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Abstract. In this paper we deal with the problem of controlling timed continuous
Petri nets in order to reach a final (steady state) configuration while minimizing
a quadratic performance index. The formulation of a discrete-time linear positive
model with dynamic (or state-based) constraints on the control input, enables us to
design a state-feedback control law based on explicit model predictive control (eMPC).
The eMPC partitions the state space into polytopes: an affine state-feedback control
law is uniquely associated to each polytope, while the on-line phase of the approach
consists in evaluating the current region and consequently the optimal control law.

1 Introduction

Petri nets (PN) are a mathematical tool with an appealing graphical repre-
sentation very adequate for modeling discrete event systems. Its main feature
is that their state space belongs to the set of non-negative integers [1].

In many real size applications the number of reachable states may be very
high thus the analysis and optimization of these systems require large amount
of computational efforts, thus leading to analytically and computationally un-
tractable problems. One way to tackle this difficulty consists in the relaxation
of the original integrity constraints, giving a fluid (i.e., continuous) approxi-
mation of the discrete event dynamics [2, 3]. Fluid models may be studied by
means of structural analysis, an efficient technique that does not require the
enumeration of the state space [1].

In this paper we consider timed continuous Petri net systems under infi-
nite server semantics and subject to external control actions: we assume that
the only admissible control law consists in slowing down the firing speed of
transitions [3]. Such a system can be represented by a particular hybrid pos-
itive model: a piecewise linear positive model with autonomous switches and
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with constraints on the state and control input space. By a suitable change of
variables it is also possible, as shown in [4], to further simplify the model into
a discrete-time linear model with constraints on the state and input space: in
particular, the positiveness of the system results from these constraints. This
is the model that will be considered in this paper.

The optimal control of constrained systems has received a lot of attention
in the literature, and one of the most general and interesting approaches is
the so-called explicit model predictive control (eMPC) [5]. The objective of this
paper is that of showing how eMPC can be effectively applied to the control
of timed continuous Petri nets. Note that although the eMPC approach can
be directly applied to the original piecewise linear model, the implementation
of the control design for the linear model derived in [4] is much simpler.

The particular problem considered in this paper is that of reaching (from a
given initial state) a final steady state in a finite time, while minimizing a given
quadratic performance index. The main advantage of the proposed solution is
that it provides a state-feedback control law whose closed-loop stability and
constraint satisfaction are guaranteed, while the most burdensome part of the
procedure is performed off-line.

2 Continuous Petri nets

Definition 1. A continuous PN (contPN) system is a pair 〈N , m0〉, where:
N = 〈P, T, Pre, Post〉 is the net structure with set of places P , set of
transitions T , pre and post incidence matrices Pre, Post : P × T → N;
m0 : P → R≥0 is the initial marking.

We denote m(τ) the marking at time τ and in discrete time we denote
m(k) the marking at sampling instant k, τ = k · Θ. Finally, the preset and
postset of a node x ∈ P ∪ T are denoted •x and x•, respectively.

A transition tj ∈ T is enabled at m iff ∀pi ∈ •tj ,mi > 0, and its enabling

degree is enab(tj ,m) = min
pi∈•tj

{
mi

Pre(pi,tj)

}
. An enabled transition t can fire

in any real amount 0 ≤ α ≤ enab(t,m) leading to a new marking m′ =
m + αC(·, t), where C = Post−Pre is the token flow matrix; this firing is
also denoted m[t(α)〉m′.

In general, if m is reachable from m0 through a sequence σ = tr1(α1)tr2(α2)
. . . trk

(αk), and we denote by σ : T → R≥0 the firing vector whose compo-
nent associated to a transition tj is σj =

∑
h∈H(σ,tj)

αh, where H(σ, tj) =
{h = 1, . . . , k | trh

= tj}, we can write: m = m0 + C · σ, which is called the
fundamental equation.

Definition 2. A (deterministically) timed contPN system is a contPN system
together with a vector λ : T → R>0, where λj is the firing rate of tj.

Now, the fundamental equation depends on time: m(τ) = m0 + C ·σ(τ),
where σ(τ) denotes the firing count vector in the interval [0, τ ]. Deriving it
wrt time the following is obtained: ṁ(τ) = C · σ̇(τ). The derivative of firing
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vector represents the flow of the timed model f(τ) = σ̇(τ). Depending on
how the flow of the transition is defined several firing semantics are possible
[6, 2]. This paper deals with infinite server semantics in which the flow of
transition tj is given by: fj = λj min

pi∈•tj

{
mi

Pre(pi,tj)

}
.

Because the flow of a transition depends on its enabling degree which
is based on the minimum function, a timed contPN under infinite servers
semantics is a piecewise linear system. In fact, if we define s =

∏
t∈T

|•t|, where

|•t| denotes the cardinality of the set •t, the state space of a timed contPN can
be partitioned3 as follows: R1 ∪ · · · ∪Rs, where each set Rk (for k = 1, . . . , s)
denotes a region where the flow is limited by the same subset of places (one
for each transition). For a given region Rk, we can define the constraint matrix
Πk : T × P → R such that:

Πk(tj , pi) =





1
Pre(pi, tj)

if (∀m ∈ Rk)
mi

Pre(pi, tj)
= min

ph∈•tj

{
mh

Pre(ph, tj)

}
;

0 otherwise.
(1)

If marking m belongs to Rk, we denote Π(m) = Πk the corresponding
constraint matrix. Furthermore, the firing rate of transitions can also be rep-
resented by a diagonal matrix Λ : T ×T → R>0, where Λ(tj , th) = λj if j = h,
and 0, otherwise. Using this notation, the non-linear flow of the transitions at
a given marking m can be written as f = Λ ·Π(m) ·m.

3 A linear constrained model of timed contPN

In this section we consider net systems subject to external control actions,
and assume that the only admissible control law consists in slowing down the
firing speed of transitions, that are assumed to be all controllable [3, 7].

Definition 3. The flow of the forced (or controlled) timed contPN will be
denoted by w(τ) = f(τ)− u(τ), with 0 ≤ u(τ) ≤ f(τ).

Therefore, the control input will be dynamically upper bounded by the flow
of the corresponding unforced system. The behavior of the system is ruled by

{
ṁ(τ) = C · [Λ ·Π(m(τ)) ·m(τ)− u(τ)]

0 ≤ u(τ) ≤ Λ ·Π(m(τ)) ·m(τ)
(2)

This is a particular hybrid system: a piecewise linear system with au-
tonomous switches and dynamic (or state-based) constraints in the input.

Proposition 1. [4] Any piecewise linear constrained model of the form (2)
can be rewritten as a linear constrained model of the form
3 These partitions are disjoint except possibly on the borders.
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ṁ(τ) = C ·w(τ), m(0) = m0 ≥ 0

G ·
[

w(τ)
m(τ)

]
≤ 0

w(τ) ≥ 0

(3)

that we call continuous time contPN model (or ct-contPN for short) where
G is an appropriate constant matrix defined as follows: G =

[
Q −R

]
, Q ∈

Zq×|T |, R ∈ Zq×|P |, q =
∑

t∈T |•t|, and the the row of Q and R relative to
the generic pre arc (pi, tj) are respectively


0 · · · 0 1| {z }

j

0 · · · 0


 ,


0 · · · 0

λj

Pre(pi, tj)| {z }
i

0 · · · 0


 .

The system in equation (3) is a linear system with a state-matrix equal to
0 and an input matrix equal to the token flow matrix of the contPN. There is
still a dynamic constraint on the system inputs that depends on the value of
the system state m. The continuous-time system (3) can be discretized, thus
obtaining a discrete-time ”equivalent” model.

Definition 4. Consider a ct-contPN model of the form (3) and let Θ be a
sampling period. A model can be given in terms of a discrete-time contPN or
dt-contPN as follows:





m(k + 1) = m(k) + Θ ·C ·w(k), m(0) = m0 ≥ 0

G ·
[

w(k)
m(k)

]
≤ 0

w(k) ≥ 0.

(4)

Example 1. Let us consider the net system in Fig. 1 with Θ = 1 and λ = [5 1]T .
The discrete-time representation is given by m(k+1) = m(k)+Cw(k) where
C = [−1 1; 1 − 1;−1 1], and: w1(k)− λ1

2 ·m1(k) ≤ 0, w1(k)− λ1 ·m3(k) ≤ 0,
w2(k)− λ2 ·m1(k) ≤ 0, w2(k)− λ2 ·m2(k) ≤ 0, w(k), m(k + 1) ≥ 0.

p1

t1
p2

p3

t2

.....

....

22

Fig. 1. Continuous PN system.

Note that even if m = |P | = 3, the number of state variables that vary
independently is equal to one, being m1 + m2 = 5 and m2 + m3 = 4. ¥
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It is important to stress that, although the evolution of a dt-contPN oc-
curs in discrete steps, as was the case for an untimed system, discrete time
evolutions and untimed evolutions are not the same. In fact, while an untimed
net system can be seen evolving sequentially, executing a single transition fir-
ing at each step, a dt-contPN may evolve in concurrent steps where more
than one transition can fire. In a ct-contPN under infinite servers semantics,
the positiveness of the marking is ensured if m0 is positive, because the flow
of a transition goes to zero whenever one of input places is empty [8]. In a
dt-contPN, this is not sufficient. We extensively addressed this problem in [4]
where we shown that it can be avoided choosing Θ small enough.

4 Optimal control via explicit MPC

Steady state optimal control of contPN was studied in [7]: if all transitions
can be controlled the problem can be solved in polynomial time. The result
of LPP in [7] is an optimal marking and an optimal control input in steady
state. In this paper we assume that this steady state marking is known and
our problem is to reach it (from a given m0) in a finite time by optimizing a
quadratic performance index of the form

J(m(τ),w(τ), N) ={
r · ||m(N)−mf ||22 +

N−1∑
k=0

[
q(k) · ||m(k)−mf ||22 + r(k) · ||w(k)−wf ||22

]}

(5)
where: r represents the weights on the final state (the desired state after N time
horizon); q(k) and r(k) represent the penalty on the intermediate trajectory
and the penalty on the control effort, respectively.

The solution we propose is based on MPC. MPC, also referred to as moving
horizon control or receding horizon control, is an advanced control method that
has become an attractive feedback strategy, both in the case of linear and
nonlinear systems [9]. In this section we show how MPC can be effectively
used to control contPN under infinite servers semantics.

The basic idea of MPC, going back to the 70’s, is the following: at every
time step, the control action is chosen solving an optimal control problem that
minimizes a performance criterion over a future (sliding) horizon. Only the
first control command will be applied and after one time step other measure-
ments will be got and the optimization problem is repeated. The applicability
of the (implicit) MPC approach is limited by the requirement of solving on-line
a linear (or quadratic) programming problem.

A possible solution to overcome this difficulty has been firstly given by
Bemporad et al. in [5] where the explicit MPC has been proposed to compute
off-line the explicit state-feedback solution to the linear quadratic optimal
control problem subject to state and input constraints. More precisely, the
eMPC approach moves all the burdensome computations off-line and parti-
tions the state space into polytopes described by linear inequalities4. An affine
4 A bounded polyhedron P ⊂ Rn, P = {x ∈ Rn | Ax ≤ B} is called a polytope.
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state-feedback control law is uniquely associated to each polytopic region. The
on-line phase of the approach consists in evaluating the current region and
consequently the optimal value of the control law. Thus, the resulting control
law is a piecewise continuous affine state-feedback control law.

In [5] Bemporad et al. have shown in detail how the state space partition
and the affine control laws can be computed by means of multiparametric
quadratic programming. For sake of brevity we do not provide these results
here. Moreover, the explicit solution can be easily computed thanks to the
Multi-Parametric Toolbox called MPT [10], a MATLAB toolbox for design
and analysis of optimal controllers for constrained linear and hybrid systems.

As already discussed in [5], we remark that computing eMPC may lead to
controllers with prohibitive complexity, both in running time and number of
polytopes. In particular, there are three aspects which are important in this
respect: performance, closed-loop stability and constraint satisfaction. The
MPT toolbox provides several possibilities to compute the controller and the
partition of the state space, which are specified below.

Finite Time Optimal Control (FTOC) yields the finite time optimal con-
troller, i.e., the performance will be N -step optimal but may not be infinite
horizon optimal. The complexity of the controller highly increases with the
prediction horizon N . Within this method, the MPT toolbox provides two
different modes.

— probstruct:Tconstraint=0. No guarantees on stability or closed-loop con-
straint satisfaction is given. As N is increased the feasible set of states will
converge to the maximum controllable set (i.e., all states that are controllable)
from the outside-in, i.e., the controlled set will get smaller as N increases.

— probstruct:Tconstraint=1. The resulting controller will guarantee sta-
bility and constraint satisfaction for all time, but will only cover a subset of
the maximum controllable set of states. By increasing the prediction horizon,
the controllable set of states will converge to the maximum controllable set
from the inside-out, i.e., the controlled set will grow larger as N increases.

Infinite Time Optimal Control (ITOC) yields the infinite time optimal
controller, i.e., the best possible performance for the control problem. Asymp-
totic stability and constraint satisfaction are guaranteed and the maximum
controllable set will be covered by the resulting controller.

The main goal of this paper is that of investigating via some numerical
simulations, carried out using the Multi-Parametric Toolbox of MATLAB [10],
the possibility of using eMPC to control contPN. As a result, the following
conclusions can be drawn.

— In the case of FTOC all the obtained results are reliable. The only
limitation of the approach, as already pointed out in [5], is that the controller’s
complexity and the computational time become prohibitive when the order of
the state space, as well as the length of the prediction horizon N , increases.

— In the case of ITOC, we run into some difficulties in tuning the pa-
rameters, and following the guidelines in [10], we obtained unreliable results.
Therefore, we prefer not to handle this case in the rest of the paper.
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Example 2. Let us consider the cont-PN in Fig. 1 with λ = [5, 1]T . Assume
that the steady state (final) configuration is given by mf = [2.5 2.5 1.5]T and
wf = [2.5 2.5]T . Finally, let Θ = 0.05. We consider a FTOC of the form (5)
where r = 10, q(k) = 1 and r(k) = 0.01 · I for all k = 0, 1, . . . , N − 1.

In Table 1 we summarized the results obtained in the case of FTOC with
probstruct:Tconstraint=0 and probstruct:Tconstraint=1, and different values
of N . First, we observe that for all values of N the number of regions (see
column 2) is the always same in the case of probstruct:Tconstraint=0 and
probstruct:Tconstraint=1 and increases with N . In columns 3 to 5 we reported
the results relative to probstruct:Tconstraint=0, while in the last three are
reported the results relative to probstruct:Tconstraint=1. In the first case the
controlled set keeps unaltered; in the second case it grows larger when N
grows. In both cases the computational time increases with the horizon N .
All simulations have been carried out on a Pentium III 450 MHz.

probstruct:Tconstraint=0 probstruct:Tconstraint=1

N
number

of regions
computational

time [sec]
controlled

set
J

computational
time [sec]

controlled
set

J

1 5 0.94 [0, 4] 14.63 0.87 [1.57, 3.10] –
2 8 1.32 [0, 4] 14.61 1.32 [1.10, 3.18] –
3 11 1.92 [0, 4] 14.60 1.87 [0.52, 3.27] –
4 14 2.58 [0, 4] 14.60 2.91 [0, 3.30] –
5 16 3.24 [0, 4] 14.60 3.35 [0, 3.40] –
10 19 13.89 [0, 4] 14.60 14.28 [0, 3.75] 14.60
15 24 122.04 [0, 4] 14.60 126.00 [0, 4] 14.60
20 26 648.12 [0, 4] 14.60 565.46 [0, 4] 14.60

Table 1. The results of Example 2.

In Table 1 we have also reported the value of the quadratic performance
index assuming m2(0) = 3.5. We may observe that in this case the value of
the cost is not strongly dependent on the value of N . In the case of prob-
struct:Tconstraint = 1 the cost has not been evaluated for N = 1, . . . , 5:
indeed in such cases the controlled set was not large enough to cover the state
space of interest and a control law was not available.

Finally, Fig. 2 presents some details on the controlled system’s behaviour
in the case of probstruct:Tconstraint=1 and N = 10: in fig. (a) we have re-
ported the markings’ evolution wrt time; fig. (b) shows the behaviour of the
control variables w1 and w2 wrt time; fig. (c) shows the current index of the
convex region (the polytope) that uniquely determines the piecewise affine
control law. As we may observe, the system reaches the desired steady state
configuration: mf = [2.5 2.5 1.5]T , wf = [2.5 2.5]T . ¥

5 Conclusions

We considered timed contPN under infinite server semantics. On the basis of
a constrained discrete-time positive linear model of the system, we derived a
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Fig. 2. The results of Example 2 when probstruct:Tconstraint=1 and N = 10.

state-feedback optimal control law based on eMPC. The results of some nu-
merical simulations carried out on the MPT toolbox of MATLAB [10] are
discussed in the case of finite time optimal control with different finite hori-
zons. We do not provide the results of numerical simulations carried out in the
case of infinite time optimal control because we found out some inconsistencies
when following the guidelines in [10] for the parameters tuning.
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