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Abstract

In this paper we consider the problem of determining a set of decentralized controllers for place/transition

nets to enforce a global specification on the net behavior. In particular, we assume that both the global

specification and the decentralized specifications are given in terms of Generalized Mutual Exclusion

Constraints (GMECs). An algorithm is given under appropriate assumptions, namely the weights of the

GMECs are positive, the transitions are controllable and observable, and the support of each decentralized

GMEC is a singleton. Even if such assumptions strongly limit the application of the solution to real

cases, the proposed results constitute a preliminary step towards a synthesis procedure that optimizes

the permissiveness of the closed loop behavior under decentralized control.
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I. INTRODUCTION

Decentralized control has received a great attention in the Discrete Event Systems (DES) area

in the last decade [10]. Usually, decentralized control problems in the context of supervisory

control have been studied by means of formal languages approaches using automata [1], [8], [11],

[12]. On the contrary, Petri Nets (PNs) have not received much attention although the compact

representation which they offer may potentially help in reducing the complexity of decentralized

supervisory control problems. A state predicates formulation for decentralized control has been

adopted in few works. In [6] global specifications are implemented by local supervisors with

communication. In [4] a central coordinator is also present but specifications are assumed to

be given from the beginning in distributed form. In [7] global specifications without central

coordination are considered and a sufficient condition is given for a state predicate formulated

in terms of GMECs to be enforced in a decentralized setting (d-admissibility); in addition, the

transformation of inadmissible decentralized constraints into admissible ones is posed either in

terms of the minimization of communication costs or in terms of the transformation of the

constraints into a set of more restrictive ones but d-admissible.

In this paper the attention is focused on global state specifications given in terms of GMECs

and on a control architecture without central coordinator and communication between local

supervisors. This choice is motivated by the following considerations. (i) It is not always possible

to have communication with all plant sensors or actuators because of economic reasons or

bandwidth limitations. This problem is particularly relevant for plants having a wide geographic

extension or a large number of devices such as in modern communication systems. (ii) Even

if centralized control is possible, the communication with a certain area of the plant can be

lost. It could be useful to use a decentralized control without communication for this area until

communication comes back.

In [2] we investigated the problem of determining a set of decentralized GMECs (w(i), k(i))

that are able to impose a specification on the net behavior given in terms of a single global

GMEC (w, k). The set of places was partitioned in ν subsets Pi, i = 1, . . . , ν, and the support

of (w(i), k(i)) was Pi. In particular we assumed that: (A1) w ≥ 0; (A2) all transitions are

controllable and observable; (A3) Pi = {pi}; (A4) the vectors w(i)’s are taken equal to the

projection of w on Pi. On the basis of geometrical considerations we suggested a procedure to



compute k(i)’s as the solution of an integer programming problem.

In this paper we consider a more general problem. We assume that the global specification is

given by a set of GMECs (W , k), where W = [wT
1 , wT

2 , ...wT
nc

]T and k = [k1, k2, ...knc ]
T .

We show that, under assumptions (A1) to (A3) (obviously assumption (A4) is meaningless

now), this problem can be solved by computing an integer inner box I(u) = {m ∈ Nm |m ≤ u}
included in the set of legal markings defined by the global GMEC M(W ,k) = {m ∈ Nm |
W · m ≤ k}. In particular, we consider the problem of finding a maximal integer inner box

I ⊆ M(W , k), i.e. an inner box such that there does not exist a box Ĩ 6= I and I ( Ĩ ⊆
M(W ,k). A solution that aims to guarantee fairness among places is proposed, that can be

computed using a simple iterative algorithm.

Note that this approach constitutes a preliminary step towards the solution of a more important

problem, namely that of determining the decentralized GMECs whose set of legal markings under

decentralized control has maximal permissiveness. This problem requires in general a behavioral

approach, since it depends on the net initial marking, and thus it is very computationally

demanding.

We finally remark that, a similar problem has been recently investigated by Iordache and

Antsaklis in [7]. The problem considered in [7] is set in a more rich setting that assumes the

exchange of communications among decentralized controllers. In this framework a meaningful

problem addressed by the authors is that of giving a sufficient condition under which decentral-

ized supervisors result to be as much permissive as the centralized one.

The setting we consider in this paper assumes that no communication is possible. In such

a case, the permissiveness of the centralized monitor can (almost) never be achieved, and in

general the admissible solutions to a control problem become much more restrictive. This is why

optimizing the permissiveness of the distributed controllers is a key issue in this framework.

This also makes the control problem much harder to solve and this is why in this preliminary

paper we focus on a particular case that, unlike [7], assumes several restrictions: (i) each local

agent can only observe and control a single place; (ii) all transitions are assumed to be observable

and controllable; (iii) we address the simpler issue of determining a maximal inner box, that

has not necessarily maximal cardinality, nor does it necessarily lead to a maximally permissive

controller. Future research will address more general cases.



II. BASIC DEFINITIONS

A. Petri nets

In this section we recall the formalism used in the paper. For more details on Petri nets we

address to [9].

A Place/Transition (P/T) net is a structure N = (P, T, Pre, Post) where: P is a set of m

places represented by circles; T is a set of n transitions represented by bars; P∩T = ∅, P∪T 6= ∅;

Pre (Post) is the m × n sized, natural valued, pre-(post-)incidence matrix. For instance,

Pre(p, t) = w (resp., Post(p, t) = w) means that there is an arc from p to t (resp., from t to

p) with weight w. The incidence matrix C of the net is defined as C = Post−Pre. A marking

is a m×1 vector m : P → N that assigns to each place of a P/T net a non-negative integer number

of tokens. A P/T system or net system 〈N, m0〉 is a P/T net N with an initial marking m0. A

transition t ∈ T is enabled at a marking m iff m ≥ Pre(·, t). If t is enabled, then it may fire

yielding a new marking m′ = m+Post(·, t)−Pre(·, t) = m+C(·, t). The notation m[t〉m′

means that an enabled transition t may fire at m yielding m′. A firing sequence from m0 is a

(possibly empty) sequence of transitions σ = t1, . . . , tk such that m0[t1〉m1[t2〉m2 . . . [tk〉mk.

A marking m is reachable in 〈N, m0〉 iff there exists a firing sequence σ such that m0[σ〉m.

Given a net system 〈N, m0〉 the set of reachable markings is denoted R(N, m0).

B. Generalized Mutual Exclusion Constraint

A Generalized Mutual Exclusion Constraint (GMEC) is a couple (w, k) where w : P → Z

is an m dimensional row vector and k ∈ Z. A GMEC defines a set of legal markings:

M(w, k) = {m ∈ Nm | w ·m ≤ k}.

The markings that are not legal are called forbidden markings. A controlling agent, called

supervisor, must ensure the forbidden markings will be not reached. So the set of legal mark-

ings under control is Mc(w, k) = M(w, k) ∩ R(N, m0). We call support of (w, k) the set

Qw = {p ∈ P |w(p) 6= 0}.

A set of GMECs (W ,k), with

W = [wT
1 , wT

2 , ...wT
nc

]T , and k = [k1, k2, ...knc ]
T ,



defines the set of legal markings M(W ,k) = {m ∈ Nm | W ·m ≤ k}. We call support of

(W , k) the set QW = {p ∈ P ∩ (∪nc
j=1Qwj

)}.
It has been shown in [5] that a set of nc GMECs can be enforced adding to the controlled

net a set of nc places called monitors, provided that the initial marking is legal. A simple rule

to determine the monitors that guarantee the maximally permissiveness of the closed loop net

was also given in [5], under the assumption that all transitions are controllable and observable.

C. Geometrical definitions

A box is a set of real vectors defined as

B(l,u) = {x ∈ Rd|l ≤ x ≤ u},

where l and u are real d-vectors.

If x ∈ Nd we call B(0,u) integer box and we denote it simply as I(u).

An hypercube is a box such that u = l + λe, where λ is a scalar and e denotes the d-vector

of ones; an integer hypercube is an integer box I(u) such that u = λe where λ is a positive

integer scalar.

III. PROBLEM STATEMENT

Let 〈N, mp0〉 be a P/T system to be controlled, where N = (P, T, Pre,Post).

Assume that a global specification is given in terms of a GMEC (W ,k). Without loss of

generality we take QW = P , i.e., all places are bounded by the constraint. If such is not the

case, we can simply apply the proposed procedure to the projection on QW .

Assume that the set of places P is partitioned into ν subsets P1, . . . , Pν , i.e., Pi ∩ Pj = ∅ if

i 6= j, and ∪ν
i=1Pi = P .

We want to determine a set of decentralized GMECs (W (i),k(i)) whose support is Pi, with

i = 1, . . . , ν, such that

∩ν
i=1M(W (i), k(i)) ⊆M(W , k). (1)

The choice of the decentralized GMECs is obviously not unique, and depends in general on

the dimension n
(i)
c of the decentralized GMECs (W (i), k(i)).

In this paper we make the following three assumptions.

(A1) All weights are positive, i.e., W ≥ 0.



(A2) All transitions are controllable and observable.

(A3) The support of each decentralized GMEC is a singleton, thus ν = m and Pi = {pi}, for

i = 1, . . . , m.

By assumption (A3) it follows that n
(i)
c = 1 and the effect of each decentralized GMEC is

that of imposing an upper bound on the corresponding place. Thus, the set

∩ν
i=1M(W (i),k(i))

can be regarded as the integer box I(u) where u is an m-integer vector whose i-th component

denotes the bound induced by the i-the decentralized GMEC on place pi.

Our goal here is that of trying to determine a systematic procedure to select u in order to

guarantee fairness among places.

IV. PRELIMINARY RESULTS

In this section we present some definitions and preliminary results that will be useful in the

following.

Definition 1: An integer box I(u) ⊆M(W , k) is a maximal integer inner box if there does

not exist an inner box I(ũ) 6= I(u) such that I(u) ( I(ũ) ⊆M(W ,k). ¥
Note that the maximal integer inner box is in general not unique.

Proposition 2: An integer box I(u) is a maximal integer inner box in M(W , k) where

W ≥ 0 and k ≥ 0, if and only if ∀ p ∈ P :

min
i∈{1,...,nc}

ki −wi · u
wi(p)

< 1.

Proof: (if) Let p be any place in P , and

kı̄ −wı̄ · u
wı̄(p)

< 1 ⇒ kı̄ −wı̄ · u < wı̄(p),

i.e., wı̄ · ũ > kı̄ where ũ = u+~εj , and ~εj is the j-th canonical basis vector whose entry is equal

to one in correspondence to place p. This means that if the bound on p is increased of one unity

this would lead to the violation of the ı̄-th GMEC. Since this is true for any place p ∈ P , we

conclude that I(u) is a maximal inner box.

(only if) We prove this by contradiction. Assume that I(u) is a maximal integer inner box

and ∃ p ∈ P such that

min
i∈{1,...,nc}

ki −wi · u
wi(p)

≥ 1.



This implies that ∀i ∈ {1, . . . , nc}, ki −wi · u ≥ wi(p). Thus, given an arbitrary place p ∈ P ,

we can define the vector ũ = u + ~εj , where ~εj is defined as in the previous statement, and

ki−wi · ũ ≥ 0, or equivalently wi · ũ ≤ ki. This implies that ũ satisfies all the constraints, thus

leading to a contradiction. ¤
Thus, an integer box I(u) is maximal if and only if in each direction there exists at least one

constraint that is saturated.

The following proposition provides a criterion to determine the maximal integer hypercube in

M(W ,k).

Proposition 3: Let M̄ = M(W ,k) be a marking set containing the null marking (m = 0),

so that k ≥ 0. Let us denote as

τ(M̄) = max {τ ∈ N | I(τe) ⊆ M̄}.

It holds

τ(M̄) = min
i=1,...,nc

τ(i,M̄)

where

τ(i,M̄) =

⌊
ki∑

p∈P wi(p)

⌋

and b c denotes the floor operator.

Proof: The above statement follows from a result presented in [3] where the problem of

maximizing the volume of hypercubes included in polytopes was considered. Note however

that in [3] the floor operator was not present. It is used here being I(τe) an integer hypercube.

Finally, we recall the following definition.

Definition 4: An integer box I(u) ⊆ M(W ,k) is a maximal cardinality inner box if there

does not exist an inner box I(ũ) 6= I(u) such that I(ũ) ⊆M(W ,k) and |I(u)| < |I(ũ)|. ¥

V. MAXIMAL INTEGER INNER BOX COMPUTATION

In this section we deal with the problem of determining a maximal integer inner box I(u∗)

in M(W ,k) where W ≥ 0 and k ≥ 0.

Different criteria can be used. The most trivial is briefly summarized in the following algorithm.

Algorithm 5: [Maximal integer inner box, a trivial solution]



1. Let k0 = k, U0 = {1, . . . , m}.

2. For s = 1 to m do

2.1. let ̄s be an index arbitrarily chosen in Us−1

2.2. let u∗(p̄s) = min
i∈{1,...,nc}

⌊
ks−1

i

wi(p̄s)

⌋

2.3. for i = 1 to nc do

let ks
i = ks−1

i − u∗(p̄s)wi(p̄s).

2.4. let Us = Us−1 \ {̄s}.

In simple words the above algorithm looks at all places in an arbitrary order, and assigns them

the largest upper bound that guarantees the satisfaction of all constraints. Obviously, in this way

we are not ensuring fairness among places and major chance to saturate the constraints is given

to places that are firstly considered.

Example 6: Let us consider for simplicity the case of a single GMEC: m1 +m2 ≤ 3. Assume

that Algorithm 5 is used to design the decentralized monitors. If ̄1 = 1 and ̄2 = 2, i.e., we first

assign the upper bound to p1, then we get:




m1 ≤ 3

m2 ≤ 0.

On the contrary, if ̄1 = 2 and ̄2 = 1, we obtain:




m1 ≤ 0

m2 ≤ 3.

¥
In practical applications the solution resulting from Algorithm 5 is usually inadequate, thus

in this section we look for different criteria that ensure fairness among places. In particular,

we provide a first algorithm to compute an integer inner box I(u∗) ⊆ M(W ,k), that can be

summarized in the following items. Then we show under which assumptions such an algorithm

guarantees that the resulting integer inner box is maximal. In the case that the maximality is not

guaranteed we show how to modify it in order to do so.

• The algorithm is based on m iterative steps. At each step s we define a GMEC (W s,ks),

choosing at the initial step (W 0,k0) = (W ,k). We denote Ms = M(W s,ks).



• At step s we compute the maximal integer hypercube in Ms−1 using Proposition 3, and

denote τs the corresponding edge.

• At each step we eliminate one place appropriately chosen from the support of the current

GMEC, and assign to it an upper bound which coincides with the edge of the current

hypercube. Thus, if p̄s is the place we eliminate at step s, it results u∗(p̄s) = τs.

• The choice of the place to eliminate is essential to make sure that, at least under an

appropriate condition that is discussed in the following, a maximal inner box is obtained.

Assume we are considering a constraint wi ·m ≤ ki with wi ≥ 0, and an integer hypercube

with edge τ satisfying it. We define the slack of constraint i as

si = ki − τwi · 1

where 1 is a column vector of ones, and the relative slack of constraint i with respect to

place pj as

si,j =
ki − τwi · 1

wi(pj)
.

We choose to eliminate at each step the place that corresponds to the smallest relative slack.

We discuss in Proposition 10 under which condition this choice leads to a maximal inner

box.

• A new GMEC involving all places apart from those eliminated at the previous steps is

written, where the weights associated to the remaining places do not change, while ks is

updated to ks
i = ks−1

i − τs · wi(p̄s), i = 1, . . . , nc. In fact, if we denote as Us the set of

indexes of places in the support of Ms−1, the two constraints




∑
j∈Us

ws
i (pj)m(pj) ≤ ks

i −ws
i (p̄s)τs

m(p̄s) ≤ τs

(2)

guarantee that ∑
j∈Us−1

ws
i (pj)m(pj) ≤ ks

i , (3)

namely, (2) guarantees the satisfaction of the GMEC at the previous step.

Formally, the algorithm can be written as follows.
Algorithm 7: [Inner box computation]

1. Let τ0 = 0, W 0 = W , k0 = k, u0 = 0,
U0 = {1, . . . , m}.



2. For s = 1 to m do
2.1. let Ms−1 = M(W s−1,ks−1)

2.2. let τs = τ(Ms−1) (see Proposition 3)
2.3. let ̄s be an index arbitrarily chosen in

Js =





̄ ∈ N | ss−1
ı̄,̄ = min

j ∈ Us−1

i ∈ {1, . . . , nc}

ss−1
i,j





where ss−1
i,j =

ks−1
i − τws−1

i · 1
wi(pj)

2.4. for i = 1 to nc do

let ws
i (pj) =

{
0 j = ̄s

ws−1
i (pj) otherwise

let ks
i = ks−1

i − τs ·wi(p̄s)

2.5. let us(pj) =

{
τs j = ̄s

us−1(pj) otherwise
2.6. let Us = Us−1 \ {̄s}

3. let u∗ = um. ¥
We now formally prove a rather intuitive result that will be used in the following.
Proposition 8: At each step of the previous algorithm it results τs ≥ τs−1.
Proof: By definition, at the iteration s + 1, it holds

τs+1 = min
i=1,...,nc

⌊
ks

i∑
j∈Us

wi(pj)

⌋

= min
i=1,...,nc

⌊
ks−1

i − τswi(p̄s)∑
j∈Us

wi(pj) + wi(p̄s)− wi(p̄s)

⌋

≥ min
i=1,...,nc

⌊
τs(

∑
j∈Us−1

wi(pj)− wi(p̄s))∑
j∈Us−1

wi(pj)− wi(p̄s)

⌋

= τs

where the inequality follows from the obvious observation that by definition of τs,
∑

j∈Us−1
wi(pj)τs ≤

ks−1
i . ¤
We can now prove the following results.
Proposition 9: Let (W ,k) be a centralized constraint with W ≥ 0 and k ≥ 0, and u∗ be

the upper bound vector determined by Algorithm 7. Then I(u∗) ⊆M(W ,k).



Proof: We first observe that for all i = 1, . . . , nc, it holds:

0 ≤ k̄m
i = ki −

∑m
s=1 wi(p̄s)τs

= ki −
∑m

s=1 wi(p̄s)us(p̄s)

= ki −
∑m

s=1 wi(p̄s)u
∗(p̄s) = ki −wi · u∗

Since for all m ∈ I(u∗) it is possible to write wi ·m ≤ wi ·u∗ = ki− k̄m
i ≤ ki, it follows that

m ∈M(W , k). ¤
In Proposition 8 we have shown that the sequence of edges τi of the maximal integer

hypercubes determined by Algorithm 7 is nondecreasing. Next proposition shows that if this
sequence is strictly increasing (with the possible exception of the tail of the sequence that may
remain constant) a maximal inner box is obtained.

Proposition 10: Let (W , k) be a centralized constraint and u∗ be the final upper bound vector
computed by Algorithm 7. If there exists an index µ ≤ m such that the sequence of τ ’s computed
by Algorithm 7 satisfies the condition

τ1 < τ2 < · · · < τµ = τµ+1 = · · · = τm (4)

then I(u∗) is a maximal inner box included in M(W ,k).
Proof: Proposition 10 has already shown that the box is included in M(W ,k). We will prove

by contradiction that it is also maximal if condition (4) holds. Suppose that there exists an inner
box I(ũ) such that I(u∗) ( I(ũ) ⊆M(W ,k), i.e., such that ũ 
 u∗. Then, there must exist
an index h such that ũ(ph) > u∗(ph). Assume, without loss of generality that ũ(ph) = u∗(ph)+1

and ũ(pj) = u∗(pj),∀j 6= h. Suppose that u∗(ph) has been fixed at l-th step of Algorithm 7,
i.e., u∗(ph) = τl.

Furthermore, since I(ũ) ⊆M(W ,k) it holds for all i = 1, . . . , nc,∑
j∈Ul−1

wi(pj)ũ(pj) ≤ ki −
∑

j∈U0\{Ul−1}
wi(pj)ũ(pj)

= ki −
∑

j∈U0\{Ul−1}
wi(pj)u

∗(pj)

= kl−1
i

(5)

where U0 \ {Ul−1} contains the indexes of the places eliminated in the first l − 1 iterations of
the algorithm.

We consider two cases.
Case I: l < µ.

Condition (4) implies that ∀j ∈ Ul it holds ũ(pj) = u∗(pj) ≥ u∗(ph) + 1 = τl + 1. Since
ũ(ph) = τl + 1, we can also conclude that for all j ∈ Ul−1 = Ul ∪ {h} it holds ũ(pj) ≥ τl + 1,
i.e, from (5) we have that for all i = 1, . . . , nc,∑

j∈Ul−1

wi(pj)(τl + 1) ≤
∑

j∈Ul−1

wi(pj)ũ(pj) ≤ kl−1
i .



This means that at step l an hypercube with edge τl+1 should have been chosen by the algorithm.
Clearly this leads to a contradiction.
Case II: l ≥ µ.

First we note that in this case for all j ∈ Ul−1 it holds u∗(pj) = τl = τm = τ and, for all
i = 1, . . . , nc, we can rewrite (5) as

wi(ph) +
∑

j∈Ul−1

wi(pj)τ ≤ kl−1
i . (6)

Then, using the fact that the algorithm eliminates at each step the place with minimal relative
slack, we prove that it also holds

wi(ph′) +
∑

j∈Ul−1

wi(pj)τ ≤ kl−1
i , (7)

where ph′ is the place removed at step m of the algorithm. In fact, it is not difficult to see that
(6) implies that the relative slacks of places ph satisfy, for all i = 1, . . . , nc, sl−1

i,h ≥ 1 and since
it also holds sl−1

i,h′ ≥ mini=1,...,nc sl−1
i,h ≥ 1 we obtain (7), that in turn can be rewritten, for all

i = 1, . . . , nc,
wi(ph′)(τ + 1) ≤ kl−1

i −
∑

j∈Ul−1\{h′}
wi(pj)τ = km−1

i .

Hence we observe that at the last step the algorithm should have assigned to place ph′ a bound
u∗(ph′) = τ + 1, thus reaching a contradiction. ¤

Let us now discuss a numerical example that clearly shows that the inner box I(u∗) computed
using Algorithm 7 may be not maximal if condition (4) does not hold.

Example 11: Let

M(W ,k) = { m ∈ N3 |
20m(p1) + 19m(p2) + m(p3) ≤ 61

m(p1) + 22m(p2) + 21m(p3) ≤ 84}.
Applying Algorithm 7 the following results are obtained.

We initially set

w0
1 =

[
20 19 1

]
, k0

1 = 61

w0
2 =

[
1 22 21

]
, k0

2 = 84, U0 = {1, 2, 3}.

By applying iteratively step 2
s = 1

τ1 = b61
40
c = 1, J1 = {1}

w1
1 =

[
0 19 1

]
, k1

1 = 61− 20τ1 = 41

w1
2 =

[
0 22 21

]
, k1

2 = 84− 1τ1 = 83

u1 =
[

1 0 0
]
, U1 = {2, 3}.



s = 2

τ2 = b21
19
c = 1, J2 = {2}

w2
1 =

[
0 0 1

]
, k2

1 = 41− 19τ2 = 22

w2
2 =

[
0 0 21

]
, k2

2 = 83− 22τ2 = 61

u2 =
[

1 1 1
]
, U2 = {3}.

s = 3

τ 3 = b61
21
c = 2, J3 = {3}

w3
1 =

[
0 0 0

]
, k3

1 = 22− τ3 = 21

w3
2 =

[
0 0 0

]
, k3

2 = 61− 21τ3 = 19

u∗ = u3 =
[

1 1 2
]
, U3 = ∅.

The resulting inner box is I(u∗) with u∗ = [1 1 2]T .
The sequence of maximal edges computed by the algorithm is τ1 = 1, τ2 = 1, τ3 = 2 that does

not satisfy condition (4). Inner box I(u∗) is not maximal. In fact, if we consider ũ = [2 1 2]T ,
it holds that I(u∗) ( I(ũ) ⊆M(W , k). ¥

However, Algorithm 7 may be easily modified in order to guarantee that the resulting inner
box is maximal.

Algorithm 12: [Maximal inner box computation]

1. Run Algorithm 7. Assume that the sequence of τ ’s is τ1 ≤ τ2 · · · ≤ τµ = · · · = τm.
2. Let ū0 = um.
3. For s = 1 to µ− 1 do

3.1. for j = 1, . . . , m, j 6= ̄s

let ūs(pj) = ūs−1(pj)

3.2. let

ūs(p̄s) =





ūs−1(p̄s) if τs < τs+1

ūs−1(p̄s) +

+ min
i∈{1,...,nc}

⌊
ki −wi · ūs−1

wi(p̄s)

⌋

if τs = τs+1

4. let u∗ = ūµ−1. ¥
The main idea behind the new steps of the algorithm is the following. The solution computed

using Algorithm 7 provides a maximal inner box when the sequence of τ ’s is strictly increasing,
apart from the tail of the sequence that may keep constant. On the contrary, no guarantee is
given if two or more τ ’s that are not in the tail are equal. Therefore, we look for all variables to
which it corresponds the same upper bound that is different from τm, and we verify if their upper



bounds may be further increased. If so, we increase them as much as possible in accordance
with the given constraints, and go further with our exploration.

Note that, by Proposition 8, at step 1 of Algorithm 12, only places whose bound has been
assigned in consecutive steps may have equal upper bounds.

Proposition 13: Let (W ,k) be a centralized constraint with W ≥ 0 and k ≥ 0. Let u∗ be the
upper bound vector determined by Algorithm 12. Then I(u∗) is a maximal inner box included
in M(W ,k).

Proof: If τs < τs+1 for all s = 1, . . . , µ − 1, and τs = τs+1 for all s = µ, . . . , m − 1, the
solution provided by Algorithm 12 coincides with that of Algorithm 7 and the result follows
from Proposition 10.

Now, let r be the smallest value of s ∈ {1, . . . , µ− 1} such that τs = τs+1. Then, at step 4.2
we impose:

ūr(p̄r) = ūr−1(p̄r) + min
i∈{1,...,nc}

⌊
ki −wi · ūr−1

wi(p̄r)

⌋

= ūr−1(p̄r) + min
i∈{1,...,nc}

⌊
ki −wi · ū0

wi(p̄r)

⌋

while ūr(pj) = ū0(pj) for all j 6= ̄r.
Let k̄0

i = ki −wi · ū0 and k̄r
i = ki −wi · ūr, thus

k̄r
i = ki −wi · ū0 −wi(p̄r) min

i∈{1,...,nc}

⌊
ki −wi · ū0

wi(p̄r)

⌋

= k̄0
i −wi(p̄r) min

i∈{1,...,nc}

⌊
k̄0

i

wi(p̄r)

⌋

and
k̄r

i

wi(p̄r)
=

k̄0
i

wi(p̄r)
− min

i∈{1,...,nc}

⌊
k̄0

i

wi(p̄r)

⌋
< 1.

Therefore, by Proposition 2, I(ūr) is a maximal inner box.
Similarly, if we denote as q the smallest value of s ∈ {r + 1, . . . µ− 1} such that τs = τs+1,

we can prove that
k̄q

i

wi(p̄q)
< 1,

thus, iteratively repeating the same reasoning until all places have been considered, we conclude
that I(ūµ−1) is a maximal inner box. ¤

An important remark needs to be done.
Remark 14: For simplicity of notation, in Algorithm 12 we have assumed that the upper

bounds are increased, when possible, following the same order in which they have been assigned
in step 2. Clearly, this is not the only admissible solution. Variables that share the same upper
bound may be examined in any order, and this in general provides different decentralized
constraints. In any case Proposition 13 still applies, and all the resulting solutions are maximal
inner boxes. ¥



Example 15: Let us consider again the GMEC in Example 11. As already discussed above
Algorithm 7 provides the inner box I(u∗) with u∗ = [1 1 2]T , that is not maximal.

We now apply Algorithm 12. In this case the steps where the same bound is assigned to
more than one place are the first and the second one. Here the bound 1 is initially assigned to
places p1 and p2, respectively. Thus we can be sure that the only variable whose bound may be
increased is p1. In particular, it holds

k1 −w1 · u∗ = 21

k2 −w2 · u∗ = 19

thus
u∗(p1) = τ1 + min

i∈{1,2}

⌊
ki −wi · u∗

wi(p1)

⌋
= 1 + 1 = 2.

¥

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have investigated the problem of determining a set of decentralized GMECs
that are able to impose a specification on the net behavior given in terms of a global set of nc

GMECs. In particular we assumed that the support of each decentralized GMEC is a singleton,
thus the effect of each decentralized GMEC is that of imposing an upper bound on the marking
of the corresponding place. An iterative algorithm is given to compute appropriate bounds that
guarantee a satisfactory solution in terms of permissiveness and fairness among places.

Our future work will be that of removing the assumption that the support of each decentralized
GMEC is a singleton and investigating how to determine the maximal cardinality inner box.
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