′), . . ., for

two or more different pairs (y, t), (y′, t′), (y′′, t′′), . . . in D. In such a case we add to the net —

without changing its language — additional places p′, p′′ . . . such that Pre(p, ·) = Pre(p′, ·) =

Pre(p′′, ·) = · · · , Post(p, ·) = Post(p′, ·) = Post(p′′, ·) = · · · , and M0(p) = M0(p
′) =

M0(p
′′) = · · · , thus obtaining a net with mD places.

We redefine h(y′, t′) = p′, h(y′′, t′′) = p′′, . . .. Function h is now bijective and the resulting

net system is D-canonical. ¤
Theorem 8: Let us consider a finite prefix-closed language on alphabet T , whose words have

length less than or equal to k and let E and D be the corresponding sets of enabling and disabling

conditions.



Let
N (E ,D) ,



M0 + Post · y
−Pre · (y + ~t ) ≥ 0 ∀(y, t) ∈ E

M0(p(y,t)) + Post(p(y,t), ·) · y
−Pre(p(y,t), ·) · (y + ~t ) ≤ −1 ∀(y, t) ∈ D

M0 ∈ RmD
≥0

Pre, Post ∈ RmD×n
≥0

(3)

Consider a net system 〈N,M0〉 with N = (P, T, Pre, Post). The system 〈N,M0〉 is a D-

canonical solution of the identification problem 4 iff Pre, Post, M0 are integer solutions of CS

(3).

Proof: We first show that any integer solution 〈N, M0〉 of CS (3) is a solution of Problem 4.

• Any constraint M0 + Post · y−Pre · (y +~t ) ≥ 0 can be rewritten as My = M0 + (Post−
Pre) · y ≥ Pre(·, t) or equivalently My ≥ Pre(·, t) where M0[σ〉My for all σ ∈ L(y). This

shows that transition t is enabled on 〈N, M0〉 from marking My and by induction on the

length of σ (since language L is prefix-closed) we conclude that σt ∈ L.

• Assume that sequence σ ∈ L(y) is firable on the net and M0[σ〉My. If for at least a

place p in the net it holds M0(p) + Post(p, ·) · y − Pre(p, ·) · (y + ~t ) ≤ −1, then My =

M0+(Post−Pre)·y 6≥ Pre(·, t) or equivalently My 6≥ Pre(·, t). This shows that transition

t is not enabled on 〈N, M0〉 from marking My and we conclude that σt 6∈ L.

Since net 〈N, M0〉 satisfies all enabling and disabling constraints, Lk(N, M0) = L.

We now show that any solution of CS (3) is D-canonical. In fact, the mapping h(y, t) = p(y,t)

for each couple (y, t) ∈ D is bijective.

We now show that any D-canonical net system 〈N,M0〉 with Lk(N,M0) = L is a solution

of CS (3). In fact, let h : D → P be the bijective function of the net system. If we define

p(y,t) = h(y, t) for all (y, t) ∈ D, then all equations in CS (3) are satisfied. ¤
Proposition 9: The linear CS (3) is ideal and rational.

Proof: We first observe that the linear CS (3) can be rewritten as a set of linear inequalities

of the form Ax ≥ b as follows. Let us denote as prei and posti the i-th row of matrices Pre

and Post, respectively, for i = 1, . . . , mD.



For any (y, t) ∈ E the first matrix inequality in (3) can be rewritten as the following set of

mD scalar inequalities:

[
1 yT −(y + ~t )T

]
·




M0,i

postTi

preT
i


 ≥ 0

where i = 1, . . . , mD. Analogously, for any (y, t) ∈ D the second scalar inequality in (3) can

be rewritten as:

[
−1 −yT (y + ~t )T

]
·




M0,i

postTi

preT
i


 ≥ 1.

This defines matrix A and vector b. Since A and b have integer entries, CS (3) is rational. Since

b ≥ 0, by Proposition 2 CS (3) is ideal. ¤
The following theorem provides a practical and efficient procedure to solve our identification

problem.

Theorem 10: The identification problem 4 admits a solution if and only if the (linear) CS (3)

is feasible.

Proof: (if) By Proposition 9 CS (3) is ideal and rational thus by Proposition 3 if it has

solutions, then it also has feasible integer solutions. However, by Theorem 8 this also implies

that such integer solutions are also solutions of the identification problem 4.

(only if) If there exists a solution of Problem 4, by Proposition 7 there also exists a net system

that is D-canonical. But all D-canonical systems are solutions of CS (3) by Theorem 8, thus CS

(3) is feasible. ¤
Note, finally, that once a solution of CS (3) is found, if this solution is rational we can always

find an integer solution by simply multiplying Pre, Post and M0 by a suitable α ≥ 1.

IV. PLACE REDUCTION

One drawback of the identification procedure outlined in the previous section consists in the

requirement that the net contains a number of places equal to mD = |D| although an equivalent

net with a smaller number of places may exist. Note that in the worst case the cardinality of the

set D can be |T|k [1].



We propose two (types of) approaches to overcome this problem. In the first approach, that

we call place pre-reduction, CS (3) is written in a modified form, using a reduced number of

places. In the second approach, that we call place post-reduction, we first determine a solution

of the standard CS (3) obtaining a net with mD places and then we identify redundant places

that can be removed without affecting the correctness of the result.

A. Place pre-reduction

We start with a general result that allows one to check if the net obtained by solving CS (3)

has a minimal number of places. The test we propose requires solving a series of modified CS’s

and this is why we present this result in the subsection devoted to the pre-reduction.

Definition 11: Consider a partition

Π(D) = {D1, D2, . . . , Dq}

of the set D. The sets Di are called blocks of partition Π(D).

We define the following CS

N (E , Π(D)) ,



M0 + Post · y
−Pre · (y + ~t ) ≥ 0 ∀(y, t) ∈ E

M0(pi) + Post(pi, ·) · y
−Pre(pi, ·) · (y + ~t ) < 0 ∀(y, t) ∈ Di,

i = 1, . . . , q

M0 ∈ Rq
≥0

Pre, Post ∈ Rq×n
≥0

(4)

where E and n = |T| have the usual meaning as in Theorem 10. ¥
The only difference between CS (4) and CS (3) consists in the fact that in the former only q

places (as many as the blocks of partition Π(D)) are used: place pi (i = 1, . . . , q) will ensure that

all disabling conditions in Di are enforced. It is immediate to prove, with the same reasoning of

Proposition 9, that CS (4) is rational and ideal, and that any of its integer solutions is a solution

to the identification problem 4.

Definition 12: Given the identification problem 4, a partition Π(D) = {D1, D2, . . . , Dq} with

q blocks is said to be



• feasible if CS N (E , Π(D)) admits a solution;

• minimal if it is feasible and there exists no other partition Π′(D) with q′ < q that is feasible.

¥
Thus the number of blocks of a minimal partition represents the minimal number of places

that a net solving the given identification problem may have.

The following corollary trivially follows from the previous definitions and from Theorem 10.

Corollary 13: A net with q places solution of the identification problem 4 exists iff there

exists a feasible partition Π(D) = {D1, D2, . . . , Dq} with q blocks solution of CS (4).

We now state an intuitive result that allows one to determine if a partition is minimal.

Proposition 14: A feasible partition with q blocks is minimal iff there exists no feasible

partition with q − 1 blocks.

Proof: The only if part follows from the definition of minimal partition.

To prove the if part we need to show that if no feasible partition with q−1 blocks exists, then

no partition with a smaller number of blocks is feasible. This can be proved by contradiction,

by means of the same argument used in the proof of Proposition 7, Case 2. In fact, assume

there exists a feasible partition with q′ < q − 1 blocks; then there exists a net solving the

identification problem with q′ places. However, we can add an arbitrary number of duplicate

place to this net and this implies that there exists a net solving the identification problem with

q′+1, q′+2, . . . , q−1 places. Thus, according to Proposition 13, there exists a feasible partition

with q − 1 blocks which is a contradiction. ¤
According to the previous proposition to prove that a feasible partition Π(D) with q blocks is

minimal it is necessary to check the feasibility of all partitions D with q − 1 blocks. However,

the number of partitions of a set of cardinality n into k blocks is given by the Sterling number

of the second kind3 S(n, k) [12] which may be too large for an exhaustive analysis.

With the terminology introduced in this section, CS (3) can be seen as a special case of CS (4)

when the considered partition Π(D) contains all singleton sets, i.e., it is the unique partition with

3An explicit formula for the Sterling number of the second kind is

S(n, k) =
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn.



mD blocks. Thus it is possible to check if this partition is minimal by checking that all partitions

of mD − 1 blocks (obtained by merging any two singleton sets) are not feasible. There exists

S(mD,mD − 1) =
mD(mD − 1)

2

of these partitions.

Although the previous results provide a procedure for reducing the number of places of a Petri

net, a brute force search to determine a minimal feasible partition is not viable given the large

number of such partitions. We conclude this subsection with an informal discussion on how it

may possible to exploit some additional information on the net to determine a feasible partition

of cardinality smaller than mD.

As an example, assume it is known that a transition t has only one input place — such is the

case if the net to identify or a subnet of it containing t is a state machine. In such a case, it is

possible to consider a partition of D in which a single block

D = {(y1, t), . . . , (yr, t)} ⊂ D

contains all disabling conditions for transition t and a single place p will be used to disable

t after a sequence σi ∈ ∪r
i=1L(yi) has been executed.

As a second example, assume it is known that transitions t and t′ are in a free choice relation,

i.e., there exists a place p = •t = •t′ that is the unique input place for both transitions. In such

a case, it is possible to consider a partition of D in which a single block

D = {(y1, t), . . . , (yr, t), (y
′
1, t

′), . . . , (yr′ , t
′)} ⊂ D

contains all disabling conditions for transitions t and t′ which will be enforced by place p.

Example 15: Let us consider a language

L = {ε, t1, t1t2, t1t3, t1t2t3, t1t3t2, t1t3t3}

and let k = 3. We have additional information: the transition t1 has only one input place and

transitions t2 and t3 are in a free choice relation. The set of enabling and disabling constraints

are respectively:

E = {(ε, t1), (t1, t2), (t1, t3), (y12, t3), (y13, t2), (y13, t3)}



 

p1 

t1 

t2 

t3 

2 

p2 

3 

Fig. 1. The Petri net systems in Example 15.

and

D = {(ε, t2), (ε, t3), (t1, t1), (y12, t1), (y12, t2), (y13, t1)},

where y12, y13 are the firing vectors of t1t2 and t1t3 respectively. The additional information

allows us to consider two different blocks of D :

D1 = {(t1, t1), (y12, t1), (y13, t1)} ⊂ D

and

D2 = {(ε, t2), (ε, t3), (y12, t2)} ⊂ D.

Let us observe that D = D1 ∪ D2, then the Petri net solution has |P | = 2. A net system

solution of N (E ,D) computed with a commercial LP solver (LINDO) is reported in Fig. 1.

Note that such a solution has been determined associating a linear objective function f(M0, P re, Post)

to N (E ,D), and solving the resulting linear programming problem. In particular, we assumed

f(M0, P re, Post) = 1T ·M0 + 1T · Pre · 1 + 1T · Post · 1.

Note finally that the solution we found out was integer. ¥

B. Place post-reduction

Once a net has been identified solving CS (3) (or even CS (4)) it is always possible to check

if some of the places are redundant and can be removed without affecting the correctness of the

result. This check is based on the notion of minimal hitting set defined in the following.

Proposition 16: Consider a net system 〈N,M0〉 solution of the identification problem 4 and

define for all disabling conditions (y, t) ∈ D the set

P(y,t) = {p ∈ P | M0(p) + C(p, ·) · y < Pre(p, t)} (5)



consisting of all places of the net that disable transition t after a sequence σ ∈ L(y) has been

executed.

Assume P̂ ⊂ P is a hitting set for all P(y,t)’s, i.e., P̂ ∩ P(y,t) 6= ∅ for all (y, t) ∈ D. Then the

net system 〈N̂ , M̂0〉 obtained from 〈N,M0〉 removing all places in P \ P̂ is a solution of the

identification problem 4.

Proof: As already discussed in the proof of Proposition 7 the removal of a place does not

affect any enabling condition. Furthermore, if P̂ is a hitting set for all P(y,t)’s then it is capable

of enforcing all disabling conditions in D. Hence Lk(N̂ , M̂0) = Lk(N, M0). ¤
The places in P \ P̂ that can be removed from the net system 〈N, M0〉 without changing its

language Lk(N,M0) are called redundant places.

Since the net Ñ has set of places P̂ , to obtain a net with a minimal set of places we need to

determine the minimal hitting set. This problem is known to be NP-hard and there exists several

ways to compute minimal hitting sets (see [13] for a review). Here we present a straightforward

algorithm based on integer programming.

Proposition 17: Consider a net system 〈N,M0〉 with m = |P| places solution of the identifi-

cation problem 4. For all disabling conditions (y, t) ∈ D, let z(y,t) ∈ {0, 1}m be the characteristic

vector of set P(y,t) defined in (5), i.e., z(y,t)(p) = 1 if p ∈ P(y,t), else z(y,t)(p) = 0.

Consider the following integer programming problem (IPP):

min 1T · x
s.t. xT · z(y,t) ≥ 1 ∀(y, t) ∈ D

x ∈ {0, 1}m

(6)

and let x∗ be an optimal solution.

Then a minimal hitting set for all P(y,t)’s is the set P̂ = {p ∈ P | x∗(p) = 1}.

Proof: It is immediate to see that any feasible solution x of IPP (6) is the characteristic

vector of a hitting set for all P(y,t)’s because it contains at least one element from each of these

sets (xT · z(y,t) ≥ 1). The optimal solution x∗ has the minimal number of non-zero components,

hence it corresponds to a minimal hitting set. ¤
Example 18: Let

L = {ε, t1, t2}

and k = 2. We observe that this is a particular case of a language containing no word of length

k, i.e., all words of length k have to be disabled.
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Fig. 2. The Petri net systems in Example 18.

The set of enabling and disabling constraints are respectively:

E = {(ε, t1), (ε, t2)}

and

D = {(t1, t1), (t1, t2), (t2, t1), (t2, t2)}.

A net system solution of N (E ,D) is reported in Fig. 2.(a): here it is obviously |P | = mD = 4.

Note that such a solution has been determined associating the same linear objective function

f(M0, P re, Post) used in Example 15 to N (E ,D), and solving the resulting linear programming

problem.

We now try to reduce the number of places using the place post-reduction approach. To this aim

for any (y, t) we compute the set P(y,t) defined as in equation (5). Being P(t1,t1) = {p11, p12, p21},

P(t1,t2) = {p12, p21}, P(t2,t1) = {p12, p21}, P(t2,t2) = {p12, p21, p22}, it is immediate to see that a

possible hitting set for all P(y,t)’s is P̂ = {p21}, that is also minimal. The resulting net system

〈N̂ , M̂0〉 obtained from the previous one removing all places in P \ P̂ is shown in Fig. 2.(b).

All solutions, obtained with LINDO, are integer. ¥
It is important to observe that the place post-reduction procedure does not necessarily ensure

that the resulting net is the solution of a given identification procedure with the minimal number

of places. In fact, it only determines, amongst the solutions of a given identification procedure

that can be obtained from a solution N by removing places, the one with a minimal number of

places. The following example will clarify this point.

Example 19: Let

L = {ε, t1, t2, t3}
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Fig. 3. The Petri net systems in Example 19.

and k = 2, thus as in Example 18, all words of length k have to be disabled. The set of enabling

and disabling constraints are respectively:

E = {(ε, t1), (ε, t2), (ε, t3)}

and
D = {(t1, t1), (t1, t2), (t1, t3), (t2, t1), (t2, t2),

(t2, t3), (t3, t1), (t3, t2), (t3, t3)}.
A net system solution of CS (3) is shown in Fig. 3.(a), where obviously |P | = mD = 9. It has

been determined solving a linear programming problem whose objective function is the same of

that used in Example 15.

Now, being P(t1,t1) = {p11, p12, p13, p21, p31}, P(t1,t2) = {p12, p21}, P(t1,t3) = {p13, p31}, P(t2,t1) =

{p12, p21}, P(t2,t2) = {p12, p21, p22, p23, p32}, P(t2,t3) = {p23, p32}, P(t3,t1) = {p13, p31}, P(t3,t2) =

{p23, p32}, P(t3,t3) = {p13, p23, p31, p32, p33}, it is easy to see that a possible hitting set for all



P(y,t)’s is P̂ = {p21, p31, p32}. The net system 〈N̂ , M̂0〉 obtained from 〈N, M0〉 removing all

places in P \ P̂ is shown in Fig. 3.(b).

Note that the same hitting set can also be obtained solving the IPP (6).

Such a solution is not minimal in terms of places, as it can be verified using the place pre-

reduction procedure.

To this aim we first look at a solution with two places, namely using the notation of Def-

inition 11, we check if there exists a solution with only two blocks D′
1 and D′

2, obtained by

merging two of the three blocks

D1 = {(t1, t1), (t1, t2), (t2, t1), (t2, t2)},

D2 = {(t2, t3), (t3, t2), (t3, t3)}

and

D3 = {(t1, t3), (t3, t1)}

relative respectively to the places p21, p32 and p31 of the net in Fig. 3.(b).

In particular, we find that CS (4) admits a solution when

D′
1 = {t1, t1), (t1, t2), (t1, t3), (t2, t1), (t2, t2), (t3, t1)}

and

D′
2 = {(t2, t3), (t3, t2), (t3, t3)},

where

D′
1 = D1 ∪ D3.

The resulting net 〈N̄ , M̄0〉 is shown in Fig. 3.(c), where P̄ = {p21, p32}.

We can further on reduce the net finding a minimal hitting set. Being, P(t1,t1) = {p21},

P(t1,t2) = {p21}, P(t1,t3) = {p21}, P(t2,t1) = {p21}, P(t2,t2) = {p21, p32}, P(t2,t3) = {p21, p32},

P(t3,t1) = {p21}, P(t3,t2) = {p21, p32}, P(t3,t3) = {p21, p32}, the unique minimal hitting set is

P̂ ′ = {p21}. The net system 〈N̂ ′, M̂ ′
0〉 obtained from 〈N̄ , M̄0〉 removing all places in P̄ \ P̂ ′ is

minimal and is shown in Fig. 3.(d).

Note that in all cases, the net solutions, obtained with LINDO, are integer. ¥
As a final remark we observe that the notion of redundant place that we give here is different

from the one of implicit place used by other authors [14]. In fact, an implicit place is a place



that can be removed from a net system 〈N, M0〉 without changing its overall behavior L(N, M0).

On the contrary, a redundant place according to our definition is a place that can be removed

from the net without changing the finite prefix behavior Lk(N,M0). Thus our notion is weaker

and the techniques used in [14] to determine implicit places cannot be used in our framework.

V. CONCLUSIONS

We have presented a procedure to identify a place/transition net from a finite prefix of its

language. The procedure is based on linear programming, and this is a major advantage over

previous approaches that were based on integer programming. The number of places of the

resulting net may not be minimal, but we have discussed several techniques that may be used

to reduce it.

As a possible line for future research, we mention the extension of this procedure to more

general cases, such as those based on the knowledge of the reachability/coverability tree of

the net to identify. Moreover, we plan to use the results here presented in selected application

domains.
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