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Abstract

In this paper we deal with the problem of estimating the marking of an arbitrary labeled
Petri net system where two forms of nondeterminism may occur. Firstly, there may exist
unobservable transitions, i.e., transitions labeled with the empty string. Secondly, there may
exist undistinguishable transitions, i.e., two or more transitions sharing the same symbol
taken from a given alphabet E may simultaneously be enabled.
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1 Introduction

The behavior of a discrete event system (DES) is modeled by a language on an alphabet E (the
set of events): a sequence of events from this alphabet forms a word that describes a particular
evolution of the system. An observer aims to provide an estimate of the system state based on
the observation of the word of events.

A well-founded approach to the state estimation of DES modeled by automata is based on the
notion of nondeterminism. The initial state of the automaton is usually assumed to be known
but, as the system evolves, the current state may not be perfectly known if the automaton is
nondeterministic. Nondeterminism originates from two different causes.

• Silent transitions. There may be state transitions that cause a change in the state of the
DES but that are not observable by an outside observer. Transitions of this kind are labeled
with the empty string ε.

• Undistinguishable transitions. There may be events whose occurrence from a given state
yields two or more new states. Such is the case if two or more transitions labeled with the same
symbol in E are enabled at a given state.

For DES modeled as finite automata, the most common way of solving the state estimation
problem is that of converting the nondeterministic finite automaton (NFA) into an equivalent
deterministic finite automaton (DFA) where: (i) each state of the DFA corresponds to a set of
states of the NFA; (ii) the state reached on the DFA after the word w is observed, gives the set
C(w) of states consistent with the observed word w. However, there are some drawbacks in the
above procedure. Firstly, each set C(w) must be exhaustively enumerated. Then, to compute
C(w) we first need to compute C(w′) for all prefixes w′ � w. If the NFA has n states, the DFA
can have up to 2n states.

In previous works we have explored the possibility of using Petri nets (PN) as discrete event
models and have addressed the observer design keeping the two forms of nondeterminism sepa-
rated. In fact, in (Corona et al., 2004), we have assumed that the only source of nondeterminism
is due to silent transitions. Dually, in (Giua et al., 2005), we have assumed that the only source
of nondeterminism is due to undistinguishable transitions. In both cases, under some restric-
tions on the class of nets considered we proved that the set of markings (i.e., states) consistent
with the observed behavior coincides with the set of feasible solutions of a parameterized integer
constraint set: the parameters that describe this set can be recursively updated as a new event
is observed.

In this paper we show that a similar approach can also be applied when the net contains both
forms of nondeterminism. Combining the two approaches is not trivial, and requires identifying
a new set of restrictions that the considered net must satisfy.

For some recent literature we address to (Jiroveanu and Boel, 2005; Corona et al., 2004; Sun-
daram and Hadjicostis, 2006; Ru and Hadjicostis, 2006; Corona et al., 2004; Giua et al., 2005).

2 Notation and basic definitions

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m
places; T is a set of n transitions; Pre : P × T → N and Post : P × T → N are the pre– and
post– incidence functions that specify the arcs.

The incidence matrix of a net is C = Post− Pre. The preset and postset of a node x ∈ P ∪ T
are denoted •x and x•, while •x• =• x ∪ x•.

A marking is a vector M : P → N that assigns to each place of a P/T net a non–negative integer
number of tokens, represented by black dots. We denote M(p) the marking of place p. A P/T
system or net system 〈N,M0〉 is a net N with an initial marking M0.
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A transition t is enabled at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ =
M +C(· , t). We write M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk is enabled
at M , and we write M [σ〉 M ′ to denote that the firing of σ yields M ′.

A markingM is reachable in 〈N,M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M . The
set of all markings reachable from M0 defines the reachability set of 〈N,M0〉, denoted R(N,M0).

Given a sequence σ ∈ T ∗, we call ~σ : T → N the firing vector of σ. In particular, σ(t) = k if the
transition t is contained k times in σ.

Finally, we also define for τ ⊆ T , σ(τ) = Σt∈τσ(t) the number of times transitions in τ appear
in σ.

A Petri net having no directed circuits is called acyclic. A P/T net is backward conflict-free if
∀p ∈ P , |•p| ≤ 1, i.e., if each place has at most one input transition.

Definition 2.1 Given N = (P, T, Pre, Post), and a subset T ′ ⊆ T , we define the T ′−induced
subnet of N as the new net N ′ = (P, T ′, P re′, Post′) where Pre′, Post′ are the restriction of
Pre, Post to T ′. The net N ′ is obtained from N removing all transitions in T \ T ′. �

3 A framework for observation

3.1 Labeled Petri nets

A labeling function L : T → E ∪ {ε} assigns to each transition t ∈ T either a symbol from a
given alphabet E or the empty string ε. We assume that whenever a transition t fires, only its
label L(t) is observed. We also denote w the word of events observed when a sequence σ fires,
i.e., w = L(σ).

Let us denote as Te the set of transitions labeled e, i.e., Te = {t ∈ T | L(t) = e}.

We partition the set E as E = Eu ∪ Ed where

• Eu = {e ∈ E | |Te| > 1} is the set of symbols that label two or more transitions. These
symbols are called undistinguishable events because the observation of such a symbol e may be
caused by the firing of any of the transitions in the set Te.

• Ed = {e ∈ E | |Te| = 1} is the set of symbols that label just one transition. These symbols
are called deterministic events because their observation unambiguously detects the firing of the
unique transition labeled by it.

This allows us to partition the set of transitions T into three subsets: T = Tε ∪ Tu ∪ Td.

• Tε = {t ∈ T | L(t) = ε} is the set of transitions labeled ε. These transitions are called silent
because, their occurrence generates no observable event.

• Tu = {t ∈ T | L(t) ∈ Eu} is the set of undistinguishable transitions.

• Td = {t ∈ T | L(t) ∈ Ed} is the set of deterministic transitions.

In the following, without any loss of generality, we assume that Ed = Td, since the restriction of
the labeling function to this set is an isomorphism.

Then, we denote Tn = Tu ∪ Tε the set of nondeterministic transitions.

The restriction of the incidence matrix C to Te (Tε) is denoted Ce (Cε) and the restriction of
the firing vector ~σ to Te (Tε) is denoted ~σe (~σε).

Finally, to each set of undistinguishable transitions Te we associate the set Te containing all
possible subsets of transitions, apart from itself and the empty set, i.e.,

Te = {τ ⊆ Te | τ 6= ∅, τ 6= Te} = 2Te \ {∅, Te}.
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3.2 Minimal explanations and minimal e-vectors

Definition 3.1 Given a marking M and a transition t ∈ Tu ∪ Td, we define

Σ(M, t) = {σ ∈ Tn
∗ | M [σ〉M ′, M ′ ≥ Pre(·, t)}

the set of explanations of t at M . Then, we define

Y (M, t) = {~y ∈ Nnn | ∃σ ∈ Σ(M, t) : ~σ = ~y},

where nn = Tn, the set of e-vectors (or explanation vectors), i.e., the firing vectors associated
to the explanations. �

Thus Σ(M, t) is the set of sequences in Tn whose firing at M enables t. Among the above
sequences we want to select those whose firing vector is minimal. The firing vectors of these
sequences are called minimal e-vectors.

Definition 3.2 Given a marking M and a transition t ∈ Tu ∪ Td, we define

Σmin(M, t) = {σ ∈ Σ(M, t) | ∄ σ′ ∈ Σ(M, t) :

~σ′ � ~σ}

the set of minimal explanations of t at M , and

Ymin(M, t) = {~y ∈ Nnn | ∃σ ∈ Σmin(M, t) :

~σ = ~y}

the corresponding set of minimal e-vectors. �

Similar definitions have also been given in (Giua and Seatzu, 2005; Jiroveanu and Boel, 2004).
Different approaches can be used to compute Ymin(M, t) (Giua and Seatzu, 2005; Jiroveanu and
Boel, 2005). In particular, in (Giua and Seatzu, 2005) we proposed an approach that terminates
finding all vectors in Ymin(M, t) if applied to nets whose Tn-induced subnet is acyclic.

Theorem 3.3 ((Corona et al., 2004)) If the Tn-induced subnet is acyclic and backward conflict-
free, then |Ymin(M, t)| = 1.

4 Problem statement

In this paper we deal with the problem of estimating the marking of a net system 〈N,M0〉 whose
marking cannot be directly observed. We assume that:

• the structure of the net N is known;

• the initial marking M0 is known;

• the labels associated to the firing of transitions in T\Tε can be observed.

Given an observation w, we define the set C(w) as the set of all markings in which the system
may be given the observed word w.

Definition 4.1 Given a word w, the set of w-consistent markings is:

C(w) = {M ∈ Nm | ∃σ ∈ T ∗ :

M0[σ〉M, L(σ) = w}. �
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Figure 1: The net system in Example 4.2.

Example 4.2 Let us consider the Petri net system in Fig. 1 where M0 = [ 1 0 0 1 0 0 0 ]T ,
Tε = {ε1, ε2, ε3, ε4}, Tu = Ta = {a1, a2} and Td = {t1, t2}.

Assume that no event is initially observed, i.e., w = ε. It holds C(ε) = {[ 1 0 0 1 0 0 0 ]T ,
[ 0 1 0 1 0 0 0 ]T }. In fact, two different cases may have occurred: either no transition
has fired or the silent transition ε2 has fired. Now, let us assume that the event a is ob-
served. The set of markings that are consistent with the observation of w = a is C(a) =
{[ 0 0 1 1 0 0 0 ]T , [ 1 0 0 0 1 0 0 ]T , [ 1 0 0 0 0 1 0 ]T , [ 0 1 0 0 1 0 0 ]T , [ 0 1 0 0 0 1 0 ]T }.
In fact, eight different sequences of transitions may have fired, namely σ1 = ε2a1, σ2 = a2,
σ3 = a2ε3, σ4 = a2ε2, σ5 = ε2a2, σ6 = a2ε2ε3, σ7 = a2ε3ε2, σ8 = ε2a2ε3. Finally, if t1 is
observed then we are able to identify that the previously observed event a can only have been
produced by the firing of a1 which in turn is possible only if silent transition ε2 has fired, thus
C(at1) = {[ 0 0 0 2 0 0 0 ]T }. �

5 Particular cases

5.1 Petri nets with silent transitions

In (Corona et al., 2004) we assume that a different label is associated to transitions in T \ Tε.
In such a case Tn = Tε.

Under the assumptions that

(A1) the Tε−induced subnet of N is acyclic,

(A2) the Tε−induced subnet is backward conflict-free, i.e., all silent transitions have no common
output place,

we showed that the set of consistent markings can be written as the solution of a linear sys-
tem with a fixed structure that depends on the value of a vector Mb,w ∈ Nm, called the basis
marking. It represents the marking that is reached from M0 by firing all the observed determin-
istic transitions and all those silent transitions whose firing is strictly necessary to enable the
observed sequence. The basis marking can be recursively computed, and depends on the actual
observation w.

Thus, the set of markings consistent with w can be written as: C(w) = {M ∈ Nm | M =
Mb,w + Cε ~σε, ~σε ∈ Nnε},where nε is the number of silent transitions. This means that the
set of consistent markings can be characterized as the set of markings reachable from the basis
marking by firing any sequence of silent transitions.

5.2 λ-free Petri nets

In (Giua et al., 2005) we assume that the label function is λ-free, i.e., there exists no silent
transition. In such a case Tn = Tu. Under the following assumption

(B1) undistinguishable transitions are contact-free, i.e., for any two undistinguishable transi-
tions ti and tj, it holds that

•t•i ∩
•t•j = ∅ and •ti ∩ t•i = ∅,
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we proved that, for all words w ∈ E∗, the set of w consistent markings C(w) is equal to

C(w) = {M ∈ Nm | M = Mb,w +
∑

e∈Eu

Ce~σe;

~σe ∈ Se(w)}
(1)

where

Se(w)
def
={~σ ∈ Nne | (∀τ ∈ Te) σ(τ) ≤ uw(τ),

σ(Te) = uw(Te)}

is the set of w-consistent undistinguishable firing vectors and the upper bounds uw(τ) and
uw(Te), as well as the basis markingMb,w, are computed using an appropriate recursive algorithm
(Giua et al., 2005). Therefore, the number of constraints used to describe the set Se(w) is equal
to 2ne − 1, regardless of the length of the observed word w.

6 Arbitrary labeled Petri nets

In this section we consider the general problem formulation given in Section 4.

Let us first define a silent path of N from transition t to t′ as a sequence t0p1t1 . . . tk−1pktk where
t = t0, t

′ = tk, ti ∈ Tε for i = 1, . . . , k− 1, and for i = 1, . . . , k it holds ti−1 ∈
•pi and pi ∈

•ti. In
plain words, a silent path is a directed path that contains only silent transitions (apart possibly
for the initial and final transition).

The approach we will present in the following applies to nets that satisfy these four assumptions:

(C1) the Tn−induced subnet of N is acyclic;

(C2) the Tn−induced subnet is backward conflict-free, i.e., all silent and undistinguishable tran-
sitions have no common output place;

(C3) for any two undistinguishable transitions t, t′ ∈ Tu there exists no silent path from t to t′;

(C4) if silent path t0p1t1 . . . ti−1pktk leads from a silent transition t0 ∈ Tε to an undistinguishable
transition tk ∈ Tu, then for all pi it holds

•pi = {ti−1}, i.e., each place pi on the path has
a single input transition, namely ti−1.

6.1 An algebraic characterization of the set of consistent markings

Theorem 6.1 Let us consider an arbitrary labeled Petri net system 〈N,M0〉 and let L : T →
E ∪ {ε} be its labeling function. Let assumptions C1 to C4 be verified. Then, for all words
w ∈ E∗ the set of w-consistent markings C(w) is equal to

C(w) = { M ∈ Nm |
M = Mb,w +Cε~σε +

∑

e∈Eu
Ce~σe

~σε ∈ Nnε

~σe ∈ Se(w)}

(2)

where

Se(w)
def
={~σ ∈ Nne | (∀τ ∈ Te) σ(τ) ≤ uw(τ),

σ(Te) = uw(Te)}
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is the set of w-consistent undistinguishable firing vectors; the upper bounds uw(τ) and uw(Te),
as well as the marking Mb,w, are computed using the recursive Algorithm 6.7 in Fig. 31.

Proof: A formal proof of this statement would require to repeat several arguments and
intermediate results that have already been proved in (Giua et al., 2005), and would not fit in
the allotted number of pages. Thus, here we present sketch of the main arguments that enable
us to generalize the results in (Corona et al., 2004; Giua et al., 2005) under assumptions C1 to
C4.

We first observe that the physical meaning of the basis marking Mb,w is the same as in the
previous particular cases. In fact, Mb,w is the marking that is reached from the initial one
after the firing of the deterministic events in w plus the nondeterministic transitions (either
undistinguishable or silent) that are strictly necessary to enable them.

Moreover, the linear algebraic characterization in (2) only differs from (1) because of the addi-
tional term Cε~σε that keeps into account that a certain number of silent transitions may have
fired without being identified.

Now, let us discuss the importance of Assumptions C1 to C4. Assumptions C1 and C2 are
similar to A1 and A2 in Subsection 5.1. The only difference is that now it is required that the
Tn−induced net be acyclic and backward conflict-free. These assumptions ensure that, whenever
a deterministic transition t fires, if the current basis marking Mb does not enable it, then there
exists a unique minimal e-vector ~y that allows this firing and it is possible to update the new
basis marking to M ′

b = Mb + Cn~y + C(·, t). The proof is analogous to that of Theorem 3.3.

Assumption C3 is inspired by assumptions B1 in Subsection 5.2. In fact, Assumption B1 ensures
that any two undistinguishable transitions are contact-free, i.e., they do not share: (a) a common
input place; (b) a common output place; (c) a place outputting the first and inputting the second.
In the present approach these conditions should be generalized to all silent paths leading to or
starting from these transitions. However in the present approach condition (a) is not necessary
because, as explained later on in Remark 6.5, we are using an IPP (integer programming problem)
to compute the enabling degree of sets of transitions. Furthermore, (b) is prevented by assumption
C2. Thus we only have to consider the generalization of (c) and this is done in C3.

The last assumption is rather technical. It ensures that the dependency of the firing of an undis-
tinguishable transition from the silent transitions in its minimal explanation is not influenced by
the firing of other transitions (Example 6.6 well clarifies this)2. �

6.2 A detailed explanation of Algorithm 3

Let us first introduce two definitions.

Definition 6.2 For all e ∈ En and all t ∈ Te, we denote as Σte = {te} ∪ {t ∈ Tε |
∃ a silent path from to t to te }. �

Definition 6.3 Given a marking M and a subset of transitions τ ∈ Te, we define z(M, τ) as
the optimal value of the objective function of the following IPP

{

max
∑

t∈τ σn(τ)

s.t. Mb,we + Cn~σn ≥ ~0, ~σn ∈ Nnn . �

1A detailed explanation of Algorithm 6.7 in given in Subsection 6.2.
2Note that assumption C4 is different from C2. In fact, C2 specifies that any place must be backward conflict-

free in the nondeterministic net, i.e., it can have in input at most one nondeterministic transition, but it may also
have in input one or more deterministic transitions. On the contrary, assumption C4 specifies that some places
must be backward conflict-free in the complete net, i.e., they can only have in input the transition of the silent
path they belong to.
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In simple words z(M, τ) denotes how many times transitions in τ may have fired at M , taking
into account that their firing may also occur after the firing of an appropriate number of silent
transitions.

Now, let us discuss in detail all cases of Algorithm 3. For clearness of explanation we refer to
the labeled Petri net in Fig. 2 that represents the generic substructure of a more complex Petri
net that satisfies assumptions C1 to C4. Note that without loss of generality we assume that in
this subnet the only undistinguishable transitions are those labeled with a.

Moreover, for simplicity of notation in Fig. 2 we denote as a1, a2 and a3 the undistinguishable
transitions labeled a; analogously, we denote silent transitions as ε1, ε2, . . ., ε8.

Let w be the actual observed word of events and let Mb,w be the marking shown in Fig. 2.

• Case A: a deterministic transition t fires, whose minimal explanation does not include
undistinguishable transitions. If certain silent transitions belong to the minimal explanation of
t, we know for sure that such transitions have fired and we can also evaluate how many times
they have fired. We consequently update the basis marking taking into account the firing of t
and of its minimal explanation.

As an example, assume that transition t4 in Fig. 2 fires. Its minimal explanation is σ = ε1ε1.
Thus, we update the basis marking taking into account the firing of ε1ε1 and of t4.

• Case A’: t is such that some undistinguishable transition (or a transition on the silent path
that leads to it) shares an input place with t or with its minimal explanation. This is a subcase
of Case A. If this happens, then it may occur that the upper bounds associated to the subsets of
undistinguishable transitions may decrease. In particular, if z(Mb,we, τ) denotes the maximum
number of times transitions in τ may have fired at the basis marking Mb,we (provided that an
appropriate number of silent transitions have fired), then the value of the upper bound of τ is
equal to the minimum among z(Mb,we, τ) and the previous value of the upper bound, i.e., uw(τ).

As an example, assume that transition t6 has fired. We know for sure that silent transitions ε2
and ε3 should have fired two times and one time, respectively. But the firing of ε3 removes one
token from p3, thus limiting to one the firings of ε8 that belongs to the minimal explanation of
a2 at the current basis marking. Thus, if the previous bound of a2 was 2, we have to reduce it
to 1 because we can be sure that neither ε8 nor a2 have fired twice.

• Case B: a deterministic transition t fires, whose minimal explanation includes undistin-
guishable transitions. The same reasoning of Case A applies, with the difference that now
the minimal explanation of t also contains undistinguishable transitions. Therefore, we update
the basis marking taking into account the firing of t and of its minimal explanation, and we
also update the upper bounds relative to all subsets of undistinguishable transitions containing
transitions in the minimal explanation of t.

As an example, assume that the firing of t7 is observed. The firing of t7 is only possible if ε6,
ε5a1ε7 and ε8a2 have fired. Thus, we conclude that one of the previous observations of a was
due to a1 and another one to a2.

• Case C: a nondeterministic event is observed. In such a case we cannot establish which
transition has fired. Thus we do not update the basis marking and we take uwe(Ta) = uw(Te)+1.
Moreover, for any undistinguishable event e and any subset τ ∈ Te we update the corresponding
upper bound as the minimum among z(Mb,w, τ) and uw(τ). This implies that the number of
firings of transitions in τ is maximum given the actual basis marking Mb,w, with the constraint
that such a number is consistent with the actual observation of events labeled e. Note that this
last requirement is verified because the algorithm is iterative and at each iteration we allow that
each upper bound is at most increased of one unity.

As an example, assume that the nondeterministic event a is observed. We know that either
transition a1 or a2 have fired, while transition a3 is not enabled at the basis marking and there
exists no sequence of silent transitions that enables it.
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 Figure 2: The generic substructure of a Petri net that satisfies assumptions C1 to C4.

w Mb,w uw(τ1) uw(τ2) uw(τ3) uw(τ12) uw(τ13) uw(τ23) uw(Ta)

ε [1 0 0 2 0 0 0]T 0 0 0 0 0 0 0

a [1 0 0 2 0 0 0]T 1 1 0 1 1 1 1

at1 [1 1 0 2 0 0 0]T 1 1 0 1 1 1 1

at1t2 [1 1 0 2 0 1 0]T 1 1 0 1 1 1 1

at1t2a [1 1 0 2 0 1 0]T 2 2 1 2 2 2 2

Table 1: The results of Example 6.6.

Example 6.4 Consider the net of the Example 4.2. Assume the observed word is w = at1.
Using Algorithm 6.7 we update the basis marking and the upper bounds of subsets τ ’s as
summarized in the following table. Here, τ1 = {a1} and τ2 = {a2}. One can readily verify that
the solutions of (2) with the parameters given in the table coincides with the sets of consistent
markings explicitly enumerated in Example 4.2. �

w Mb,w uw(τ1) uw(τ2) uw(Ta)

ε [1 0 0 1 0 0 0]T 0 0 0

a [1 0 0 1 0 0 0]T 1 1 1

at1 [0 0 0 2 0 0 0]T 0 1 1

Remark 6.5 We observe that in this paper we are slightly extending the approach of (Giua
et al., 2005) even if we consider nets without silent transitions. The generalization consists in
removing the assumption that two undistinguishable transitions may not have a common input
place. This assumption was used in (Giua et al., 2005) to simplify the evaluation of the enabling
degrees of sets of transitions τ as the sum of the enabling degrees of each transition in the set.
Since in this paper we resort to an IPP to compute the enabling degree of the sets τ ’s, the
assumption is not necessary any more. �

We conclude with an example that shows the necessity of Assumption C4.

Example 6.6 Consider the generic substructure of a more complex Petri net in Fig. 4, where
M0 = [ 1 0 0 2 0 0 0 ]T , Tε = {ε1}, Tu = Ta = {a1, a2, a3} and Td = {t1, t2}.

Assume the observed word is w = at1t2a. Using Algorithm 6.7 we update the basis marking and
the upper bounds of subsets τ ’s as summarized in Table 1. Here, τj = {aj} and τij = {ai, aj}
for i, j = 1, 2, 3 and i 6= j. As a result the marking M = [ 1 0 1 2 0 0 1 ]T , obtained firing the
sequence σ = a1t1t2a3 is considered as consistent with the observed word w. This is clearly not
correct because σ = a1t1t2a3 is not enabled at M0. �
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Algorithm 6.7 1. Let w = ε and Mb,w = M0.
2. Let uw(τ) = 0 for all e ∈ Eu and for all τ ∈ Te.
3. Let uw(Te) = 0 for all e ∈ Eu.
4. Wait until an event e is observed.
5. If e ∈ Ed, then

let t = L−1(e),
let ~y = Ymin(Mb,w, t),
let Σ = {t ∈ Tn | y(t) 6= 0} ∪ {t},
if Σ ∩ Tu = ∅, then (Case A)

Mb,we = Mb,w + Cn~y + C(·, t)
if •Σ ∩•

⋃

te∈Tu
Σte 6= ∅,

then (Case A’)
let Tr(t) = {t̂ ∈ Tu | •Σ ∩• Σt̂ 6= ∅}
for all τ ∈ TL(t̂) ∪ {TL(t̂)} : t̂ ∈ τ ,

then uwe(τ) =
min{uw(τ), z(Mb,we, τ)}

endfor
endif

endif
if Σ ∩ Tu 6= ∅, then (Case B)

for all τ ∈
⋃

e∈Eu 2Te \ ∅ : t ∈ Σ, then

uwe(τ) = uw(τ)−
∑

t∈τ

y(t)

endfor
Mb,we = Mb,w + C(·, t) + Cn~y

endif
else (Case C)

for all τ ∈ Te, then
uwe(τ) = min{uw(τ) + 1, z(Mb,w, τ)}

endfor
uwe(Te) = uw(Te) + 1
Mb,we = Mb,w

endif
7. w = we
8. Goto 4. �

Figure 3: The algorithm for the upper bounds and the basis marking computation.

 
t1 

p2 p1 ε1 p3 a1 p5 p4 a2 

p6 p7 a3 t2 

Figure 4: The net in Example 6.6.
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7 Conclusions

In this paper we considered Petri nets with arbitrary transition labeling, and assumed that only
labels associated to transitions may be observed. The main contribution consists in providing a
linear algebraic characterization of the set of markings that are consistent with an observation
w, whose structure does not depend on the length of the observed word, but only on a certain
number of parameters that may be computed using an appropriate recursive algorithm. The
proposed result holds under certain assumptions on the nondeterministic subnet.
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