
Switched system optimal control:
An application to buck-boost converter

Daniele Corona, Jean Buisson, Bart De Schutter, Alessandro Giua

Abstract— In this paper we extend a technique devel-
oped to design a feedback stabilizing control law for a
class of autonomous switched system. More specifically
we extend the switching table procedure to a particular
class of switched systems the dynamics of which either
do not have an equilibrium point or, if they do, it is not
common. This study is motivated by the application of
the DC-DC buck-boost converter. The design of the con-
trol law is based on dynamic programming arguments
and it is a partition of the state space into switching
look-up tables. A comparison with a Lyapunov based
technique is also discussed.

I. INTRODUCTION

The switched systems [20] form a particular class
of hybrid systems where the occurrence of a dis-
crete event, controlled or uncontrolled, triggers the
change in the mode of the system. As a consequence
of the highly sophisticated technology in electron-
ics observed in the last decades, countless physical
plants, machines and devices integrate discrete and
continuous behavior and they can be modeled in this
framework. This progress now permits a high level of
not only accuracy in measurements (used for instance
to detect passing of thresholds), but also of precision
in performing discrete-event driven evolution. An im-
portant class of switched systems, sometimes called
autonomous [20], is characterized by a sole control
action provided by the switching signal. One of the
milestone paper in the field is by Branicky [2], where,
through an elementary example, he highlights some
paradoxical behaviors of this class.

Among many application fields we consider power
converters (Boost, Buck, multilevel converters), that
are widespread used in industry, as variable speed
DC motor drives, computer power supply, cell phones
and cameras. They are electrical circuits controlled
by switches (transistors, diodes), used to adapt the
energy supplied by a power source to a load. Aiming at
reducing switching losses and EMI (Electromagnetic
Interference) of power converters, a lot of soft switch-
ing techniques are developed so that high efficiency,
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Cesson-Sevigné, France. jean.buisson@supelec.fr

A. Giua is with the Department of Electrical and Electronic Engi-
neering, University of Cagliari, Italy. giua@diee.unica.it

small size and low weight can be achieved. In nominal
conditions, these circuits have been designed so that
the switching action does not provoke discontinuity.

Some control approaches use continuous models.
Practically, these devices are controlled through a
Pulse-Width-Modulation (PWM) where the switching
behavior of the closed loop system is averaged with a
nonlinear model [19]. Continuous control approaches
are then used, among which passivity based con-
trol [19] and sliding mode control [21].

Alternatively these devices are good candidate for
hybrid modeling, analysis and control. In this context,
they can be modeled by switched systems (without
jumps). For a complete, general study on analysis and
design of switched system recent books have been
published [16], [20]. In particular in [20] stability,
robustness, controllability and optimal control are
studied. In the context of stability analysis and design
a standard technique is to investigate the conditions
of existence of a common [17] or multiple Lyapunov
function [2], or to refer to some geometric [13] ap-
proaches. The issue of stabilizing a switched system
can be transformed into a nonconvex programming
problem, for which LMI [9], [11] or iterative meth-
ods [14] may be used. Properties of uniform stability
for a switched system were studied by Hespanha
in [12].

A possible technique used to stabilize switched
systems is described in [5] and it is based on an
optimal control approach. As explained in [8], this
method, called Switching Table Procedure (STP), is
viable in the case when all dynamics admit a common
equilibrium point. Here we provide an extension of
the method to the case where the system is affine
and the dynamics have no common equilibrium or no
equilibrium.

II. THE BUCK-BOOST CONVERTER

In order to derive models for DC-DC converters,
different energy based approaches, such as circuit
theory, bond graphs, Euler Lagrange, Hamiltonian ap-
proach can be used. For switching systems, extensions
have been proposed for the Hamiltonian approach [10]
or for the bond graph approach [3]. In most of
these systems, one physical switch is controlled (e.g.
transistor), while the other one may be not (e.g. diode).
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Fig. 1: Circuit scheme of the buck-boost converter.

In a normal operating mode of an ideal converter both
switches occurr simultaneously.

A simple circuit representation of the buck-boost
converter is depicted in Figure 1. We consider a
simplified version of the buck-boost converter with
ideal components. In particular the continuous source
E has a negligible internal resistance and infinite
power. No energy is lost in the inductor L nor in
the capacitor C. The diode has an ideal characteristic,
hence it has no voltage drop in conducting mode and
switches exactly at zero voltage level.

It can be seen that the converter theoretically has
four possible operating modes. We label them with
the variable ρ and we denote, as in Figure 1, by v

the voltage on the capacitor (positive when upwards)
and by i the current across the inductor (positive when
downwards). The four modes are:

I. switch closed and diode blocked (ρ = 1),
II. switch open and diode conducting (ρ = 2),

III. switch open and diode blocked (ρ = 3),
IV. switch closed and diode conducting (ρ = 4).

In nominal behavior only modes (I) and (II) are
involved. The nominal working area of the space state
is N ≡ {(i, v) ∈ R

2 : i ≥ 0, v ≤ E} depicted in
Figure 2 in the cyan area (right-bottom area of the
figure). The four modes are represented by the nodes
of the oriented graph in Figure 3. The arcs indicate
the discrete transitions from one mode to another; the
controlled switches are solid lines, while the diode
switches, depending on the state of the system, are
dashed. A description of the behavior is described in
the following paragraph.

In state (I) the battery transfers energy into the
inductor, in form of a magnetic field, while, on the
load side, the capacitor is feeding the load. After some
time the switch is opened and the system goes to
mode (II) where the energy stored in the inductor can
now flow towards the load and the capacitor. Then
the controller may close the switch again to mode (I)
and so on. If the duration in mode (II) is protracted
all the magnetic energy is transferred to the load and
the buck-boost converter switches to the discontinuous
mode (III) [22]. Hence this state is reached when the
condition i = 0, v < 0 is attained. In this mode the
current remains null and the capacitor is feeding the
load. From (III) it is possible to switch to (I) by closing
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Fig. 2: Partition of the state space for the different modes
of the converter.

the switch. Finally let us observe that mode (IV) is in
fact critical, because it imposes two different voltage
levels in the same point (v on the anode and E on
the cathode of the diode in conducting mode). This
is a harmful behavior both for the system and for
security reasons. It can be avoided by opening the
switch, leading the system to the passive mode (II),
whenever the voltage level v increases to reach the
value E imposed on the cathode by the generator.
In other words, if for some bad initial conditions, or
for any other reason like resonance or disturbances,
the voltage v overtakes E, a safe controller must
immediately open the switch leading to mode (II).
Mode (IV) is, to some extent, a fault mode. Let us
denote by x the state space, i.e., the couple i, v, hence
let x = [i, v]T. The differential equation for each
mode of the system associated to each location in
the oriented graph in Figure 3, are the following. In
location (I)

ẋ =

[

0 0
0 − 1

RC

]

x +

[

E
L

0

]

, (1)

in location (II)

ẋ =

[

0 1
L

− 1
C

− 1
RC

]

x, (2)

in location (III)

ẋ =

[

0 0
0 − 1

RC

]

x. (3)

Note that we do not provide a model for location
(IV) which ideally does not exist, because it leads
to inconsistency with the laws of electrical networks.
For this reason, assuming that initial conditions are
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Fig. 3: Oriented graph of the switching behavior of the
converter. Solid line: controlled switches, dashed line: diode
state-based switches.

well-posed, it is allowed to remove location (IV) from
the model. The attention may thus be focused on
a model that only contains three states and whose
dynamics are given above. Furthermore we may also
make the assumption that the controller of the switch
is fast enough to prevent the complete discharge of
the inductor during the evolution in location (II). This
additional assumption allows to also disregard the
presence of the third dynamics. This framework is
practically relevant, especially when the working point
of the converter is deep enough inside the nominal
working area depicted in Figure 2.

These assumptions lead to approximate the model
in Figure 2 to a much simpler one that is depicted in
Figure 4. The dynamics associated to the locations are
summarized in the following equation [4]:

ẋ =

[

0 ρ−1
L

1−ρ
C

− 1
RC

]

x +

[

2−ρ
L

E

0

]

= Aρx + Fρ,

(4)
where ρ ∈ {1, 2} is the switching signal that indicates
the active mode of the system. The system is described
in terms of the state variables and the control signal
ρ(t), which switches among the possible modes in
order to stabilize to a specific operating point xp.

III. THE SWITCHING TABLE PROCEDURE

The method, based on the switching table procedure
(STP), used to obtain the control law is described
in [8] and [5], Chapter 7. It can be applied to the class
of switched autonomous systems, ẋ = Aρx, denoted
by {Aρ}ρ∈S , where S is a set of s modes indexed
by ρ. It consists in determining a partition of the state
space (by means of look-up tables) that indicates what
mode Aρ should be active for the current state value.
This can be done by associating a weight matrix Qρ to
each operating mode and solving, for every possible
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initial point x0, the problem

J(x0, ρ0) = min
ρ(t)

∫ +∞

0

xTQρ(t)xdt

s.t. ẋ(t) = Aρ(t)x(t)
x(0) = x0

ρ(0) = ρ0.

(5)

We now briefly sketch how the STP can be used for
stabilizing purposes. This will be done in three steps.
A complete description and proofs can be found in [6],
[8], [18]. Initially we assume that only a finite number
N of switches is available. In this framework the basic
assumption is that at least one dynamics of {Aρ}ρ∈S

is stable. Then we show how the procedure can be
extended to the case of N = ∞. Finally, we relax the
condition that at least one dynamics of {Aρ}ρ∈S is
stable and show how the STP can be used as a design
tool for stabilizing control laws.

A. Step 1
In the first step we show that the optimal control

law for the optimization problem (5) takes the form
of a state feedback. When k out of N switches
are available the current hybrid system state (x, ρ)
indicates, via a look-up table Cρ

k , whether a switch
from the current dynamics Aρk

to Aρk−1
, should

occur. The look-up table Cρ
k is a partition of the state

space into different regions Rρ labeled with the target
mode ρ ∈ S to switch to whenever the continuous part
of the evolution x ∈ Rρ. For autonomous systems and
quadratic cost these partitions are homogeneous, i.e.,
if a strategy is valid for a specific x̄, then it is also
valid for any point λx̄, λ ∈ R

+, allowing to restrict
the interest to a unitary semi-sphere Σn.

The tables are constructed recursively, on the in-
creasing number k of remaining switches, so, using
the information already computed when k−1 switches
are available. The procedure is iterated until k = N .

The method is based on dynamic programming
arguments, i.e., on the minimization of a residual cost
function defined as follows: assume that k switches
are remaining and the current hybrid state is (y, ρ),
where y ∈ Σn. The residual cost evaluates the cost of
the evolution as a function of the time t ≥ 0 evolving
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in the current mode ρ ∈ S and the mode σ ∈ S
into which the system will switch after time t has
elapsed. From that point on, i.e., from z = eAρty

and k − 1 remaining switches, the optimal strategy
is already known from the previous computation.

By minimizing the residual cost function over the
couple t ≥ 0 and σ ∈ S we obtain the optimal
arguments t∗(y, ρ), σ∗(y, ρ) that allow to build, point
by point, the table Cρ

k . The procedure is initialized by
computing the residual cost function with 0 switches
as:

J∗
0 (y, ρ) ,

{

y′Zρy if Aρ is stable
+∞ else, (6)

where Zρ is the unique solution of the equation
AT

ρ Zρ +ZρAρ = −Qρ, which allows to construct Cρ
0 .

This technique can be extended to the switched system
where also autonomous switches (i.e., governed by
the crossing of thresholds in the state space) may
occur [7]. In this case the residual cost function
to be minimized over time t and σ is piecewise
continuous, with as many breakpoints as the number
of autonomous thresholds crossed during the time
evolution.

B. Step 2

Now if the system is allowed to switch indefinitely
we have the following result [6]: there exists a suffi-
ciently big N̄ such that for all N > N̄ + 1 it holds
Cρ

N ≡ Cρ

N̄+1
.

The proof of this result is based on the fact that for
every initial point (y, ρ) the value of the cost converges
with the increasing number of switches. This allows
one to compute with a finite procedure the optimal
tables for a switching law when N goes to infinity. In
fact, it holds that for all ρ ∈ S,

Cρ
∞ , lim

N→∞
Cρ

N ≡ Cρ

N̄+1
.

Furthermore, if the switched system automaton
graph is totally connected, i.e., for all ρ, σ ∈ S, with
ρ 6= σ, there exists an oriented arc of the automaton
graph from node ρ to node σ, it holds for all ρ, σ ∈ S

Cρ
∞ ≡ Cσ

∞ ≡ C∞.

Hence, there is a unique table for all modes.
To construct the table C∞ the value of N̄ is needed.

We leave to further investigation a method to com-
pute N̄ in advance; so far the approach consists in
constructing tables until a convergence criterion1, is
met.

1Threshold on the improvements in the value of cost function or
on the variation of labels for the population of points.

C. Step 3
In the third step we show how the STP can be used

to obtain an optimal stabilizing switching signal in
the case when all dynamics of {Aρ}ρ∈S are unstable.
In such a condition, if we apply the STP without
any adjustments, the residual cost, at the initial stage
of zero remaining switches, will be equal to ∞ due
to (6). Hence for all k we have J∗

k (y, ρ) = +∞ as
well. This difficulty can be avoided by the introduction
in {Aρ}ρ∈S of a stable dummy dynamics As+1, that
serves to give a finite value to the function J∗

0 (y, ρ).
In other words we consider an augmented system,

{Aρ}ρ∈S̃
with |S̃| = |S| + 1, obtained by joining to

{Aρ}ρ∈S a stable dynamics, as in Figure 5, where
(a) is the augmented system of (b) and A3 is stable.
Informally the new dynamics serve as a launch pad for
the STP. The basic idea is the following: if the partition
C̃∞, solution of the same optimal control problem
for the augmented system, does not contain the label
relative to As+1, then the table C̃∞ is also a solution
for {Aρ}ρ∈S . To make sure that the dynamics As+1

is only used if absolutely necessary, i.e., the original
switched system is not stabilizable, we associate to
it a very high cost. This result is supported by the
following theorem:

Theorem 3.1 ([8]): Consider a switched system
{Aρ}ρ∈S , and an optimal control problem with N =
∞ and weight matrices Qρ > 0, ρ ∈ S. Define
an augmented {Aρ}ρ∈S̃

and a corresponding optimal
control problem, with Qs+1 = qQ, q ∈ R

+, Q > 0.
We have that:

1) If the switched system {Aρ}ρ∈S is globally
exponentially stabilizable [15], then there exists
a q ∈ R

+ such that the table C∞ does not
contain the label associated to As+1.

2) If there exists a q ∈ R
+ such that the table

C∞, computed by solving an optimal control
problem on {Aρ}ρ∈S̃

, does not contain the label
associated to As+1, then the switched system
{Aρ}ρ∈S is asymptotically stabilizable. �

The above theorem provides an efficient way to deal
with the problem of determining an asymptotic stabi-
lizing switching law for a switched system {Aρ}ρ∈S

with linear unstable modes, that can be summarized
in the following steps.

1) Associate to the switched system an optimal
control problem with N = ∞;

2) Define an augmented system {Aρ}ρ∈S̃
by

adding a stable dynamics and an augmented
optimal control problem with Qs+1 = qQ,
where q is a very large positive real number and
Q is any positive definite matrix;

3) Construct the table C̃∞ solving an optimal con-
trol problem on {Aρ}ρ∈S̃

;
4) If this table does not contain the label associated
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Fig. 5: (a) Augmented switched system {Aρ}ρ∈S̃
, S̃ ≡ {1, 2, 3}. (b) Switched system {Aρ}ρ∈S .

to the stable mode As+1, then the table C̃∞
coincides with table C∞.

We do not provide an a priori rule to establish
whether the switched system is stabilizable and in such
a case, an analytical way to compute an appropriate
value of q in advance. The solution of the problem of
knowing whether the system is stabilizable remains in
the general case undecidable [1].

IV. EXTENSION OF THE STP PROCEDURE

In this section an extension of the STP as described
previously is considered. In particular we study the
possibility of using the STP as a design tool to regulate
a switched affine system to a desired point of the state
space xp ∈ R

n.
We can define the following problem:
Problem 1: Given a switched affine system of the

form
ẋ = Ãρx + F̃ρ, (7)

ρ ∈ S, the corresponding automaton graph of which
is totally connected, design the switching signal ρ(t)
so that the state x is steered to a desired value xp. �

In the particular case when xp is a stable equi-
librium point of one of the modes of the switched
affine system (7), let us say ρ̄, Problem 1 has a
straightforward solution: execute any finite switching
sequence with final element ρ̄. Once in location ρ̄ the
system will autonomously reach the stable equilibrium
point and no further control action is needed.

This scenario is however very particular, because it
requires that the specific point xp solves the strong
condition Ãρxp + F̃ρ = 0 for at least one ρ ∈ S.
In several applications the point xp is a specifically
required working point hence it does not necessarily
solve the above condition.

Hence we study now the case of designing, for a
switched affine system (7), a feedback control law for
the switching signal ρ(t) that regulates the state to a
generic desired value xp, assuming that this point is
not an equilibrium for any mode of the system.

In order to apply the STP to this framework we
associate to the system above an LQ criterion to

minimize. As explained above we consider a set of
positive definite weight matrices Q̃ρ for each mode of
the switched affine system, that penalizes the offset
from the target xp. Therefore we want to solve

J(x0, ρ0) = min
ρ(t)

∫ +∞

0

(x − xp)TQ̃ρ(t)(x − xp)dt

s.t. ẋ(t) = Ãρ(t)x(t) + F̃ρ(t)

x(0) = x0

ρ(0) = ρ0.
(8)

It is convenient to perform a shift of the state space
so that its origin is centered in xp. Thus we define a
new state space reference system ỹ ∈ R

n such that
ỹ = x − xp. In this new set of coordinates the affine
switched system becomes ˙̃y = Ãρỹ + Fρ, where F =
Aρxp + F̃ρ and problem (8) becomes

J(ỹ0, ρ0) = min
ρ(t)

∫ +∞

0

ỹTQ̃ρ(t)ỹdt

s.t. ˙̃y(t) = Ãρ(t)ỹ(t) + Fρ(t)

ỹ(0) = ỹ0

ρ(0) = ρ0.

(9)

The next step is to reformulate the switched affine
system ˙̃y = Ãρỹ+Fρ as a switched system {Aρ}ρ∈S .
To this purpose we consider [18] an augmented space
variable y ∈ R

n+1 obtained by extending the original
state space vector with an additional variable yn+1 and
governed by the dynamics ẏ = Aρy, where

Aρ =

[

Ãρ Fρ

0 0

]

and weight matrix Qρ =

[

Q̃ρ 0
0 0

]

. The dummy
variable yn+1 remains constant for any initial state,
thus, y(t) = [ỹ(t), yn+1(0)]

T. If yn+1(0) = 1 the
problem

J(y, ρ0) = min
ρ(t)

∫ +∞

0

yTQρ(t)ydt

s.t. ẏ = Aρ(t)y

y(0) = [ỹT
0 , 1]T

ρ(0) = ρ0

(10)
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is equivalent to (9).
It is clear that the matrices Aρ of the switched

system {Aρ}ρ∈S are all unstable, not only because of
the null eigenvalue introduced by the dummy variable,
but also because xp is not an equilibrium point for any
of the original modes. The objective of the switching
control law for the new switched system is to steer
the vector field y towards yeq = [0, . . . , 0, 1]T. In this
case in fact the original system has reached the target
xp.

Consider now an augmented switched system
{Aρ}ρ∈S̃

of {Aρ}ρ∈S as described in Section III-C,
with

As+1 =

[

Ãs+1 0
0 0

]

and Qs+1 =

[

Q̃s+1 0
0 0

]

, and the assumption:

Assumption 4.1: Matrix Ãs+1 is Hurwitz and ma-
trix Q̃s+1 is positive definite. �

We can now prove the following proposition
Proposition 4.2: Under the assumption above The-

orem 3.1 holds despite the fact that matrix Qs+1 is
not strictly positive definite and dynamics As+1 is not
strictly stable.

Proof: It is an immediate consequence of the
fact that for every possible initial state y0, the cost
function, for the mode s + 1,

J(y0, s + 1) =

∫ +∞

0

yTQs+1ydt

is finite. In fact, by construction and assumption,
the first n components of y are integrable, and the
component n + 1 is constant but it has a null weight.
�

This result allows one to use the STP to stabilize
an all-unstable-modes switched affine system to a
desired specific point of the state space. Furthermore
this is done by minimizing a quadratic criterion that
penalizes the distance of the current state from the
desired target point. Note however that, as stated in
Theorem 3.1, the STP is guaranteed to find a state
feedback switching signal in the particular case that
the switched system is globally stabilizable.

As an application of this new result we consider the
case study of the buck-boost converter.

V. EXPERIMENTAL SET-UP

Consider the buck-boost converter in Figure 1. The
numerical values of the physical system are normal-
ized, hence we chose E = 1, L = 1, C = 1 and R =
1. The initial step of the implementation is to adapt the
physical system described in Section II to the method
in Sections III and IV. First we select the set-point
xp = [2,−1]T and transform the affine equations (4)
into the form ẏ = Aρy, by the introduction of an
additional state variable. This leads us to work in R

3,

PSfrag replacements
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Fig. 6: Side view of the projection on the affine plane y3 = 1

of the table C∞ obtained on the unitary semi-sphere.

TABLE I: Critical tuning parameters of STP applied to the
buck-boost converter.

Number of switches N = 25
Number of samples Ns = 2000

Time horizon τmax = 500
Number of points (azimuth) Nϕ = 15

Weight of stable mode q = 1000

and more precisely along the affine plane y3 = 1. This
transformation allows to preserve important properties
of STP. Then we define the stable dynamics, i.e., a
dummy dynamics A3 that converges autonomously to
the set point xp. A choice [4] of this dynamics can
be obtained by solving on ρ Aρxp +Fρ = 0, yielding

to A3 =

[

0 0.5
−0.5 −1

]

and F3 =

[

0.5
0

]

. In this
case the obtained dynamics has also a physical inter-
pretation: in the neighborhood of its equilibrium point
xp it approximates the sliding surface of the system
with infinite switching rate. The weight matrices for
both modes are chosen as the identity. The dummy
dynamics (Section III-C) is penalized with a factor of
q = 103.

In order to speed up the STP algorithm a revised
version of the infinite-horizon cost was implemented.
In particular it was preferred, both for computation
time savings and accuracy improvement, to compute it
analytically. We set N = 25 switches the convergence
level of the switching tables. The discretization of the
R

3 unitary semi-sphere is obtained in polar coordi-
nates by sampling the zenith angle ϕ with Nϕ =
15 samples and the azimuth angle with Nϑ = 60
samples2. This leads to a total number of 574 points
distributed (as described in [6]) on the semi-sphere.
In Table I we provide the parameters of the STP we
have used.

The obtained partition C∞ is computed in R
3, but

the meaningful part is the intersection with the affine
plane y3 = 1. This can be obtained by projecting
the R

3 solution along the affine plane, with an imag-
inary light point in the origin that beams radially,

2For the semi-sphere, the range of zenith angle is π/2, 4 times
less then the range of the azimuth angle, which is 2π.
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Fig. 7: Table C∞ obtained for buck-boost converter and
parameters in Table I. The green side, located on the left,
imposes a closed switch (A1), and the blue side an open
switch (A2).

as illustrated by Figure 6. We chose this particular
distribution of points because we want to have a higher
degree of precision around the origin, that corresponds
to the working point. Note that only the labels (colors
in this case) associated to dynamics A1 and A2 appear.

In Figure 7 we depict the table C∞ restricted to
the subspace y3 = 1, that should be used during the
simulation. When the state y = [y1, y2]

T is in the
green area, then the mode ρ = 1, (closed switch in
Figure 1) must be active. On the contrary, when y =
[y1, y2]

T is in the blue area, then the mode ρ = 2
(open switch) must be active.

VI. SIMULATION RESULTS

The synthesis of the control law was obtained by
running the programs that implement the STP, with the
tuning parameters of the algorithm listed in Table I.
The computations were carried out with Matlab 7, on
a 2 GHz Pentium Centrino, requiring a total off-line
computation time of about 8.95 × 104 seconds. The
resulting control law, depicted in Figure 7, is affected
by numerical error along the switching surface. This is
often observed in those examples where the solution
for the switching sequence collapses into a sliding
surface. Note that it is possible to smoothen the so-
lution by means of 2-dimensional filtering algorithms.
In fact we decided not to follow this way because it
results into a suboptimal solution. Additionally it is in-
tuitive that the nonoptimality of the numerical solution
decreases with higher granularity of the state space
discretization, but the proof is not straightforward and
is of interest for future research.

The table C∞ is used then for the simulation. Due
to the state space discretization the on-line controller
decides the best strategy by choosing the information
contained in the closest neighbor point to the current
state value. Other policies, for example based on
averaging the indication contained in a surrounding of

TABLE II: Comparison of the solution obtained with the
STP and with Lyapunov-based method for different initial
points (Figure 8).

Label (Fig. 8) Point Cost (STP) Cost (Lyap)
A [4, 0]T 16.2 19.8
B [4, 4]T 34.1 38.3
C [0, 4]T 6.0 6.1
D [−4, 4]T 25.4 25.8
E [−4, 0]T 24.2 24.6
F [−4,−4]T 28.3 28.7
G [0,−4]T 6.6 7.6
H [4,−4]T 20.9 31.4

points are also possible, with the additional advantage
of filtering out part of the numerical disturbance.

The table C∞ was tested on 8 different initial points,
listed in Table II. The corresponding trajectories are
plotted in Figure 8.a. Note that the optimal strategy
is to remain in the initial location until the switching
surface is hit. From there on a chattering behavior is
activated and the state is steered towards the equi-
librium point along the sliding surface. Theoretically
this should occur at an infinite frequency. In practice
the switching occurs at the sampling time rate of the
simulation tool, which in these examples was set to
1 ms (a faster sampling time did not increase the ac-
curacy of the trajectory and the cost value). Note that
it is also possible to impose a minimum permanence
time in each location, provided that the delay does not
overtake the discharge period of the inductor, leading
the converter to behave in the discontinuous mode (III)
described in Section II.

Another possible control law can be designed with
a Lyapunov based method [4]. In this approach,
based on physical considerations, a unique Lyapunov
function, which is not computed but directly derived
from the model, is proposed. It allows to stabilize a
physical switched affine system around a non common
equilibrium point using different strategies such as
maximum descent or minimum switching. The ob-
tained control law is reported in Figure 8.b, where
in addition the trajectories from the 8 different initial
points are plotted.

In Table II we report the performances for the
trajectories obtained by using the two methods. It
can be seen that both laws are stabilizing and it is
relevant to observe that in addition the STP provides
minimization of a performance.

VII. CONCLUSIONS

A standard case study, the buck-boost converter, was
considered as an example for extending the switching
table procedure, presented in [5]. In particular we have
shown how to regulate to a generic point a switched
system composed of dynamics with different equilibria
or no equilibria. The procedure is based on dynamic
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Fig. 8: State trajectories from different initial points resulting (a) from the STP solution, (b) from solution based on common
Lyapunov function.

programming and principle of convergence for infinite
time horizon methodologies. We have shown how the
STP can be successfully applied to regulate the system
state to a desired target point. Improvements of the
procedure in terms of computational complexity and
dimensionality curse define further research lines, and
so does the crucial role of the tuning of parameters.
Despite the presence of numerical error, the obtained
solution proved to be very efficient for the considered
application.
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