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Abstract

In this paper we study the problem of determining a set of decentralized monitors for place/transition

nets to enforce a global specification on the net behavior given in terms of Generalized Mutual Ex-

clusion Constraints (GMECs). We generalize our previous results in this topic. In particular, the novel

contribution here consists in removing the restrictive assumption that the weights of the GMECs must

be positive, while we still assume that all transitions are controllable and observable, and the support of

each decentralized GMEC is a singleton. The main feature of the proposed solution is that it guarantees

fairness among places.
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I. INTRODUCTION

In the context of supervisory control of Discrete Event Systems (DES) decentralized control

problems have received a great attention in the last decade [10]. Several original approaches

have been proposed to solve this problem by means of formal languages approaches using

automata [1], [8], [11], [12]. On the contrary, Petri Nets (PNs) have not received much attention

in this context. Their compact state representation and their intrinsically distributed nature may

potentially help in reducing the complexity of decentralized supervisory control problems.

As control specification we consider a state predicate formulation. In particular, we study the

problem of determining a set of local supervisors when the global specification is given by a set

of Generalized Mutual Exclusion Constraints (GMECs) (W ,k), where W = [wT
1 , wT

2 , ...wT
nc

]T

and k = [k1, k2, ...knc ]
T and then the set of legal markings is M(W , k) = {m ∈ Nm |

W · m ≤ k}. Few works have considered a state predicates formulation for decentralized

control. In [6] global specifications are implemented by local supervisors with communication.

In [4] a central coordinator is also present but specifications are assumed to be given from

the beginning in distributed form. In [7] global specifications without central coordination are

considered and a sufficient condition is given for a state predicate formulated in terms of GMECs

to be enforced in a decentralized setting (d-admissibility); the transformation of inadmissible

decentralized constraints into admissible ones is posed either in terms of the minimization of

communication costs or in terms of the transformation of the constraints into a set of more

restrictive ones but d-admissible.

A control architecture without central coordinator and communication between local supervi-

sors is here considered. The set of places is partitioned into ν disjoint sets Pj , and the j-th local

supervisor may enforce only places in Pj to assume a certain set of values.

In [2] under the assumption that (A1) all weights are positive, i.e., W ≥ 0, k ≥ 0, (A2) all

transitions are controllable and observable, (A3) the support of each decentralized GMEC is a

singleton, thus ν = m and Pj = {pj}, for j = 1, . . . ,m, it was shown that this problem can be

solved by computing an integer inner box I(u) = {m ∈ Nm | m ≤ u} included in the set of

legal markings defined by the global GMEC M(W ,k).

In this paper assumption (A1) is removed, i.e. the weights of GMECs may also be negative.

It is shown that the problem can be solved by computing an integer inner box B(l, u) = {m ∈



Nm | l ≤ m ≤ u} included in the set of legal markings defined by the global GMEC M(W ,k).

In particular, the problem of finding a maximal integer inner box B ⊆ M(W ,k), i.e. an inner

box such that there does not exist a box B̃ 6= B and B ( B̃ ⊆ M(W , k) is here considered. A

solution that aims to guarantee fairness among places, and that can be computed using a simple

iterative algorithm, is proposed.

II. BASIC DEFINITIONS

A. Petri nets

In this section we recall the formalism used in the paper. For more details on Petri nets we

address to [9].

A Place/Transition (P/T) net is a structure N = (P, T, Pre, Post) where: P is a set of m

places represented by circles; T is a set of n transitions represented by bars; P∩T = ∅, P∪T 6= ∅;

Pre (Post) is the m × n sized, natural valued, pre-(post-)incidence matrix. For instance,

Pre(p, t) = w (resp., Post(p, t) = w) means that there is an arc from p to t (resp., from t to

p) with weight w. The incidence matrix C of the net is defined as C = Post−Pre. A marking

is a m×1 vector m : P → N that assigns to each place of a P/T net a non-negative integer number

of tokens. A P/T system or net system 〈N, m0〉 is a P/T net N with an initial marking m0. A

transition t ∈ T is enabled at a marking m iff m ≥ Pre(·, t). If t is enabled, then it may fire

yielding a new marking m′ = m+Post(·, t)−Pre(·, t) = m+C(·, t). The notation m[t〉m′

means that an enabled transition t may fire at m yielding m′. A firing sequence from m0 is a

(possibly empty) sequence of transitions σ = t1, . . . , tk such that m0[t1〉m1[t2〉m2 . . . [tk〉mk.

A marking m is reachable in 〈N, m0〉 iff there exists a firing sequence σ such that m0[σ〉m.

Given a net system 〈N, m0〉 the set of reachable markings is denoted R(N, m0).

B. Generalized Mutual Exclusion Constraint

A Generalized Mutual Exclusion Constraint (GMEC) is a couple (w, k) where w : P → Z

is an m dimensional row vector and k ∈ Z. A GMEC defines a set of legal markings:

M(w, k) = {m ∈ Nm | w ·m ≤ k}.

The markings that are not legal are called forbidden markings. A controlling agent, called

supervisor, must ensure the forbidden markings will be not reached. So the set of legal mark-

ings under control is Mc(w, k) = M(w, k) ∩ R(N, m0). We call support of (w, k) the set



Qw = {p ∈ P |w(p) 6= 0}. A set of GMECs (W ,k), with W = [wT
1 ,wT

2 , ...wT
nc

]T , and k =

[k1, k2, ...knc ]
T , defines the set of legal markings M(W ,k) = {m ∈ Nm | W ·m ≤ k}. We

call support of (W ,k) the set QW = {p ∈ P ∩ (∪nc
j=1Qwj

)}.
It has been shown in [5] that a set of nc GMECs can be enforced adding to the controlled

net a set of nc places called monitors, provided that the initial marking is legal. A simple rule

to determine the monitors that guarantee the maximal permissiveness of the closed loop net was

also given in [5], under the assumption that all transitions are controllable and observable.

C. Geometrical definitions

We represent a convex polyedron as P = {x ∈ Rd|Ax ≤ b}, where A is a real r × d matrix

and b is a real d-vector. The set of legal markings defined by M(W ,k) is included in a convex

polyedron. An interior point of M(W , k) is a point m̂ such that Wm̂ < k. A polyedron if

full dimensional if it has an interior point; otherwise, it is embedded in a lower dimensional

affine space.

A box is a set of real vectors defined as B(l, u) = {x ∈ Rd|l ≤ x ≤ u}, where l and u are

real d-vectors.

If x ∈ Zd we call B(l,u) integer box. If l = 0, we call B(0, u) positive integer box and we

denote it simply as I(u).

An hypercube is a box such that u = l + λe, where λ is a scalar and e denotes the d-vector

of ones.

III. PROBLEM STATEMENT

Let 〈N, mp0〉 be a P/T system to be controlled, where N = (P, T, Pre,Post).

Assume that a global specification is given in terms of a GMEC (W ,k). Without loss of

generality we take QW = P , i.e., all places are bounded by the constraint. If such is not the

case, we can simply apply the proposed procedure to the projection on QW .

Assume that the set of places P is partitioned into ν subsets P1, . . . , Pν , i.e., Pi ∩ Pj = ∅ if

i 6= j, and ∪ν
i=1Pi = P .

We want to determine a set of decentralized GMECs (W (i),k(i)) whose support is Pi, with

i = 1, . . . , ν, such that

∩ν
i=1M(W (i), k(i)) ⊆M(W , k). (1)



The choice of the decentralized GMECs is obviously not unique, and depends in general on

the dimension n
(i)
c of the decentralized GMECs (W (i), k(i)).

In this paper we make the following assumptions:

(A1) All transitions are controllable and observable.

(A2) The support of each decentralized GMEC is a singleton, thus ν = m and Pi = {pi}, for

i = 1, . . . , m.

By assumption (A2) it follows that n
(i)
c = 2 and the effect of each decentralized GMEC is

that of imposing a lower bound and an upper bound on the corresponding place. Thus, the set

∩ν
i=1M(W (i),k(i))

can be regarded as the integer box B(l,u) where l and u are m-integer vectors whose i-th

component denotes respectively the lower and upper bound induced by the i-th and the i+m-th,

respectively, decentralized GMEC on place pi.

Our goal here is that of trying to determine a systematic procedure to select l and u in order

to guarantee fairness among places.

IV. PRELIMINARY RESULTS

In this section we present some definitions and preliminary results that will be useful in the

following.

We denote as C(A, b) a generic convex set containing the origin, i.e., C(A, b) = {m ∈ Rm |
Am ≤ b} where A ∈ Znc×m, and b ∈ Nnc . Moreover, we denote as ai the i-th row of matrix

A, and bi the i-th component of vector b. Finally, since ai is a row vector of dimension m, and

in the rest of the paper we are interested in the case of m equal to the number of places, we

denote as ai(p) the component of vector ai relative to place p.

Definition 1: An integer box B(l,u) ⊆ C(A, b) is a maximal integer inner box if there does

not exist an inner box B(̃l, ũ) 6= B(l,u) such that B(l, u) ( B(̃l, ũ) ⊆ C(A, b). ¥
Note that the maximal integer inner box is in general not unique.

Definition 2: Let us consider an integer box B(l,u) included in a convex set C(A, b), where

both B(l, u) and C(A, b) contain the origin. We denote as x the vector defined as follows

xi(p) =





l(p), if ai(p) ≤ 0,

u(p), if ai(p) > 0. ¥



Proposition 3: Let us consider an integer box B(l,u) included in a convex set C(A, b), where

both B(l,u) and C(A, b) contain the origin. The integer box B(l, u) is a maximal integer inner

box in C(A, b), if and only if ∀ p ∈ P :

0 ≤ min
i∈{1,...,nc}

bi −
∑

p∈P ai(p)xi(p)

|ai(p)| < 1 (2)

Proof: The first part of the inequality is trivial because it ensures the satisfaction of the

constraints defining C(A, b). Let us now discuss the second part of the inequality.

(if) Let p be any place in P , and ı̄ be the corresponding value of index i that minimizes (2).

It holds

bı̄ −
∑

p∈P aı̄(p)xı̄(p)
|aı̄(p)| < 1 ⇒ bı̄ −

∑

p∈P

aı̄(p)xı̄(p) < |aı̄(p)|.

Now, since by assumption B(l,u) contains the origin, then l ≤ 0 and u ≥ 0. Moreover,

• if aı̄(p) < 0 then aı̄ · x̃ı̄ > bı̄ where x̃ı̄(pj) = lı̄(pj) for all pj 6= p, and x̃ı̄(p) = l(p)− 1;

• if aı̄(p) ≥ 0 then aı̄ · x̃ı̄ > bı̄ where x̃ı̄(pj) = uı̄(pj) for all pj 6= p, and x̃ı̄(p) = u(p) + 1.

This means that, if the lower or the upper bound on p is increased or decreased of one unity

this would lead to the violation of the ı̄-th GMEC. Since this is true for any place p ∈ P , we

conclude that B(l,u) is a maximal inner box in C(A, b).

(only if) We prove this by contradiction. Assume that B(l,u) is a maximal integer inner box

in C(A, b), but ∃ p ∈ P such that

min
i∈{1,...,nc}

bi −
∑

p∈P ai(p)xi(p)

|ai(p)| ≥ 1.

This implies that ∀i ∈ {1, . . . , nc}, bi − ai · xi ≥ |ai(p)|. Thus, given an arbitrary place p ∈ P ,

we can define a vector x̃i as in the previous statement that satisfies all the constraints, i.e., such

that ai · x̃i ≤ bi for all i = 1, . . . , nc. This clearly leads to a contradiction. ¤
In simple words the above proposition means that an integer box B(l,u) is maximal if and

only if in each direction there exists at least one constraint that is saturated.

Finally, the following proposition provides a criterion to determine the maximal integer hy-

percube in C(A, b) with center in the origin.

Proposition 4: Let C̄ = C(A, b) be a convex set containing the origin and thus b ≥ 0. Let us

denote as

τ(C̄) = max {τ ∈ N | B(−τe, τe) ⊆ C̄}.



It holds τ(C̄) = min
i=1,...,nc

τ(i, C̄) where

τ(i, C̄) =

⌊
bi∑

p∈P |ai(p)|

⌋

and b c denotes the floor operator.

Proof: The above statement follows from a result presented in [3] where the problem of

maximizing the volume of hypercubes included in polytopes was considered. Note however that

in [3] the floor operator was not present. It is used here being B(−τe, τe) an integer hypercube.

V. THE PROPOSED SOLUTION TO THE DECENTRALIZED CONTROL PROBLEM

In this section we discuss the main steps of our solution to the decentralized control problem

presented in Section III, that consists in determining the maximal integer inner box B(l,u) ⊆
M(W ,k) under assumptions (A1) and (A2).

The main idea behind the proposed approach may be summarized in the following steps.

(S1) We first determine an appropriate interior point c ∈M(W ,k).

(S2) We define a new coordinate system centered on c. By mapping c into the origin with the

coordinate translation m′ = m − c, the set of legal markings M(W ,k) is transformed

into the equivalent one M(W̃
′
, k̃

′
) = {m′ ∈ Nm | W̃

′ ·m′ ≤ k̃
′} with W̃

′
= W and

k̃
′
= k −W · c. Moreover, since m is a net marking vector, it can only assume positive

values. Thus, we need to impose an additional constraint, namely −m′ ≤ c.

We denote by (W̃ , k̃) the resulting set of GMECs given by (W ,k) plus the GMECs

corresponding to the non-negativity constraints.

Notice that k̃
′ ≥ 0 since the origin belongs to the set (W̃

′
, k̃

′
).

(S3) We generalize our results in [2] to compute the maximal integer inner box in M(W̃ , k̃).

This point is discussed in detail in the following Section VI.

(S4) Using the inverse coordinate transformation m = m′ + c we determine the decentralized

GMECs for the original Petri net system.

Let us now discuss step S1.



A. Interior point determination

Different criteria can be chosen to appropriately select an interior point c in M(W ,k). In

this paper we suggest to select c as the interior point of M(W ,k) that coincides with the center

of the maximal integer hypercube in M(W , k). This choice is motivated by our requirement of

guaranteeing the maximal fairness among places.

In such a case, c can be easily computed by solving a linear integer programming problem

(LIPP) as proved by the following proposition.

Proposition 5: Let us consider a set of legal markings M(W ,k). Assume that M(W , k) is

bounded in at least one direction pi, i = 1, . . . , m.

The center c and the edge 2τ of the maximal integer hypercube in M(W , k) can be computed

by solving the following LIPP:

max
c,τ

τ (3)

s.t.





wi c +
∑
p∈P

|wi(p)|τ ≤ ki ∀i = 1 . . . nc (a)

τ · 1m ≤ c (b)

τ ∈ R+
0 , c ∈ Rm (c)

where 1m is an m-dimensional column vector of ones.

Proof: Constraint (a) ensures that all vertices of the hypercube (namely all points of

coordinate c± τe, for any canonical basis vector e) satisfy the constraints. In particular, since

c ∈M(W ,k), then ki−wi c ≥ 0 and it is sufficient to check that wi c+
∑

p∈P |wi(p)|τ ≤ ki,

while constraints wi c−∑
p∈P |wi(p)|τ ≤ ki are trivially verified.

Now, being M(W , k) a convex set, this obviously implies that ∀m within the hypercube it

holds Wm ≤ k.

Constraint (b) ensures that all points m within the hypercube have nonnegative components.

The value of the performance index depends on the fact that we want to determine the maximal

integer hypercube in M(W ,k).

Finally, let us observe that the assumption that M(W ,k) is bounded in at least one direction

pi, i = 1, . . . , m, guarantees that the solution is not at the infinity. ¤
An important remark needs to be done. The above result holds under the assumption that

M(W ,k) is bounded in at least one direction pi, i = 1, . . . ,m. This is a main requirement



to ensure that the solution is not at the infinity. Note however, that this is not a restrictive

assumption in real applications, because in practice we always have physical limitations in the

content of places. Thus, if M(W ,k) is unbounded in any direction of pi, i = 1, . . . ,m, we can

always rewrite the set of legal markings by adding a constraint that limits the flow content in at

least one direction.

VI. MAXIMAL INTEGER INNER BOX COMPUTATION

In this section we show how to solve the above step 3, namely how to determine the maximal

integer inner box in M(W̃ , k̃), where M(W̃ , k̃) is a convex set that includes the origin as an

interior point. Different criteria can be used.

A. A simple solution

The most immediate criterion is briefly summarized in the following algorithm that looks at

all places in an arbitrary order, and assigns them the largest upper bound and the smallest lower

bound that guarantee the satisfaction of all the constraints.

Algorithm 6: [Maximal integer inner box, a simple solution]

1. Let k0 = k̃, U0 = {1, . . . , m}.

2. For s = 1 to m do

2.1. let ̄s be an index arbitrarily chosen in Us−1

2.2. let ı̄ = argmini∈{1,...,nc}

⌊
ks−1

i

|w̃i(p̄s)|
⌋

2.3. if
ks−1

ı̄

w̃ı̄(p̄s)
< 0, then

let l(p̄s) =

⌊
ks−1

ı̄

w̃ı̄(p̄s)

⌋
,

let u(p̄s) = min
i ∈ {1, . . . , nc}
:

ks−1
i

w̃i(p̄s)
≥ 0

⌊
ks−1

i

w̃i(p̄s)

⌋

else

let u(p̄s) =

⌊
ks−1

ı̄

w̃ı̄(p̄s)

⌋
,



let l(p̄s) = min
i ∈ {1, . . . , nc}
:

ks−1
i

w̃i(p̄s)
< 0

⌊
ks−1

i

w̃i(p̄s)

⌋

endif

2.4. for i = 1 to nc do

if
ks−1

i

w̃i(p̄s)
< 0, do

let ks
i = ks−1

i − l(p̄s)wi(p̄s)

else

let ks
i = ks−1

i − u(p̄s)wi(p̄s)

endif

2.5. let Us = Us−1 \ {̄s}. ¥

In simple words, given a place p̄s arbitrarily selected at step 2.1 we look for the most restrictive

constraint in the direction of p̄s . If the most restrictive constraint corresponds to a negative

intersection with the coordinate axes, then we first assign the lower bound to p̄s; the upper

bound should be computed by looking only at the constraints that provide a positive intersection

with the axes in the direction of p̄s . A dual reasoning repeates if the most restrictive constraint

corresponds to a positive intersection with the coordinate axes.

Finally, we have to update the right hand side term of the constraints. We do this at step 2.4

by simply looking at the intersection of each constraint with the axes in the direction of p̄s ,

using either the lower or the upper bound, depending on the sign of the ratio ks−1
i /w̃i(p̄s).

Obviously, in this way we are not ensuring fairness among places and major chance to saturate

the constraints is given to places that are firstly considered.

Example 7: Let us consider the following set of GMECs:

M(W ,k) = { m ∈ N2 | m(p1) + 2m(p2) ≤ 8,

−2m(p1) + m(p2) ≤ 0}.
From (3) it results that the maximal hypercube with center in M(W , k) has edge τ = 1 and

center in c = (2, 1).

By mapping c into the origin with the coordinate translation m′ = m − c, the set of legal



markings M(W , k) is transformed into the equivalent one

M(W̃
′
, k̃

′
) = { m′ ∈ N2 | m′(p1) + 2m′(p2) ≤ 4,

−2m′(p1) + m′(p2) ≤ 3}.
Finally, we need to impose an additional constraint, namely −m′ ≤ c,




−m′(p1) ≤ 2

−m′(p2) ≤ 1.

Assume that Algorithm 6 is used to design the decentralized monitors. If ̄1 = 1 and ̄2 = 2,

i.e., we first assign the upper bound to p1, then we get:



−1 ≤ m′(p1) ≤ 4

−1 ≤ m′(p2) ≤ 0
⇔





1 ≤ m(p1) ≤ 6

0 ≤ m(p2) ≤ 1

On the contrary, if ̄1 = 2 and ̄2 = 1, we obtain:




0 ≤ m′(p1) ≤ 0

−1 ≤ m′(p2) ≤ 2
⇔





2 ≤ m(p1) ≤ 2

0 ≤ m(p2) ≤ 3

B. A solution to guarantee fairness among places

We now look for different criteria that ensure fairness among places. In particular, we provide

a first algorithm to compute an integer inner box B(l∗,u∗) ⊆M(W̃ , k̃), that can be summarized

in the following items. Then, we show under which assumptions such an algorithm guarantees

that the resulting integer inner box is maximal. In the case that the maximality is not guaranteed

we show how to modify it in order to do so.

• The algorithm is based on 2m iterative steps. At each step s we define a GMEC (W s,ks),

choosing at the initial step (W 0,k0) = (W̃ , k̃). We denote Ms = M(W s,ks).

• At step s we compute the maximal integer hypercube in Ms−1 using Proposition 4, and

denote τs the corresponding edge.

• At each step we assign either the lower or the upper bound to one place belonging to

the support of the current GMEC, whose magnitude coincide with the edge of the current

hypercube. Thus, if p̄s is the place we have selected at step s, it results u∗(p̄s) = τs or

l∗(p̄s) = −τs, depending on the sign of w̃i(p̄s).

• The choice of the place to consider is essential to make sure that, at least under an

appropriate condition that is discussed in the following, a maximal inner box is obtained.



Assume we are considering a constraint w̃i ·m ≤ k̃i, and an integer hypercube with edge

τ satisfying it. We define the slack of constraint i as si = k̃i − τ |w̃i| · 1 where 1 is an

m–dimensional column vector of ones, and |w̃i| is an m–dimensional row vector whose

generic j–th component, j = 1, . . . , m, is equal to |w̃i(pj)|.
The relative slack of constraint i with respect to place pj is defined as

si,j =
k̃i − τ |w̃i| · 1
|w̃i(pj)| .

We choose to assign either the lower or the upper bound at each step to the place that corre-

sponds to the smallest relative slack, that we denote as sı̄s,̄s . We discuss in Proposition 11

under which condition this choice leads to a maximal inner box.

• We define a new set of GMECs whose supports may not include those places to which a

bound has already been assigned in the previous steps. As an example, if we assign an upper

bound to p̄s (in such a case pos = 1) and w̃i(p̄s) > 0, then we eliminate p̄s from the support

of the i-th constraint, otherwise we keep it. If we eliminate it, then the weights associated

to the remaining places do not change, while ks is updated to ks
i = ks−1

i −τsw̃i(p̄s) ≤ ks−1
i .

Now, if we denote as Us ∪Ls the set of indexes of places in the support of Ms−1 to which

an upper bound or a lower bound has not been assigned at iteration s, two different cases

may occur:

– if w̃ı̄s(p̄s) > 0 the two constraints




∑
j∈Us∪Ls

w̃s
i (pj)m(pj) ≤ ks

i − τsw̃
s
i (p̄s)

m(p̄s) ≤ τs

(4)

guarantee that ∑
j∈Us−1∪Ls−1

w̃s
i (pj)m(pj) ≤ ks

i ; (5)

– if w̃ı̄s(p̄s) < 0 the two constraints




∑
j∈Us∪Ls

w̃s
i (pj)m(pj) ≤ ks

i + τsw̃
s
i (p̄s)

m(p̄s) ≥ −τs

(6)

guarantee that
∑

j∈Us−1∪Ls−1

w̃s
i (pj)m(pj) ≤ ks

i .

Namely, (4) or (6) guarantee the satisfaction of the GMEC at the previous step.



Formally, the algorithm can be written as follows.

Algorithm 8: [Inner box computation]

1. Let τ0 = 0, W 0 = W̃ , k0 = k̃,

L0 = {1, . . . ,m}, U0 = {1, . . . , m}
2. For s = 1 to 2m do

2.1. let Ms−1 = M(W s−1,ks−1)

2.2. let τs = τ(Ms−1) (see Proposition 4)

2.3. let ı̄s, ̄s be a couple of indexes arbitrarily chosen in

Js =





(̄ı, ̄) ∈ N | ss−1
ı̄,̄ = min

j ∈ Ls−1 ∪ Us−1

i ∈ {1, . . . , nc}

ss−1
i,j





where ss−1
i,j =

ks−1
i − τ |ws−1

i | · 1
|w̃i(pj)|

2.4. if w̃ı̄s(p̄s) < 0, then

let ls(p̄s) = −τs

let Ls = Ls−1 \ {̄s}, Us = Us−1

let neg = 1, pos = 0

else

let us(p̄s) = τs

let Us = Us−1 \ {̄s}, Ls = Ls−1

let neg = 0, pos = 1

endif

2.5. for i = 1, . . . , nc do

if w̃i(p̄s) < 0 and neg = 1, then

let ks
i = ks−1

i + τsw̃i(p̄s)

let ws
i =





0 if j = ̄s

ws−1
i (pj) otherwise

elseif w̃i(p̄s) > 0 and pos = 1, then

let ks
i = ks−1

i − τsw̃i(p̄s)



let ws
i =





0 if j = ̄s

ws−1
i (pj) otherwise

else

let ks
i = ks−1

i

let ws
i (p) = ws−1

i (p), ∀p ∈ P

endif

3. let l∗ = l2m, u∗ = u2m. ¥
We now formally prove a rather intuitive result that will be used in the following.
Proposition 9: At each step of the previous algorithm it results τs ≥ τs−1.

Proof: By definition, at the iteration s + 1, it holds

τs+1 = min
i=1,...,nc

⌊
ks

i∑
j∈Us∪Ls

|ws
i (pj)|

⌋

= min
i=1,...,nc

⌊
ks−1

i − τs|ws−1
i (p̄s

)|∑
j∈Us∪Ls

|ws
i (pj)|+ |ws−1

i (p̄s)| − |ws−1
i (p̄s)|

⌋

≥ min
i=1,...,nc

⌊
τs(

∑
j∈Us−1∪Ls−1

|ws−1
i (pj)| − |ws−1

i (p̄s))|∑
j∈Us−1∪Ls−1

|ws−1
i (pj)| − |ws−1

i (p̄s)|

⌋

= τs

where the inequality follows from the observation that by definition of τs,
∑

j∈Us−1∪Ls−1
|ws−1

i (pj)|τs ≤
ks−1

i . ¤
We can now prove the following results.
Proposition 10: Let (W̃ , k̃) be a centralized constraint, l∗ and u∗ be the lower and upper

bound vector determined by Algorithm 8. Then B(l∗, u∗) ⊆M(W̃ , k̃).

Proof: We first observe that it holds

0 ≤ k̄2m
i = k̃i −

∑2m
s=1 |w̃i(p̄s)|τs

= k̃i −
∑2m

s=1 w̃i(p̄s)x
∗
i (p̄s)

= k̃i − w̃i · x∗i
Since for all m′ ∈ B(l∗,u∗) it is possible to write w̃i ·m′ ≤ w̃i ·x∗i = k̃i− k̄2m

i ≤ k̃i, it results

m′ ∈M(W̃ , k̃). ¤
In Proposition 9 we have shown that the sequence of edges τi of the maximal integer

hypercubes determined by Algorithm 8 is nondecreasing. Next proposition shows that if this

sequence is strictly increasing (with the possible exception of the tail of the sequence that may

remain constant) a maximal inner box is obtained.



Proposition 11: Let (W̃ , k̃) be a centralized constraint and l∗, u∗ be the final lower and upper
bound vectors computed by Algorithm 8. If there exists an index µ ≤ 2m such that the sequence
of τ ’s computed by Algorithm 8 satisfies the condition

τ1 < τ2 < · · · < τµ = τµ+1 = · · · = τ2m (7)

then B(l∗,u∗) is a maximal inner box included in M(W̃ , k̃).

Proof: Proposition 10 has already shown that the box is included in M(W̃ , k̃). We will

prove by contradiction that it is also maximal if condition (7) holds.

Suppose that there exists an inner box B(̃l, ũ) such that B(l∗, u∗) ( B(̃l, ũ) ⊆ M(W ,k),

i.e., such that l̃ � l∗ or ũ  u∗. Then, there must exist an index h such that l̃(ph) < l∗(ph)

or ũ(ph) > u∗(ph). Assume, without loss of generality that ũ(ph) = u∗(ph) + 1 and ũ(pj) =

u∗(pj),∀j 6= h and l̃(pj) = l∗(pj), ∀j. Suppose that u∗(ph) has been fixed at the l-th step of

Algorithm 8, i.e., u∗(ph) = τl.

Furthermore, since B(̃l, ũ) ⊆ M(W̃ , k̃) and by definition x̃ ∈ B(̃l, ũ), it holds for all

i = 1, . . . , nc,
∑

j∈Ul−1∪Ll−1

w̃i(pj)x̃i(pj)

≤ ki −
∑

j∈{U0\Ul−1}∪{L0\Ll−1}
w̃i(pj)x̃i(pj) (8)

= ki −
∑

j∈{U0\Ul−1}∪{L0\Ll−1}
w̃i(pj)x

∗
i (pj) = kl−1

i

where U0 \Ul−1 and L0 \Ll−1 contains the indexes of the places to which an upper or an upper

bound respectively has been assigned in the first l − 1 iterations of the algorithm.

We consider two cases.

Case I: l < µ. Condition (7) implies that ∀j ∈ Ul it holds ũ(pj) = u∗(pj) ≥ u∗(ph)+1 = τl +1.

Since ũ(ph) = τl + 1, we can also conclude that for all j ∈ Ll−1 = Ll it holds |l̃(pj)| ≥ τl + 1,

i.e, from (8) we have that for all i = 1, . . . , nc,
∑

j∈Ul−1∪Ll−1
|wl−1

i (pj)|(τl + 1) ≤ kl−1
i . This

means that at step l an hypercube with edge τl + 1 should have been chosen by the algorithm.

Clearly this leads to a contradiction.

Case II: l ≥ µ. First we note that in this case for all j ∈ Ul−1 it holds u∗(pj) = τl = τ2m = τ

and for all j ∈ Ll−1 it holds |l∗(pj)| = τl = τ2m = τ , and for all i = 1, . . . , nc, we can rewrite

(8) as

|wl−1
i (ph)|+

∑
j∈Ul−1∪Ll−1

|wl−1
i (pj)|τ ≤ kl−1

i . (9)



Then, using the fact that the algorithm eliminates at each step the place with minimal relative

slack, we prove that it also holds

|wl−1
i (ph′)|+

∑
j∈Ul−1∪Ll−1

|wl−1
i (pj)|τ ≤ kl−1

i , (10)

where ph′ is the place removed at step 2m of the algorithm. In fact, it is not difficult to see that

(9) implies that the relative slacks of places ph satisfy, for all i = 1, . . . , nc, sl−1
i,h ≥ 1 and since

it also holds sl−1
i,h′ ≥ mini=1,...,nc sl−1

i,h ≥ 1 we obtain (10), that in turn can be rewritten, for all

i = 1, . . . , nc,

|wl−1
i (ph′)|(τ + 1) ≤

≤ kl−1
i −

∑

j∈Ul−1∪Ll−1\{h′}
|wl−1

i (pj)|τ = k2m−1
i .

Hence we observe that at the last step the algorithm should have assigned to place ph′ a bound

whose absolute value is equal to τ + 1, thus reaching a contradiction. ¤
Example 12: Let us consider again the set of GMECs M(W̃

′
, k̃

′
) of Example 7.

Applying Algorithm 8 the resulting inner box is{ −1 ≤ m′(p1) ≤ 2
−1 ≤ m′(p2) ≤ 1

⇔
{

1 ≤ m(p1) ≤ 4
0 ≤ m(p2) ≤ 2

i.e. B(l∗,u∗) with l∗ = [1 1]T and u∗ = [4 2]T .
The sequence of maximal edges computed by the algorithm is τ1 = 1, τ2 = 1, τ3 = 2 that

does not satisfy condition (7). However, from Proposition 3 we can conclude that the inner box
B(l∗,u∗) is maximal. ¥

Algorithm 8 may be easily modified in order to guarantee that the resulting inner box is

maximal.
Algorithm 13: [Maximal inner box computation]

1. Run Algorithm 8. Assume that the sequence of τ ’s is τ1 ≤ τ2 · · · ≤ τµ = · · · = τ2m.
2. Let l̄

0
= l2m, ū0 = u2m

3. For s = 1 to µ− 1 do
3.1. for j = 1, . . . , 2m, j 6= ̄s

let ūs(pj) = ūs−1(pj)
let l̄s(pj) = l̄s−1(pj)

3.2. if u2m(p̄s) = τs let pos = 1 else let neg = 1
3.3. if pos let

ūs(p̄s) =





ūs−1(p̄s) if τs < τs+1

ūs−1(p̄s) +

+ min
i∈{1,...,nc}

⌊
ki − w̃i · x̄s−1

i

|w̃i(p̄s)|
⌋

if τs = τs+1



else

l̄s(p̄s) =





l̄s−1(p̄s) if τs < τs+1

l̄s−1(p̄s) +

− min
i∈{1,...,nc}

⌊
ki − w̃i · x̄s−1

i

|w̃i(p̄s)|
⌋

if τs = τs+1

4. let l∗ = l̄
µ−1, u∗ = ūµ−1. ¥

The main idea behind the new steps of the algorithm is the following. The solution computed

using Algorithm 8 provides a maximal inner box when the sequence of τ ’s is strictly increasing,

apart from the tail of the sequence that may keep constant. On the contrary, no guarantee is

given if two or more τ ’s that are not in the tail are equal. Therefore, we look for all variables

to which it corresponds the same upper bound that is different from τm, and we verify if their

upper or lower bounds may be respectively further increased or decreased. If so, we increase

or decrease them as much as possible in accordance with the given constraints, and go further

with our exploration.

Note that, by Proposition 9, at step 1 of Algorithm 13, only places whose bound has been

assigned in consecutive steps may have equal upper bounds.
Proposition 14: Let (W̃ , k̃) be a centralized constraint. Let l∗, u∗ be the final lower and upper

bound vectors determined by Algorithm 13. Then B(l∗,u∗) is a maximal inner box included in
M(W̃ , k̃).

Proof: If τs < τs+1 for all s = 1, . . . , µ − 1, and τs = τs+1 for all s = µ, . . . , 2m − 1, the

solution provided by Algorithm 13 coincides with that of Algorithm 8 and the result follows

from Proposition 11.

Now, let r be the smallest value of s ∈ {1, . . . , µ− 1} such that τs = τs+1.

Suppose without loss of generality that at step s of Algorithm 8 it results u2m(p̄s) 6= τs, i.e.

a lower bound has been assigned to p̄s .

Then, at step 3.3 we impose:

l̄r(p̄r) = l̄r−1(p̄r)− min
i∈{1,...,nc}

⌊
ki − w̃i · x̄s−1

i

|w̃i(p̄r)|
⌋

= l̄r−1(p̄r)− min
i∈{1,...,nc}

⌊
ki − w̃i · x̄0

i

|w̃i(p̄r)|
⌋

while l̄
r
(pj) = l̄

0
(pj) for all j 6= ̄r.



Let k̄0
i = ki − w̃i · x̄0

i and k̄r
i = ki − w̃i · x̄r

i , thus

k̄r
i = ki − w̃i · x̄0

i − |w̃i(p̄r)| min
i∈{1,...,nc}

⌊
ki − w̃i · x̄0

|w̃i(p̄r)|
⌋

= k̄0
i − |wi(p̄r)| min

i∈{1,...,nc}

⌊
k̄0

i

|wi(p̄r)|
⌋

and
k̄r

i

|w̃i(p̄r)|
=

k̄0
i

|w̃i(p̄r)|
− min

i∈{1,...,nc}

⌊
k̄0

i

|w̃i(p̄r)|
⌋

< 1.

Therefore, by Proposition 3, B(̄lr, l̄r) is a maximal inner box. Similarly, if we denote as q the

smallest value of s ∈ {r + 1, . . . µ− 1} such that τs = τs+1, we can prove that

k̄q
i

|w̃i(p̄q)|
< 1,

thus, iteratively repeating the same reasoning until all places have been considered, we conclude

that B(̄l
µ−1

, ūµ−1) is a maximal inner box. ¤
An important remark needs to be done.
Remark 15: For simplicity of notation, in Algorithm 13 we have assumed that the upper and

lower bounds are increased, when possible, following the same order in which they have been
assigned in step 2. Clearly, this is not the only admissible solution. Variables that share the
same upper or lower bound may be examined in any order, and this in general provides different
decentralized constraints. In any case Proposition 14 still applies, and all the resulting solutions
are maximal inner boxes. ¥

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we have investigated the problem of determining a set of decentralized GMECs

that are able to impose a specification on the net behavior given in terms of a global set of

GMECs. The proposed solution is based on the assumption that all transitions are controllable

and observable, and that the support of each decentralized GMEC is a singleton. Our future

efforts will be devoted to generalize these results by removing such assumptions.
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