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Abstract— This paper addresses the optimal control problem
of continuous Petri nets under infinite servers semantics. Our
goal is to find a control input optimizing a certain cost function
that permits the evolution from an initial marking to a desired
configuration. The problem is studied through Model Predictive
Control (MPC), a control method, extensively used in industrial
applications. Implicit and explicit procedures are presented
together with a comparison between the two schemes.

I. INTRODUCTION

D ISCRETE Petri nets (PN) [10] are a mathematical
formalism with an appealing graphical representation

for the description of discrete-event systems, successfully
used for modeling, analysis and synthesis of such systems.
Its main feature is that their state space and transition firings
belong to the set of non-negative integers [11].

As other models of concurrent systems, discrete PN may
suffer the state explosion problem. As a consequence the
analysis and optimization of these systems require large
amount of computational efforts, thus leading to analyti-
cally and computationally untractable problems. One way
to tackle this difficulty consists in the relaxation of the
original integrity constraints, giving a fluid (i.e., continuous)
approximation of the discrete event dynamics [4], [13]. Fluid
models may be studied by means of structural analysis, that
does not not require the enumeration of the state space [11].

To study the performance of systems, timing can be intro-
duced and timed PN are obtained. In this paper we consider
timed continuous Petri net systems under infinite server
semantics that, in general, provide a better approximation of
a discrete model [8]. Continuous nets are subject to external
control actions: we assume that the only admissible control
law consists in slowing down the firing speed of transitions
[13]. Such a system can be represented by a particular
hybrid positive model: a piecewise linear positive model with
autonomous switches and with constraints on the state and
control input space. By a suitable change of variables it is
also possible, as shown in [6], to further simplify the model
into a discrete-time linear model with constraints on the state
and input space.
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Steady state optimal control of continuous PN (contPN)
was studied in [7], where it has been shown that if all
transitions can be controlled and the objective function is
linear, the problem is solvable in polynomial time by means
of Linear Programming Problems (LPP). The result of such
an LPP in [7] is an optimal marking and an optimal control
input in steady state. In this paper we assume that this
steady state configuration is known and our problem is to
reach it, from a given initial marking, by optimizing a given
performance index.

The solution we propose is based on Model Predictive
Control (MPC) [2], a control method that has become an
attractive control strategy in the last years. In particular, we
investigate the possibility of using both an implicit and an
explicit [1] MPC control strategy. The main advantage of the
explicit solution is that it provides a state-feedback control
law whose closed-loop stability and constraint satisfaction
are guaranteed, while the most burdensome part of the
procedure is performed off-line. However, as already pointed
out by the authors in [1], the computational complexity of
the explicit approach may become prohibitive when dealing
with complex systems.

A comparison among the two procedures is proposed in
the last section of the paper where the results of various
numerical simulations are presented. We finally observe that
although the explicit approach can be directly applied to the
original piecewise linear model, however the implementation
of the control design for the linearly constrained model
derived in [6] is much simpler.

II. CONTINUOUS PETRI NETS

Definition 2.1: A contPN system is a pair 〈N , m0〉,
where: N = 〈P, T, Pre, Post〉 is the net structure with
set of places P , set of transitions T , pre and post incidence
matrices Pre, Post : P × T → N; m0 : P → R≥0 is the
initial marking.

We denote m(τ) the marking at time τ and in discrete
time we denote m(k) the marking at sampling instant k,
where τ = k ·Θ and Θ is the sampling period. Finally, the
preset and postset of a node x ∈ P ∪T are denoted |•x| and
|x•|, respectively.

A transition t ∈ T is enabled at m iff ∀pi ∈ •t,mi > 0,
and its enabling degree is

enab(t,m) = min
pi∈•t

{
mi

Pre(pi, t)

}
.

An enabled transition t can fire in any real amount 0 ≤ α ≤
enab(t,m) leading to a new marking m′ = m + αC(·, t),



where C = Post−Pre is the token flow matrix; this firing
is also denoted m[t(α)〉m′.

In general, if m is reachable from m0 through a sequence
σ = tr1(α1)tr2(α2) . . . trk

(αk), and we denote by σ :
T → R≥0 the firing vector whose component associated
to a transition tj is

σj =
∑

h∈H(σ,tj)

αh,

where
H(σ, tj) = {h = 1, . . . , k | trh

= tj},
we can write:

m = m0 + C · σ,

which is called the fundamental equation.
The basic difference between discrete and continuous PN

is that the components of the markings and firing count
vectors are not restricted to take values in the set of natural
numbers but in the set of non-negative real numbers.

Definition 2.2: A (deterministically) timed contPN sys-
tem is a contPN system together with a vector λ : T → R>0,
where λj is the firing rate of tj .

Now, the fundamental equation depends on time: m(τ) =
m0 + C ·σ(τ), where σ(τ) denotes the firing count vector
in the interval [0, τ ]. Deriving it with respect to time the
following is obtained: ṁ(τ) = C · σ̇(τ). The derivative
of the firing vector represents the flow of the timed model
f(τ) = σ̇(τ). Depending on how the flow of the transition
is defined many firing semantics are possible [9], [4]. This
paper deals with infinite server semantics in which the flow
of transition tj is given by:

fj = λj enab(tj ,m) = λj min
pi∈•tj

{
mi

Pre(pi, tj)

}
.

Because the flow of a transition depends on its enabling
degree which is based on the minimum function, a timed
contPN under infinite servers semantics is a piecewise linear
system. In fact, if we define

s =
∏

t∈T

|•t|,

where |•t| denotes the cardinality of the set •t, the state space
of a timed contPN can be partitioned1 as follows: R1∪· · ·∪
Rs, where each set Rk (for k = 1, . . . , s) denotes a region
where the flow is limited by the same subset of places (one
for each transition). For a given region Rk, we can define
the constraint matrix Πk : T × P → R such that:

Πk(tj , pi) =





1
Pre(pi, tj)

if (∀m ∈ Rk)
mi

Pre(pi, tj)
=

min
ph∈•tj

{
mh

Pre(ph, tj)

}
;

0 otherwise.

(1)

1These partitions are disjoint except possibly on the borders.

If marking m belongs to Rk, we denote Π(m) = Πk the
corresponding constraint matrix. Furthermore, the firing rate
of transitions can also be represented by a diagonal matrix
Λ : T × T → R>0, where Λ(tj , th) = λj if j = h, and
0, otherwise. Using this notation, the non-linear flow of the
transitions at a given marking m can be written as

f = Λ ·Π(m) ·m.

III. A LINEAR DISCRETE-TIME CONSTRAINED MODEL

In this section we consider net systems subject to external
control actions, and assume that the only admissible control
law consists in slowing down the firing speed of transitions,
that are assumed to be all controllable [7].

Definition 3.1: The flow of the forced (or controlled)
timed contPN will be denoted by w(τ) = f(τ) − u(τ),
where the external control u(τ) satisfies 0 ≤ u(τ) ≤ f(τ).
Therefore, the control input will be dynamically upper
bounded by the flow of the corresponding unforced system.

The overall behavior of the system is ruled by the follow-
ing system

{
ṁ(τ) = C · [Λ ·Π(m(τ)) ·m(τ)− u(τ)]

0 ≤ u(τ) ≤ Λ ·Π(m(τ)) ·m(τ)
(2)

This is a particular hybrid system: a piecewise linear
system with autonomous switches and dynamic (or state-
based) constraints in the input.

Proposition 3.2: [6] Any piecewise linear constrained
model of the form (2) can be rewritten as a linear constrained
model of the form




ṁ(τ) = C ·w(τ)

G ·
[

w(τ)
m(τ)

]
≤ 0

w(τ) ≥ 0

(3)

that we call continuous time contPN model (or ct-contPN
for short) where G is an appropriate constant matrix defined
as follows:

G =
[

Q −R
]
, Q ∈ Zq×|T |, R ∈ Zq×|P |

,
q =

∑

t∈T

|•t| ,

and the row of Q and R relative to the generic pre arc (pi, tj)
are 

0 · · · 0 1︸ ︷︷ ︸
j

0 · · · 0


 ,


0 · · · 0

λj

Pre(pi, tj)︸ ︷︷ ︸
i

0 · · · 0


 ,

respectively. The initial value of the state of this system is
m(0) = m0 ≥ 0.

The system in eq. (3) is a linear system with a state-matrix
equal to 0 and an input matrix equal to the token flow matrix
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Fig. 1. Continuous PN system.

of the contPN. There is still a dynamic constraint on the
system inputs that depends on the value of the system state
m. The continuous-time system (3) can be time-discretized,
thus obtaining a discrete-time "equivalent" model.

Definition 3.3: Consider a ct-contPN model of the form
(3) and let Θ be a sampling period. A model can be given
in terms of a discrete-time contPN or dt-contPN as follows:




m(k + 1) = m(k) + Θ ·C ·w(k)

G ·
[

w(k)
m(k)

]
≤ 0

w(k) ≥ 0

(4)

The initial value of the state of this system is m(0) = m0 ≥
0.

Example 3.4: Let us consider the net system in Fig. 1
with Θ = 1 and λ = [1 1 1]T . Then the discrete-time
representation is given by:





m(k + 1) = m(k) + Cw(k)
w1(k)− λ1

2 ·m1(k) ≤ 0
w1(k)− λ1

2 ·m4(k) ≤ 0
w2(k)− λ2 ·m2(k) ≤ 0
w2(k)− λ2 ·m4(k) ≤ 0
w3(k)− λ3 ·m3(k) ≤ 0
w(k),m(k + 1) ≥ 0

(5)

and

G =




1 0 0 − 1
2 0 0 0

1 0 0 0 0 0 − 1
2

0 1 0 0 −1 0 0
0 1 0 0 0 0 −1
0 0 1 0 0 −1 0




(6)

¥
It is important to stress that, although the evolution of

a dt-contPN occurs in discrete steps, as was the case for
an untimed system, discrete time evolutions and untimed
evolutions are not the same. In fact, while an untimed net
system can be seen evolving sequentially, executing a single
transition firing at each step, a dt-contPN may evolve in
concurrent steps where more than one transition can fire.

In a ct-contPN under infinite servers semantics, the pos-
itiveness of the marking is ensured if the initial marking
m0 is positive, because the flow of a transition goes to zero
whenever one of the input places is empty [12].

In a dt-contPN, this is not always true. Let us consider the
net in Fig. 1, with

m0 = [0.1 1.9 1.9 0.5 0 0 0.5 0 0]T ,

λ = [5 1 1 1 1 1]T ,

and Θ = 0.5. Assume transition t2, t3, t4, t5, t6 are stopped
(w2(0) = w3(0) = w4(0) = w5(0) = w6(0) = 0), then
m1(1) = m1(0)−Θ ·w1(0) = 0.1− 0.5 ·w1(0). But w1(0)
is upper bounded by λ1 · m1(0) = 5 · 0.1 = 0.5. If the
maximum value is chosen, then m3(1) will be negative!!!
So some "spurious solutions" may be added by means of
time-discretization!

This can be avoided if the sampling period is small enough
[6]. In particular, the following result holds.

Proposition 3.5: [6] Let 〈N , λ, m0, Θ〉 be a dt-contPN
system with m0 ≥ 0. Let Θ be the sampling period such
that for all p ∈ P it holds

∑
tj∈p•

λjΘ < 1. (7)

Any marking reachable from m0 is non negative.

IV. IMPLICIT AND EXPLICIT MPC
Steady state optimal control of contPN was studied in [7]

and if all transitions can be controlled the problem can be
solved in polynomial time. The result of LPP in [7] is an
optimal marking and an optimal control input in steady state.
In this paper we assume that this steady state configuration
is known and our problem is to reach it (from a given m0)
in a finite time by optimizing a given performance index.

Model Predictive Control (MPC) [2], also referred as
moving horizon control or receding horizon control, is a
control method that has become an attractive feedback strat-
egy, especially for linear processes. In the last years, many
research groups have also worked on MPC of nonlinear
systems. In the next sessions we will show how these results
can be implemented in the case of contPN under infinite
servers semantics.

The basic idea of MPC is the following: at every time
step, the control action is chosen solving an optimal control
problem, minimizing a performance criterion over a future
horizon. Only the first control command will be applied
and after one time step other measurements will be got
and the optimization problem is repeated. This is an on-
line procedure and in many cases it is difficult (or even
impossible) to implement because the on-line solution of
a linear or quadratic program (LP or QP, respectively),
depending on the performance index, is required.

Various MPC algorithms use different cost functions to
obtain the control action. In this paper we consider the
following standard form:

J(m(k), w(k), N) =

˘
(m(k + N)−mf )′ ·Z · (m(k + N)−mf )

+
N−1P
j=0

ˆ
(m(k + j)−mf )′ ·Q · (m(k + j)−mf )+

(w(k + j)−wf )′ ·R · (w(k + j)−wf )
˜¯

(8)



where Z, Q and R are positive definite matrices.
The constraints for the LP or QP are derived from the dt-

contPN definition, and at every step the new marking should
respect the set of eq. (4). Thus, at each step the following
problem need to be solved:

min J(m(k), w(k), N)
s.t. : m(k + j + 1) = m(k + j) + Θ ·C ·w(k + j),

j = 0, . . . , N − 1

G ·
»

w(k + j)
m(k + j)

–
≤ 0, j = 0, . . . , N − 1

w(k + j) ≥ 0, j = 0, . . . , N − 1

(9)

An alternative to implicit MPC has been proposed in [1]
by Bemporad et al., where the authors present a technique
to compute off-line an explicit solution of the MPC control
problem, based on multi-parametric linear programming
(mp-LP) or quadratic programming (mp-QP). They split
the maximum controllable set (i.e., all states that are con-
trollable) into polytopes described by linear inequalities2 in
which the control command is described as a piecewise affine
function of the state. Thus, the control law results in a state
feedback control law.

In [1] Bemporad et al. have shown in detail how the state
space partition and the affine control laws can be computed
by means of multiparametric quadratic programming. For
sake of brevity, and in order to avoid repeating concepts
already reported in other papers, we do not provide these
results here.

Note that the explicit solution in [1] deals with perfor-
mance indices of the form (8) where the length N of the
prediction horizon may either be finite or infinite: using the
standard notation in [1], we denote these cases as finite time
optimal control (FTOC) and infinite time optimal control
(ITOC), respectively.

The main advantage of the explicit approach is that the
most burdensome part of the procedure is performed off-
line, while the on-line part of the procedure simply consists
in establishing in which region the current state is. However,
its applicability to real size cases is limited by two important
facts. Firstly, the computational complexity of the off-line
part highly increases with the length of the prediction horizon
and with the order of the state space, becoming prohibitive
for certain values of these parameters (see the examples in
the next section). Moreover, the number of regions highly
increases under the same circumstances, constituting a seri-
ous limitation to the on-line part of the procedure (because
it makes it difficult to establish which control law should be
applied).

Our goal in this paper is that of investigating the possibility
of using both implicit and explicit MPC to optimally control
contPN.

V. NUMERICAL EXAMPLES

In this section we consider two different numerical ex-
amples and make a detailed comparison among the results
obtained with the above approaches.

2A bounded polyhedron P ⊂ Rn, P = {x ∈ Rn | Ax ≤ B} is
called a polytope.

The explicit solution has been computed using the Multi-
Parametric Toolbox called MPT [5], a free and user-friendly
MATLAB toolbox for design, analysis and deployment of
optimal controllers for constrained linear and hybrid systems.

Implicit MPC has been implemented using GAMS [3] and
MATLAB. MATLAB has been used to write the optimization
problem in the required form and to compute the system
evolution. GAMS has been used to solve the optimization
problem. In particular, the MINOS solver is utilized and the
results of the optimization have also been compared with the
results of other solvers.

We perform various numerical simulations using different
sampling periods, namely Θ = 0.01, 0.05, 0.1, all satisfying
the inequality (7), and different values of N .

In order to compare the resulting evolutions, we compute
the infinite time horizon index multiplied by Θ, namely

J̄(m(0), Θ) = Θ ·
∞P

j=0

ˆ
(m(j)−mf )′ ·Q · (m(j)−mf )+

(w(j)−wf )′ ·R · (w(j)−wf )
˜

(10)
where Q are R are the same weighting matrices used to
compute the MPC controller.

A. First example

Let us consider the net system in Fig. 1 with λ = [1 1 1]T .
Assume that the steady state (final) marking and control

input are equal to

mf = [2.50 3.25 1.25 2.50]T

and
wf = [1.25 1.25 1.25]T

respectively.
We consider a quadratic performance index of the form

(8) where R = 0.01 · I , Q = I and Z = 100 · I .
1) Implicit MPC: Tables 1 and 2 summarize the results

obtained in the case of implicit MPC and initial marking
equal to m0 = [3 3 1 3]T and m0 = [2 4 1 4]T , respectively.
Note that the computational time is the average time in [sec]
required to solve one QP problem, while J̄ is the cost defined
as in eq. (10). In this case simulations have been carried out
on an Intel Pentium 4 at 3.20 GHz.

Fig. 2 shows the system’s evolution in the case of m0 =
[2 4 1 4]T , Θ = 0.05 and N = 1. As it can be noted the
system reaches the desired configuration.

From these, and other results that have not been reported
here for sake of brevity, we can draw the following conclu-
sions.

Firstly, the cost J̄ is practically the same3 for all values of
N , hence it is not necessary to increase the timing horizon to
improve the solution. Note that for sufficiently large values
of N this is not surprising. In fact, as well known from
classical systems’ theory, there exists a N̄ such that for any
initial state and any N ≥ N̄ , the finite horizon controller is
equal to the infinite horizon controller.

3Except in the case Θ = 0.05 when passing from N = 1 to N = 2.
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Fig. 2. Marking and flow evolution of the contPN system in Fig. 1 for
Θ = 0.05, N=1 and m0 = [2 4 1 4]T .

Secondly, the cost decreases when the sampling period
decreases. This can be interpreted in the sense that optimal
control is computed more frequently and consequently it is
also applied more frequently.

Finally, we observe that, while for Θ = 0.1 all the
solutions are practically implementable on this computer, this
is no more true in the other cases. In fact, the computational
time to solve the QP problem becomes larger than the
sampling period if N exceeds certain values. Some improve-
ments can be done in order to reduce the computational
times, e.g., rewriting the optimization problem as in [1], but
these solutions have not been investigated here.

2) Explicit MPC: The same numerical simulations have
also been performed using the explicit approach. As already
discussed above, in such a case we need to compute off-
line an appropriate state space partition. In Fig. 3 and 4 we
have reported the state space partitions relative to the case
of Θ = 0.05 and N = 1 and 2, respectively.

Two important remarks should be done in order to well
interpret these figures. Firstly, we observe that the controller
is defined in a two-dimensional space even if the marking
of the net is a four-dimensional vector. This is due to the
presence of the P-semiflows

m1 + m2 + m3 = 7

and
m1 + 4m3 + m4 = 10

that reduce to two the number of state variables that vary
independently, i.e., the order of the system.

Secondly, we depict with the same color all those regions
to which it correspond the same control law. As it can be
noted, it may be the case that the union of these regions
may not be a polytope. However, since these regions are
defined as the union of a certain number of polytopes this
does not increase the complexity of the on-line phase of the
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Fig. 3. State space partition for the net system in Fig. 1 in the case of
N = 1 and Θ = 0.05.

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

m
2
−m

2,f

m
3−

m
3,

f

Fig. 4. State space partition for the net system in Fig. 1 in the case of
N = 2 and Θ = 0.05.

procedure: at each step the controller should determine in
which polytope the state lies.

Similar state space partitions have been obtained in the
case of Θ = 0.01 and Θ = 0.1.

Table 3 summarizes the main parameters relative to such
partitions, namely the time in [sec] necessary to compute
them, and the number nP of polytopes. Note that in this
case simulations have been carried out on a Pentium III 450
MHz.

What is important to underline is that using these partitions
the resulting controller guarantees stability and constraint sat-
isfaction for all time. Moreover it also covers all controllable
states.

In the case of Θ = 0.01 or Θ = 0.05 and N ≥ 3, as well
as in the case of ITOC, we have not been able to compute
the explicit MPC controller. Indeed, when computing the
state space partition using the toolbox MPT [5] unfeasible
solutions are obtained. We get into analogous problems in the
case of Θ = 0.1 and N ≥ 6, as well as in the case of ITOC.
Note however that even if for Θ = 0.1 and N = 3, 4, 5, we
have been able to compute the state space partitions: these



Θ = 0.1 Θ = 0.05 Θ = 0.01

N J̄
computational

time [sec] N J̄
computational

time [sec] N J̄
computational

time [sec]
1 0.0773 0.04 1 0.06578 0.04 1 0.0449 0.04
2 0.0782 0.04 2 0.0584 0.04 2 0.0448 0.04
10 0.0774 0.06 10 0.0581 0.06 10 0.0450 0.05
20 0.0774 0.09 20 0.0581 0.10 20 0.0453 0.10

TABLE I
THE RESULTS OF IMPC APPLIED TO CONTPN SYSTEM IN FIG. 1 WITH m0 = [3 3 1 3]T .

Θ = 0.1 Θ = 0.05 Θ = 0.01

N J̄
computational

time [sec] N J̄
computational

time [sec] N J̄
computational

time [sec]
1 0.4641 0.04 1 0.3785 0.04 1 0.3186 0.04
2 0.4644 0.04 2 0.3797 0.04 2 0.3186 0.04
10 0.4639 0.06 10 0.3782 0.06 10 0.3205 0.05
20 0.4639 0.09 20 0.3782 0.10 20 0.3212 0.09

TABLE II
THE RESULTS OF IMPC APPLIED TO CONTPN SYSTEM IN FIG. 1 WITH m0 = [2 4 1 4]T .
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Fig. 5. State space partition for the net system in Fig. 1 in the case of
N = 5 and Θ = 0.1.

do not cover the set of controllable states. As an example,
in Fig. 5 we have reported the state space partition relative
to the case of Θ = 0.1 and N = 5.

Also in the case of explicit controller (when applicable,
i.e., for N = 1 and 2) we have repeated the same numerical
simulations as above. Obviously, apart from negligible nu-
merical differences, we get the same results obtained using
the implicit controller that have been reported in Tables 1
and 2, and in Fig. 2.

B. Second example

Let us consider the net system in Fig. 6 with λ =
[1 1 1 1 1 1]T .

This net system has been extensively studied proving that
it has an infinite number of equilibrium points for the same
control action (see [7] for details).

Assume the steady state (final) marking and control input

.
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Fig. 6. Timed continuous Marked Graph system.

be:

mf = [0.25 0.75 0.7 0.25 0.25 0.25 0.25 0.75 0.8]T

and
wf = [0.25 0.25 0.25 0.25 0.25 0.25]T

respectively.
We consider a quadratic performance index of the form

(8) where R = 0.01 · I , Q = I and Z = 100 · I .
We perform various numerical simulations using different
sampling periods (Θ = 0.01, 0.05, 0.1, all satisfying the
inequality (7)) and different values of N . The initial marking
has been taken equal to m0 = [1 1 1 0.5 0 0 0.5 0 0]T .

Analogous considerations as in the previous example can
be repeated here in the case of implicit MPC: negligible
differences in terms of infinite time cost occur for different
values of N ; results are better for small values of Θ. Finally,
not all these solutions are implementable. As an example,
when Θ = 0.01 the time necessary to solve on-line the
optimization problem is larger that the sampling period.

We also try to apply the explicit MPC controller, but when
computing the state space partition using the toolbox MPT



Θ = 0.1 Θ = 0.05 Θ = 0.01

N
computational

time [sec] nP N
computational

time [sec] nP N
computational

time [sec] nP

1 3.96 24 1 3.96 24 1 3.85 24
2 15.49 86 2 15.49 86 2 13.79 76

TABLE III
THE RESULTS RELATIVE TO THE SPATE SPACE PARTITION IN THE CASE OF THE EMPC APPLIED TO THE CONTPN SYSTEM IN FIG. 1.

Θ = 0.1 Θ = 0.05 Θ = 0.01

N Cost computational
time [sec] N Cost computational

time [sec] N Cost computational
time [sec]

1 2.6630 0.0391 1 2.6055 0.0394 1 2.5602 0.0389
2 2.6634 0.0411 2 2.6062 0.0404 2 2.5602 0.0403
10 2.6630 0.0639 10 2.6056 0.0622 10 2.5604 0.0580
20 2.6630 0.1188 20 2.6056 0.1106 20 2.5604 0.0955

TABLE IV
THE RESULTS OF IMPC APPLIED TO CONTPN SYSTEM IN FIG. 6 WITH m0 = [1, 1, 1, 0.5, 0, 0, 0.5, 0, 0]T .

[5] unfeasible solutions are obtained.

C. A comparison among the two approaches

From numerical simulations carried out we can draw the
following conclusions. If the order of the system is low, the
explicit MPC is surely the best solution, provided that the
FTOC gives satisfactory results also for small values of N .
In fact, whenever applicable, the evolution in the implicit
and in the explicit case are coincident. However, in the case
of explicit MPC the most burdensome part of the procedure
is performed off-line, while in the case of implicit MPC we
need to solve on-line an optimization problem. Moreover,
when applying the explicit MPC controller, the closed loop
stability is guaranteed.

On the contrary, in the case of more complex systems, or
when large values of N are considered, the computation of
the explicit controller may be prohibitive and the implicit
MPC is the unique solution. Note that, since in theory, the
explicit MPC should be computable for any finite value of
N , and thus also for N = ∞, this problem may be overcome
optimizing the routines for its calculation. We do not address
this problem here and we limit to use the toolbox MPT.

VI. CONCLUSIONS

We considered timed contPN under infinite server seman-
tics. On the basis of a constrained discrete-time positive
linear model of the system, we derived optimal control laws
based on MPC. In particular, we investigated the possibility
of using both implicit and explicit control. The main ad-
vantage of the explicit approach is that it provides a state
feedback control law and the most burdensome part of the
procedure is performed off-line. Nevertheless, when the order
of the system is high, or the length of the prediction horizon
is too large, the complexity of the explicit controller becomes
prohibitive or the results of the simulations, carried out on
the MPT toolbox of MATLAB [5], are unfeasible. The same
holds in the case of IFOC.

Therefore, we can conclude that at present in many real
size cases the implicit MPC is the only solution.
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