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Abstract

Continuous Petri nets are an approximation of discrete Petri nets introduced to cope with the state

explosion problem typical of discrete event systems. In this paper we start the problem of state estimation

for timed continuous Petri nets with finite server semantics. Under the assumption that no observation

is available, and thus the set of consistent markings only depends on the time elapsed, we study the

observation based on the time-reachability analysis.
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I. INTRODUCTION

State estimation is a fundamental issue in system theory. Reconstructing the state of a system

from available measurements may be considered as a self-standing problem, or it can be seen

as a pre-requisite for solving a problem of different nature, such as stabilization, state-feedback

control, diagnosis, filtering, and others. Despite the fact that the notions of state estimation,

observability and observer are well understood in time driven systems, in the area of discrete
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event and of hybrid systems there are relatively few works addressing these topics and several

problems are still open.

In the case of discrete event systems modeled by (discrete) Petri net models, there exist

different frameworks for observability. An approach for reconstructing the initial marking (as-

sumed only partially known) from the observation of transition firings was presented [8] and

later extended to the observation and control of timed nets [9]. In other works it was assumed

that some of the transitions of the net are not observable [5] or undistinguishable [7], thus

complicating the observation problem. Benasser [4] has studied the possibility of defining the

set of markings reached firing a “partially specified” step of transitions using logical formulas,

without having to enumerate this set. Ramirez et al. [12] have discussed the problem of estimating

the marking of a Petri net using a mix of transition and place observations. Ru and Hadjicostis

[14] have presented an approach for the state estimation of discrete event systems modeled by

labeled Petri nets.

Recently, a particular hybrid model based on Petri nets has received some attention. This

model is called continuous Petri net (contPN) [6], [15]. It can be seen as a relaxation of Petri

nets where the constraints that markings and transitions firings are integer are removed. There

exist two interesting timed versions of this model: timed contPN with infinite server semantics

and with finite server semantics1.

The problem of state estimation has only been studied for timed continuous nets with infinite

server semantics [11].

In this paper, we consider the observation problem for timed continuous Petri nets with finite

server semantics. We make these assumptions:

(A1) the initial marking m0 is known;

(A2) the net structure is known.

(A3) all transitions are unobservable or silent, i.e., their firing cannot be measured directly.

In addition to the untimed case, the state estimation of timed continuous nets should take

care of the following remarks: (1) transitions may fire in parallel and what we observe is the

instantaneous firing speed of observable transitions; (2) timing constraints must be taken into

1Timed continuous Petri nets with finite server semantics can be considered as the purely continuous version of First Order

Hybrid Petri Nets defined in [3].
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Fig. 1. ContPN system for which the marking [0, 0]T is lim-reachable in the untimed system but reachable in the timed one

if w = 2.

account and embedded into the state estimation procedure. For these reasons, the results in [5],

where the state estimation of discrete nets is studied, cannot be applied in our case.

For example, let us consider the net in Fig. 1 with arc weight w = 1, where the instantaneous

firing speed of each transition must belong to the interval [0, 1]. Assume that the observed flow

of transition t2 is v2(τ) = 0.5 during a time interval [0, 0.5], while the flow v1 of transition t1

cannot be observed. We want to determine the marking consistent with this observation, given

that it holds that m1(τ) = 1 − (v1 − v2) · τ and m2(τ) = (v1 − v2) · τ . Since t2 is firing with

firing speed 0.5, to keep the marking of p2 non negative, transition t1 must have been firing in

parallel during this time interval, with an average speed of at least 0.5. However, t1 may be firing

with an even greater speed, up to v1 = 1; thus the set of consistent markings in the considered

observation interval is:

C(v2(·), τ) = {[1−m, m]T | 0 ≤ m ≤ 0.5τ}.

This shows that the set of consistent markings explicitly depends not only on the observed firing

speeds but also on the elapse of time.

We present a first approach to the state estimation of timed continuous nets with finite server

semantics. We assume that no observation is available, thus the observation problem reduces to

determining the set of markings C(τ), in which the net may be at time τ . This problem is similar

to that of time-reachability for continuous models: this is why in Section III we also study the

equivalence between reachability of the continuous untimed model and reachability of the timed

one showing under which conditions it holds. For some classes, a procedure to compute the

minimum time such that the set of consistent markings is the same as the reachability space is

given. Conclusions are presented in Section IV.



II. CONTINUOUS PETRI NETS

A. Untimed Continuous Petri nets

Definition 2.1: A contPN system is a pair 〈N ,m0〉, where:

• N = 〈P, T, Pre,Post〉 is the net structure with two disjoint sets of places P and transitions

T ; pre and post incidence matrices Pre,Post : P × T → R≥0, denote the weight of the

arcs from transitions to places (respectively, places to transitions);

• m0 : P → R≥0 is the initial marking. ¥

The input and output set of a node x ∈ P ∪ T is denoted by •x and x•, respectively. The

token load of a place pi at the marking m is denoted by m[pi] or simply by mi.

A transition tj ∈ T is enabled at a marking m iff ∀pi ∈ •tj , m[pi] ≥ 0 and the enabling

degree of tj at m is:

enab(tj, m) = min
pi∈•tj

mi

Pre[pi, tj]
(1)

When a transition tj is enabled at a marking m it can be fired. The main difference with

respect to discrete Petri nets is that in the case of contPNs it can be fired in any real amount α,

with 0 ≤ α ≤ enab(tj,m) and it is not limited only to a natural number. Such a firing yields

to a new marking m′ = m + α ·C[·, tj], where C = Post−Pre is the token flow matrix (or

incidence matrix). This firing is also denoted m[tj(α)〉m′.

If a marking m is reachable from the initial marking through a firing sequence σ = tr1(α1)tr2(α2) · · · trk(αk),

and we denote by σ : T → R≥0 the firing count vector whose component associated to a

transition tj is:

σj =
∑

h∈H(σ,tj)

αh

where H(σ, tj) = {h = 1, . . . , k|trh
= tj}, then we can write m = m0 + C ·σ, which is called

the fundamental equation or state equation.

The set of all fireable sequences in the net is L(N ,m0), while the set of all markings that are

reachable with a finite firing sequence is denoted by RSut(N , m0). An interesting property of

RSut(N , m0) is that it is a convex set [13]. That is, if two markings m1 and m2 are reachable,

then any marking m3 = α ·m1 + (1− α) ·m2, ∀α ∈ [0, 1] is also a reachable marking.

Left (right) natural annulers of C are called P−(T−)semiflows. A P-semiflow y represents a

token-conservation laws y ·m = y ·m0 that it is satisfied for any making m reachable from m0.



A T-semiflow x represents a repetitive behavior: m = m + C ·x, i.e., any firing sequence with

count vector x from m brings back to m. If they are integer annulers are called P−(T−)flows.

The net N is called conservative iff ∃y > 0 such that y ·C = 0 and it is consistent iff ∃x > 0

such that C ·x = 0. The support of a vector v is denoted by ||v|| and represents the indexes of

its not null components.

A contPN is bounded when every place is bounded, i.e., for all p ∈ P , there exists bp ∈ R≥0

such that m[p] ≤ bp, for all m ∈ RSut(N , m0).

Reachability may be extended to lim-reachability assuming that infinitely long sequences can

be fired. From the point of view of the analysis of the behavior of the system, it is interesting to

consider these markings since in the limit the system may converge to it. The set of all reachable

markings at the limit is denoted by lim−RSut(N ,m0).

Example 2.2: For the contPN in Fig. 1 with w = 2, the marking [0, 0]T is lim-reachable firing

the infinite sequence t1(1/2)t2(1/2)t1(1/4)t2(1/4) . . .. Observe that each firing of t1t2 halves the

tokens in p1 but “0” is never reached.

The following characterization of RSut(N , m0) and lim − RSut(N ,m0) is given in [10].

Let us define first the set of all sets of transitions FS(N , m0) for which there exists a sequence

fireable from m0, that contains those and only those transitions in the set.

Definition 2.3: [10] FS(N ,m0) = {θ| there exists a sequence fireable from m0, σ, such

that θ = ||σ||}. ¥
Then, the full characterization of the lim−RSut space is given by:

Theorem 2.4: [10] A marking m ∈ lim−RSut(N ,m0) iff

1) m = m0 + C · σ, σ ≥ 0

2) ||σ|| ∈ FS(N ,m0).

In Theorem 2.4, the condition 2) is difficult to check because the set FS has exponential

dimension. Anyhow, in [10] an algorithm to compute it is provided. For some subclasses, there

exists a more simple characterization:

Theorem 2.5: [13] Let 〈N ,m0〉 be a contPN system. If it is consistent and all transitions

are fireable the following statements are equivalent:

1) m is lim-reachable

2) ∃σ ≥ 0 s.t. m = m0 + C · σ ≥ 0

3) BT
y ·m = BT

y ·m0, m ≥ 0 where By is a basis of P-flows.



B. Timed Continuous Petri nets

When the notion of time is introduced, the state equation depends on time: m(τ) = m0 +C ·
σ(τ), where σ(τ) is the firing count vector in the interval [0, τ ]. Differentiating it with respect

to time we obtain: ṁ(τ) = C · σ̇(τ). The derivative of the firing count vector represents the

flow of the net and it is denoted by v(τ) = σ̇(τ). In this paper we consider the continuous part

of the First Order Hybrid Petri Nets [3].

Definition 2.6: A timed contPN system 〈N ,m0,V〉 is a contPN system 〈N , m0〉 together

with a function V : T → R≥0 × R>0 that associates to each transition tj a firing interval

V(tj) = [V j
m, V j

M ]. ¥
The firing interval [V j

m, V j
M ], associated to the transition tj ∈ T through the function V has

the following interpretation: V j
m represents the minimum firing speed at which tj can fire and

V j
M represents the maximum firing speed at which tj can fire.

In the untimed case, a contPN evolves sequentially and only one transition is fired at a time

instant. When time is present, more than one transition can be fired. There are two types of

enabled transitions: strongly enabled and weakly enabled.

A transition tj is strongly enabled if ∀pi ∈ •tj , mi > 0. When ∃pi ∈ •tj such that mi = 0,

then tj is weakly enabled iff all input empty places are feeded by other transitions. If some input

empty place cannot receive input flow then the transition is not enabled.

Observe that we consider the same notion of enabling given in [1] that is different from the

one used in [3]. The notion used in [1] prevents the firing of transitions that belong to an empty

cycle. See Section 4.3. in [2] for more details.

At a marking m, the instantaneous firing speed (IFS) (or the flow) of a transition tj , denoted

vj is given by:

• if tj is not enabled then vj = 0;

• if tj is strongly enabled then it may fire with any firing speed vj ∈ [V j
m, V j

M ];

• if tj is weakly enabled then it may fire with any firing speed vj ∈ [V j
m, V̄ j], where

V̄ j = min

{
min

pi∈•tj |mi=0

{ ∑
tk∈•pi

vk·P ost[tk,pi]
P re[pi,tj ]

}
,

V j
M

} (2)

The value V̄ j in (2), corresponding to a weak enabled transition tj , is computed in such a

way that the marking of the input places of tj that are empty will not become negative. Hence,



the flow of tj depends on the input flows in the empty input places, i.e. it is the minimum for

all pi ∈ •tj with mi = 0 of the input flows in pi weighted by the pre and post arcs. If the input

flow is greater than V j
M then the flow is bounded by this value. We assume that the net is well

defined, such that V̄ j ≥ V j
m for all reachable markings. Observe that in the case of V j

m = 0 the

net is well defined.

The instantaneous firing speed is piecewise constant. It remains constant until a macro-event

happens. We have two types of macro-events: (1) internal macro-events appearing when a place

becomes empty and a new flow-computation is required to ensure the non-negativity of the

markings and, (2) external macro-events appearing when the external operator change the IFS

of some transitions. Therefore, a timed contPN is a piecewise constant system and the period in

which the IFS is constant is called macro-period.

A procedure to compute the set of admissible IFS vectors at m is given in [3] based on a set

of linear equations and inequations. Let Tε be the set of enabled transitions and v be a feasible

solution of the following linear set:




vj = 0 ∀tj ∈ T \ Tε

vj ≤ V j
M ∀tj ∈ Tε

vj ≥ V j
m ∀tj ∈ Tε

C[p, ·] · v ≥ 0 ∀p ∈ P with m[p] = 0

(3)

The first two equations in (3) correspond to the bounds of the IFS that should be respected by

all transitions (strongly and weakly enabled), while the last equation corresponds to (2). Finally,

let S(N ,m) be the set of all admissible IFS vector at marking m.

III. STATE ESTIMATION OF TIMED CONTPN

As is stated in Section I, we assume that no transition is observed, and we try to estimate

the possible markings after some time has elapsed. This represents a time-reachability problem,

in the sense that the reachability space will depend not only on net structure N and the initial

marking m0 but also on time. Let us define the following sets:

1) RSτ (N ,m0) = {m|∃ an admissible IFS vector v(·) : m = m0 +
τ∫
0

C ·v(τ) · dτ}, that is

the set of markings in which the net may be at time τ .

2) RSt(N ,m0) =
⋃

τ≥0

RSτ (N , m0), that represents the set of reachable markings in the

timed system.



Example 3.1: Let us consider the contPN system in Fig. 1 with w = 1 and assume V(t1) =

[V 1
m, V 1

M ] = [0, 1] and V(t2) = [V 2
m, V 2

M ] = [0, 1]. At time τ = 0.1, the set of reachability

markings is:
RS0.1(N ,m0) = { [m1,m2]

T |m1 ∈ [0.9, 1],

m2 ∈ [0, 0.1],m1 + m2 = 1}
because the maximum number of tokens that can be removed from p1 and the maximum number

of tokens that can enter in p2 is V 1
M · τ = 0.1. At τ = 0.2,

RS0.2(N ,m0) = { [m1,m2]
T |m1 ∈ [0.8, 1],

m2 ∈ [0, 0.2],m1 + m2 = 1}
The reachability space of the timed system is:

RSt(N ,m0) = { [m1,m2]
T |m1,m2 ≥ 0,

m1 + m2 = 1} = RSut(N , m0).

Note that we assume that the IFS vector is kept constant during a macro-period. As shown

before, some markings are reachable in the limit in the untimed continuous system (see Ex. 2.2).

In the case of the timed system, since the flow is kept constant, these markings can be effectively

reached in finite time.

Example 3.2: Going back to the contPN in Fig. 1 but assuming now w = 2, the marking

[0, 0]T is lim-reachable in the untimed model (Ex. 2.2). While as timed, if V(ti) = [0, 1] then

v = [1, 1]T ∈ S(N ,m0) and [0, 0]T is reached after 1 time unit.

If the minimum firing speed of each transition is “0” then all the markings that are lim-

reachable in the untimed net are reachable in the timed one.

Theorem 3.3: Let 〈N , m0,V〉 be a timed contPN and ∀tj ∈ T , V j
m = 0. Then lim −

RSut(N , m0) = RSt(N , m0).

Proof: Obviously, RSt(N , m0) ⊆ lim − RSut(N , m0). In fact each marking m that is

reachable in a timed net satisfies the state equation and, since we are assuming that empty

cycles cannot be fired, according to Theorem 2.4 the same firing sequence also ensures that m

is also lim-reachable in the untimed net.

Conversely, let us take m ∈ lim−RSut(N ,m0), therefore, according to Theorem 2.4, there

exists a vector σ such that m = m0 +C ·σ and a firing sequence σ with the same support that

is fireable at m0. Hence transitions in the support of σ cannot belong to empty cycles.



Let us construct an IFS v using σ that can be fired in the timed net. First, let

V min
M = min

j,σj>0
{V j

M}

be the maximum firing speed at which a proportion of σ can fire and

σmax = max
j
{σj}.

Now,

v =
V min

M

σmax
· σ

can be fired in the timed net since for every

vj =
V min

M

σmax
· σj

the following is true:

0 ≤ V min
M · σj

σmax
≤ V min

M ≤ V j
M .

If v is fired for a time
σmax

V min
M

then m is reached in the timed model.

In the previous theorem, the condition that the minimum firing speed of every transition is

zero is fundamental. If it is not satisfied there can exist markings that are lim-reachable in the

untimed system but not reachable in the timed one. This happens because with a minimum firing

speed greater than zero, some transition firing sequences are not possible in the timed system.

Example 3.4: Let us go back to the timed contPN system of Fig. 1 with w = 2 and let us

assume now V(t1) = V(t2) = [0.1, 0.1]. In the untimed system, m = [0, 0.5]T is reachable

firing σ = t1 but in the timed net system it is not since v1(τ) = v2(τ) = 0.1,∀τ implying

ṁ2(τ) = v1(τ)− v2(τ) = 0 with m2(0) = 0. Hence, place p2 remains empty.

The reachability space of a timed contPN system is, by definition, the union of all markings that

can be reached in a time τ ≥ 0. In general, the reachability space is not a monotonous function

of time, i.e, given two time instants τ1 ≤ τ2, the condition RSτ1(N , m0) ⊆ RSτ2(N , m0) does

not necessarily hold.

Example 3.5: Let us consider the timed contPN in Fig. 2(a). For τ1 = 0, RS0(N ,m0) =

{m0} = {[0]} but for τ1 = 1, RS1(N ,m0) = {m0} = {[1]} because transition t1 has v1(τ) =

1,∀τ > 0.
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Fig. 2. ContPN system in which some markings reachable as untimed cannot be reached in the timed model.

However, under some conditions this monotonicity property holds.

Theorem 3.6: Let 〈N ,m0,V〉 be a timed contPN and ∀tj ∈ T , V j
m = 0. If τ1 ≤ τ2 then

RSτ1(N ,m0) ⊆ RSτ2(N , m0).

Proof: Since the minimum firing speed of every transition is null then all the markings that

are reachable in a time τ1 can be reached in τ2 just stopping all transitions after τ1.

Computation of the reachability space of a timed contPN system is very difficult as long as it

is necessary to compute the markings reached in a time τ for all τ ≥ 0. In the case of a contPN

system that it is bounded as timed there exists a time instant τmin such that
⋃

0≤τ≤τmin

RSτ (N ,m0) = RSt(N ,m0).

Moreover, if V j
m = 0 for all tj ∈ T , according to Th. 3.6

⋃
0≤τ≤τmin

RSτ (N ,m0) = RSτmin
(N ,m0).

In other words, the markings reached before τmin form the reachability space of the timed net

system.

Proposition 3.7: Let 〈N ,m0,V〉 be a timed contPN and ∀tj ∈ T , V j
m = 0. There exists τmin

such that RSτ (N ,m0) = RSt(N ,m0), ∀τ ≥ τmin iff the net is bounded as timed.

Proof: “=⇒” Let us assume that the net is not bounded as timed. Then exists a place pi

whose marking is growing firing at least one transition tj . If mi is reached in minimum τ0 time

units, then the infinite sequence

mi,mi + 1,mi + 2,mi + 3, . . .

is reached at (minimum) time instants

τ0 < τ1 < τ2 < τ3 < . . . .



This is impossible because by hypothesis there exists τmin such that all the markings can be

reached in this time. Hence the net is bounded as timed.

“⇐=” If the net is bounded as timed the reachability space is a closed convex and each

marking can be reached in a finite time, thus there exists a τ such that every markings can

be reached in a time τ ′ with τ ′ ≤ τ . The minimum firing speed is assumed to be null, then

according to Theorem 3.6 all markings reachable in a time τ ′′ ≥ τ are reachable in a time τ .

Taking τmin = τ , the result holds.

Observe that in the previous theorem we require only boundedness as timed, not boundedness

as untimed.

Example 3.8: Let us consider the net in Fig. 2(b). This net is not bounded as untimed because

t1 can infinitely fire and the marking of p1 is unbounded. But this net is bounded as timed

for the time intervals associated, and according to Prop. 3.7, there exists τmin such that all

reachable markings can be reached in a time inferior to τmin. For this system, τmin = 0 because

RSt(N , m0) = {m0}.

An interesting problem is the computation of such τmin ensuring that each reachable marking

is reachable within this time. Here we characterize τmin for a particular class of nets (consistent

and conservative) that although restricted, are significant for many real applications. The idea

of these computations is to search for the longest time to reach the markings at the border of

lim−RSut.

Definition 3.9: Let 〈N , m0〉 be a contPN system. A marking m1 ∈ lim−RSut is an extreme

marking if it is not inside any line segment contained in lim− RSut. In other words, if m1 =

αm2 + (1− α)m3, where m1, m2,m3 ∈ lim−RSut, implies α = 0 or α = 1, then m1 is an

extreme marking. ¥
Proposition 3.10: Let 〈N ,m0〉 be a consistent, conservative contPN system. Assume that

each transition can be fired at least once and m1 ∈ lim − RSut(N , m0). If there exists a P-

semiflow y such that ∀pi ∈ ||y||, m1[pi] 6= max
m∈lim−RSut(N ,m0)

{m[pi]} then m1 is not an extreme

marking.

Proof: Let m1 ∈ lim−RSut(N , m0) and y a P-semiflow such that ∀pi ∈ ||y||, m1[pi] 6=
max{m[pi]}. Since for every place in the support of y, the marking is not maximal then ∃pk, pl

such that m1[pk],m1[pl] > 0 with pk, pl ∈ ||y||. We construct two reachable markings such that

m1 is the midpoint of the line segment defined by these markings. Using the fact that pk and



pl are the support of the same P-semiflow and their corresponding markings at m1 are neither

maximum, neither minimum, there exists α > 0 such that m2 and m3 defined as:

m2[ph] =





m1[ph], if ph 6= pk and ph 6= pl

m1[ph] + α, if ph = pk

m1[ph]− y[pk]
y[pl]

· α, if ph = pl

m3[ph] =





m1[ph], if ph 6= pk and ph 6= pl

m1[ph]− α, if ph = pk

m1[ph] + y[pk]
y[pl]

· α, if ph = pl

are reachable according to Theorem 2.5. It is obvious that 1
2
(m2 + m3) = m1 and m1 6=

m2 6= m3 and according to Def. 3.9, m1 is not an extreme marking.

Using the previous theorem, the set of extreme markings can be computed for the class of

conservative and consistent contPN just ensuring that in each P-semiflow there exists one place

marked with the maximum number of tokens.

Proposition 3.11: Let PM ⊆ P be a subset of places such that for every P-semiflow yi,

|{||yi|| ∩ PM}| = 1. In other words, there exists only one place in PM support of any P-

semiflow yi, and let pM : P → [0, 1] be such that pM [pi] = 1 if pi ∈ PM and pM [pi] = 0

otherwise. The solution of the following linear programming problem (LPP) gives an extreme

point

min τ −M · pM ·m

s.t.





m = m0 + C · h
τ · V m ≤ h ≤ τ · V M

(4)

where M is a big value such that the performance index corresponds to the minimum time τ

to reach the maximum number of tokens in places PM ; h = v · τ and it is introduced to obtain

a linear state equation; the last constraints are the bounds for the IFS written in terms of h; V m

and V M are the vectors containing the minimum and the maximum for IFS.

Proof: The result is immediate applying Prop. 3.10.

Theorem 3.12: Let 〈N ,m0〉 be a consistent, conservative contPN system. Assume that each

transition can be fired at least once and ∀tj ∈ T , V j
m = 0. For any τ ≥ τmin where τmin = max τk

with τk the solutions of LPP (4) for all possible sets PM , RSτ (N ,m0) = RSt(N ,m0).



Proof: According to Theorem 3.6, all markings reachable in a time τ < τmin can be reached

in a time τmin. We have to prove that all markings in RSt(N ,m0) can be reached in the time

τmin. Since τmin is the minimum time to reach all extreme markings, it is enough to prove that

all other markings at the border of the reachability space can be reached in τmin. Obviously,

the interior points of the reachability space are reached in a time less than the time to reach the

markings at the borders.

Let m2 and m3 be two extreme markings. We are going to prove that m1, a linear combination

of these two markings, can be reached in a time equal to the maximum of the minimum time

needed to reach m2 and m3. Since m2 and m3 are reachable, there exist 0 ≤ v2 ≤ V M , τ2,

0 ≤ v3 ≤ V M and τ3, such that

m2 = m0 + C · v2 · τ2

and

m3 = m0 + C · v3 · τ3.

Computing m1 = α ·m2 + (1− α) ·m3 from the previous equations, we obtain:

m1 = m0 + C · (α · v2 · τ2 + (1− α) · v3 · τ3).

Let us assume τ2 ≤ τ3, then m1 can be reached first obtaining an intermediate marking:

m′
1 = m0 + C · (α · v2 · τ2 + (1− α) · v3 · τ2)

and then

m1 = m′
1 + C · (1− α) · v3 · (τ3 − τ2).

The marking m1 is reachable from m′
1 because the conditions of Theorem 2.5 are satisfied.

Then, the time need to reach m1 is

τ ′ = α · τ2 + (1− α) · (τ3 − τ2)

= (2 · α− 1) · τ2 + (1− α) · τ3

≤ (2 · α− 1) · τ3 + (1− α) · τ3

≤ α · τ3

≤ τ3
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Fig. 3. ContPN system for which the marking [0, 0]T is lim-reachable in the untimed system but reachable in the timed one.

Example 3.13: Let us consider the timed contPN system in Fig. 3 with V(t1) = V(t2) =

V(t4) = V(t5) = [0, 1], V(t3) = V(t6) = [0, 0.1]. This net has one P-semiflow: y = [5, 5, 5, 2]T .

Solving LPP (4) for VM = {pi}, i = 1, . . . , 4 we obtain the following results: for p1 the minimum

time to reach m = [2.8, 0, 0, 0]T is 20 t.u., for p2 the minimum time to reach m = [0, 2.8, 0, 0]T

is 20 t.u., for p3 the minimum time to reach m = [0, 0, 2.8, 0]T is 20 t.u., for p4, the minimum

time to reach m = [0, 0, 0, 7]T is 50 t.u. corresponding to the firing of h = [3.5; 3.5; 0; 0; 0; 5]T .

Hence for τ ≥ 50 all lim-reachable markings of the untimed model can be reached in the timed

one.

The computation of such τmin is important for the state estimation without any measurement

because if V m = 0, and the time is greater than τmin, then all reachable markings are possible.

If the time at which the estimation is performed is less than τmin, the following constraints

provide the space of all possible markings, that, in fact, is the set RSτ (N , m0):

m(τ) = m0 + C · h(τ) (5)

τ · V m ≤ h(τ) ≤ τ · V M (6)

Obviously, for each marking, the corresponding vector h should be such that there is no empty

cycle that fires. In the case of conservative and consistent contPN with all transitions fireable

and V m = 0, if the time that is considered is greater than τmin then the constraint (6) can be



ignored and the possible states belongs to RSt(N ,m0).

IV. CONCLUSIONS

In this paper we have discussed the state estimation of continuous Petri nets. We have

considered timed contPNs with finite server semantics and the problem of the state estimation

in the absence of any measurement is presented. This problem is equivalent with the time-

reachability problem of timed contPNs. We have shown under which conditions the reachability

space of the timed net coincide with that of the untimed one. We have also tackled the problem

of computing the minimum time necessary to reach all possible markings. For the particular

case of consistent and conservative nets, an algorithm is given to compute it.

The results of this paper can be used also to derive some controllability results of timed

continuous Petri nets with finite server semantics defined in [6] (see Section 5.5. in [11]). Our

future research will explore the observability of the timed net when the flow of some transitions

can be observed. Also, the observability problem when the initial marking is not known will be

investigated.
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