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Abstract— This paper compares three different control design The design of active suspensions for road vehicles aims
methods with regard to their application to a quarter car  to optimize the performance of the vehicle with regard to
semiactive suspension model, namelgptimal gain switching comfort, road holding and rideability [9], [14]. In an active

discontinuous variable structure controhnd explicit model pre- . the int fi bet hicle body. th
dictive control All of them divide the state space into convex suspension the Interaction between venicie body, the so-

regions and assign one linear or affine state feedback controller called sprung mass, and wheel (nonsprung mass) is regulated

to each region. The partition of the state space is computed off- by an actuator of variable length. The actuator is usually hy-

line. During the on-line phase, the controller switches between draulically controlled and applies between body and wheel a

the subcontrollers according to the current state. force that represents the control action generally determined
|. INTRODUCTION with an optimization procedure [8].

In contrast to active suspensions, passive suspensions

In this paper we considdinear systems with constraints . . i ;
It is well accepted that for these systems, in general, st onsist of dampers and springs and the interaction between

bility and good performance can only be achieved with ody and wheel is determined by their elastic constants and

non-linear control law. Here we investigated three differen a;\n;i_mg coeffmle_nts, ':]hat arebc:)tnstant]; th .
approaches to design a non-linear controller for linear con- ~\CtVe SUSPENSIONS have a betler periormance than passive

strained systems, namedptimal gain switchindOGS) [16], susper)slijcl)ns,lbut thgy are much Imorelcomplex anq expensive.
discontinuous variable structure contq@V'SC) [1], [2], [10] As a viable alternative to a purely active suspension system,

and explicit model predictive contro{eMPC) [3], [5]. Al Fhe use of semiactive suspensions has peen invest'igated a lot
in the past [6], [11]. Such a system consists of a spring whose

these methods consist of an off-line and an on-line phas & g dof ad h h .
The off-line phase divide the state space into several regioﬁg Ness 1S _cons_tant and ot a damper whose ¢ aracteristic
efficientf is adjustable within an intervdf ,in, fmax)- The

and assign them linear subcontrollers in the case of folery . ) . :
and dVSC. and affine subcontrollers in the case of eMPd?‘luef is determined such that an active control considered
During the on-line phase the controller switches betwee®_1a/g€t is approximated as close as possible.

these subcontrollers according to the current system state, 1 1€ control design and simulation results are presented in

A first remark is in order: of the three approaches eMP@ series of figures that, given the page limitation, are small.

is the most general in the sense that it can take into accodhte containing all figures in larger scale can be found at

general constraints of the form http:\ \kalman.diee.unica)\giua\MEDOG\figs.pdf.
Vou(t) + Vex(t) <V 1) [1. DYNAMICAL MODEL OF THE SUSPENSIONSYSTEM

whereu() € R” is the control inputz(t) € R™ is the state In this paper we consider two different dynamical models

andV,, V, and V are matrices of suitable dimension. Onof a quarter-car suspension system. The first one is a two-

the contrary, the other two approaches can only deal Wil{ﬁegrees of freedom fourth-order model [8]. The second one
symmetricco7nstraints of the form is a one-degree of freedom second-order model that neglects

the dynamics of the tire.
lu(t) — kT2 (t)] < Umaz (2) Since the reduced model does not describe the interaction

whereu(t) € R is a scalar input and € R” is a constant of the tire with the suspended mass and the ground, it

gain vector. Constraints (2) are obviously a particular Cas%annoF.be used to evaI_uat_e featgres like Toad holdmg and
of (1) rideability. However, as it will be discussed later, it allows a

To compare the three design methods, we applied theﬂ]gnificant comparison among the different design techniques
to a quarter-car suspension system, where the constraint kil considered.

the input takes the formu(t)| < umax, i.€., is @ special A The Two-Degrees of Freedom Model
case of (2). The three approaches can be used for the desngtl_he two-degrees of freedom model is depicted in Fig. 1.a

of active control laws, that we then approximate using a(active suspension) and b (semiactive suspension), where we
semiactivesuspension system. P : ! ; P '
used the following notation}/,, is the nonsprung mass
T. Paschedag is with the Istitute of Automation Technology, Otto-vorconsisting of the wheel and its moving parts/, is the
Guericke University Magdeburd,Tlna.Paschedag@web.de . sprung mass, i.e. the part of the whole body mass and
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the load mass pertaining to only one wheel;(t) is the

Electrical and Electronic Engineering, University of Cagliari, X : ]
{giua,seatzu}@diee.unica.it . nonsprung mass displacement at timevith respect to a



The control laws we propose all requires the knowledge
of the system’s state?.
______ S Since both the concepts of OGS and eMPT make use of

X X f A a discrete-time state space model, we choose a sampling
2 2 s
TE i
Ugct f

interval T and discretiz& the model (3), thus getting the

new model
My M,y
kS N z(k +1) = Gz(k) + Hu(k) (5)
1 T /%A\t o /%A\t where
T
_ AT _ AT
@ (b) G=e"", H(/o e dT)B. (6)

two-degrees of freedom scheme

The effect of the semiactive suspension which is com-
posed of a spring and a damper with an adjustable damper

Mg Mg coefficient (see Fig. 1.b) leads to the semiactive control law
x1% é Xli Ag usen(k) = —[=As  As = f(k) f(k)] - (k). '
z Un T Note that, asf may vary,user{ k) is both a function off
and ofz(k).
- In general, f may only take values in a real set
© %) [funin, fmax)- We propose to choose at each skethe value
one-degree of freedom scheme of f(k) to minimize the difference’[f, (k)] = (uac(k) —

usem(k))?. Let us first assumes (k) # z4(k), then the value
Fig. 1. Model of the two-degrees of freedom model (a) active (b) semif* (k) such thatF[f* (k)’ :c(k)] =0ls

active suspension; model of the one-degree of freedom model (c) active k) + ), Ax(k)
Awv(k)

(d) semiactive suspension; (k) = — Uact(
hereAz (k) = xo(k)—x1(k) is th ion def ti
fixed reference;z.(t) is the sprung mass displacement aévngfv(i)( :) x:(:;i)( ,) zj(lk() )islsits ?a?zs(ﬂe:ﬁ;c:]ge.e ormation

time ¢ with respect to a fixed references(t) = 41(t) is As the admissible values off lie in the interval

the velocity of the nonsprung mass at timers (f) = (t) [fmin, fmax] the adjusted damper coefficient becomes
is the velocity of the sprung mass at timeuac(t) is the ’

active control force at time; )\, is the elastic constant of the f(k) = minargycp o (F[f (k)] =

tire, whose damping characteristics have been neglected. This fmax 0 f5(k) > fmax

is in line with almost all researchers who have investigated FEk) i f(K) € [fnins fonax] (8)

synthesis of active suspensions for motor vehicles as the tire . . T

damping is minimal;)\, is the elastic constant of the spring Juwin - if 0 f7(k) < fmin

of the semiactive suspensiofi(t) is the adjustable damper \When z3(k) = z4(k), regardless to the values ¢f, the

coefficient of the semiactive suspension at titne damper does not give any contribution dguy(k). Thus, in
The state space model of the active suspension is governgés case we assumg(k) = fmax, Which we choose also as

by the following state equation the initial value for the damper coefficieffi{0) = fuax.

z(t) = Ax(t)+ Bu(t) 3)

)

B. The One-Degree of Freedom Model

where The one-degree of freedom model of the suspension
0 system is schematized in Fig. 1.c (active suspension) and

B 0 d (semiactive suspension), where we used the following new
= 1 .
9 7m
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1Since not every component oft) is directly measurable, we reconstruct
0 M, the state through an appropriate state observer. To do this, we choose a
The control force should satisfy the following constraint;Suitable outputy(t) = Cz(#), with ¢ =[1 — 10 0; 00 0 1], which
corresponds to measuring the suspension deformation and the sprung mass
|u (t)| <u (4) velocity. The resulting system is thus observable and controllable.
actl®) = Hmax- 2|t is well known [13] that a system that is observable and controllable

This constraint bounds the acceleration of the sprung ma‘@féhe absenc_e of samplin_g maintains these properties after the intr_oduction
of sampling if and only if, for every eigenvalue ol for the contin-

— at least in nominal operating conditions, i.e., when thg,;s time control system, the relationshife{\;} = Re{);} implies

linear model of the suspension is valid — so as to ensure the{\; — \;} # 227, n = +1,+2,.... The problem at hand results
confort of the passengers. Furthermore, this constraint limit$ the following set of eigenvaluesf0,0, ,/— -, —/— >t L. Under
the maximal force required from the controller, i.e., it leadshese conditions it is necessary to choose a sampling p@haglich that:

to the choice of a suitable actuator. T # nmy /e

o o
o



notation:z, (t) is the sprung mass displacement at timéth ~ Thus, considering the system (10) controlled with and
respect to a fixed reference;(t) = #1(¢) is the velocity of an initial statez, € T',, we can be sure that in its future
the sprung mass at time The continuous-time state spaceevolution the value of the control input will always satisfy

model is in the form (3) with constraint (4), and the constraint (12).
0 1 0 A finite set ofm values ofp, namely{p1, ..., p,,} should
A= { 0 0 ] , B= [ 1M } . be first selectet Then, following a simple procedure given

in [16], the regiond”,,’s are computed off-line. Such a proce-
while the discrete-time model can be obtained using eq. (6Jure, that is not reported here for brevity's requirements, is
Finally, the effect of the semiactive suspension is equivaletiased on the solution of: linear programming problems

to that of a control forceusem(k) = —[As f(k)]xz(k). that provide appropriate matriceg,’s. At each sampling

Thus, minimizing(uac(k) — usem(k))? under the assumption time k the on-line phase of the approach simply requires

x2(k) # 0, results in a damper coefficient to determine the largest valuesuch that
f*(k):_uact—/\sﬂh(k‘). ) v=max{i|z(k)el,, i=0,...,m} a7)

z2(k) and setp(k) = p,. The conditionz(k) € T, is true iff
As the damper coefficient has to be chosen out of the set

[fmin, fmax), f(k) is determined considering (8). “Umax = ZpT0 = Umax- (18)

Thus the control law at timé is chosen equal to
uOc.;.s(k’) = —va. (19)

It has been shown by Yoshida that if no disturbance is
acting on the systemu(k) is a nondecreasing function &f

[1l. OPTIMAL GAIN SWITCHING
Let us consider a linear and time-invariant system

o(k+ 1) = G (k) + Hu(k). (10)

We want to determine the control law(-) that minimizes
a performance index of the form:

IV. DISCONTINUOUSVARIABLE STRUCTURE CONTROL
The basic ideas of discontinuous VSC (dVSC) have been

= firstly proposed by Kiendl and Schneider [10], and a suitable
_ T
J = Zx (k)Qz(k), (11) design method was presented by Adamy [1]. Most of the
k=0 literature on this topic is in German, but a good survey in
(with @ positive semidefinite) under the constraint English is available [2].

Similar to the OGS method the variable structure con-
[u(k)] < tmae - (k 2 0). (12) troller, depending on the system’s state, either switches be-
It is well known that the optimal solution*(-) does not tween a finite number of linear subcontrollers (discontinuous
correspond to a feedback control law, thus its applicatiodSC) or changes the controller parameters continuously (soft
may be unfeasible [15]. VSC) with the objective of obtaining a better performance in
The OGS approach, firstly proposed by Yoshida in [16jerms of shorter settling times avoiding violation of control
approximates the optimal control law*(-) by switching signal constraints.
among a certain number of feedback control laws whose The dVSC method makes use of a set of nested, positively
gains can be computed as the solution of a family of LQRvariant sets each with a dedicated linear controller. During
problems. More precisely, to determine the OGS control lafie regulation cycle, the trajectory runs from a positively

uogs We consider a family of performance indices invariant region in the state space into the next smaller one
o simultaneously activating the assigned controller.
J, = [paT (k)Qa(k) + uT (K)Ru(k)], p>0, R> 0. Here we bnefl_y outI||_1e th_e ge_neral structure o_f the dV_SC.
P Consider the linear time-invariant plant in continuous time
(13) Lo
For a given value ofy, the unconstrained control law that &(t) = Ax(t) + Bu(t) (20)
mm'm|zeSJP can be written as 3The selection of the weighting coefficients needs some further com-
ments. A good choice of the valugg may influence the performance
up(k) = —K,z(k) (14)  of the OGS law. Asm increases, the performance indéy decreases,

but the procedure becomes computationally more intensive. The weighting
where the gain matrix¥<, is obtained by solving an alge- coefficientp: should be determined such that the linear redign contains
braic Riccati equation. The resulting controller then switched! the initial conditions of interest. The weighting coefficient, should be
. . . selected such that the regidn,,, covers small disturbances or very small

among different control laws in the form (14) depending ORystem noises. The coefficients, . . ., pm—1 Should be chosen taking into
the current value of the system state. account the size of the linear regibn. Oncep1, p., andm are determined,

For a given value Ofo it is possible to compute Bnear the intermediate values @f can be chosen such that the ratios of the norm

. . . . between two adjacent gains are constant, i.e.,
regionI’, in the state space such that for any paiptwithin

this region the following equation holds: Kl (HK,J”LH)# . 16)

1K ol \ Ky
(k)] = |K (G — HE,)* 29| < timae, (k> 0). (15) n !




under the control signal constraint where the matrixz, is the solution of the Lyapunov equation
ATR, 4+ Ry Ay = —Qy.

[u(t)] < tmax. (1) The matricesQ, have to be positive-definiteQ, ;,; —

The control input is chosen according to @, is frequently a reasonable choice. Thus, the Lyapunov
regions will be ellipses determined by the matriégs Since
uavso(t) = F(x(t),p) (22)  the condition| K, z| < umax has to be satisfied for alt €

where F is an operatdr that depends on the system’sGp and should be exploited as good as possible,cthéen
statez and a selection parameter that is computed by (24) are chosen such that the hyperplages, v = wmax
a selection strategy or supervisor, igs= S(z), defined by are tangent to the elliptical Lyapunov regions. In order to
a discontinuous functiors. The selection strategy switchesdetermine these, we solve the optimization problem
between a finite number of different subcontrollers so as max TRz
to optimize the system’s performance in termsseftling R, P 27)
times St £ K, 2 = Umax

Note that in the following we consider only bounded sets ) _
X, C R” of possible initial vectors (¢ = 0), sinceX, = R*  Whose solution yields

is usually not of practical interest. The three major steps of ul .
the dVSC design procedure are: Cp = K, Ry KT (28)

(D1) Choose a family ofm linear state controllers(t) =

K, «(t) leading to stable control loops The largest Lyapunov regio@; has to be determined such

that Xg C G, i.e. the first region includes all possible initial
i(t) = (A— BK,)z(t) = A,z(t), p=1,...,m  states.
(23) Finally, in a third step we verify that all regiors,,’s are
whose response times decrease with increasing inpdexnested: if all points of interest satisfy

(D2) According to each control loop (23) construct a Lya- +TRy @ 3 TRy

punov region <1 (29)
Cp Cp+1
Gp ={z[vp() < cp} @4 thenG,., c G, is ensured. To check whether (29) is true
where ¢, determines the size of¥,. Moreover, G,  Or not it is sufficient to make sure that the matrices
should be such that alt € G, satisfy the constraint Ryr1 Ry (30)
|udVSC‘ = |Kp :E| < Umax- Cpt1 Cp

(D3) The Lyapunov reglons.should be nested one inside thaere positive definite fop = 1,....m — 1.
other in accordance with

V. EXPLICIT MODEL PREDICTIVE CONTROL
Gp1 CGp, p=1,... k-1 (25)

Model Predictive Control(MPC) [4], also referred as
with an increasing index. moving horizon controbr receding horizon controlis an
Analogously to the OGS design process the dVSC methativanced control method that has become an attractive
consists of an off-line and an on-line phase. The threfeedback strategy, especially for linear and time-invariant
steps mentioned above represent the off-line phase. Durisgstems of the form (10) under the constraint (12), that are

the on-line phase the controller determines the smallegtose of interest here.
Lyapunov region that contains the current system’s state andThe basic idea of MPC is the following: at every time
activates the subcontroller belonging to this region. Upostep, the control action is chosen solving an optimal control
the trajectory’s entry into a smaller region, the controlleproblem, minimizing a performance criterion over a future
switches to the next assigned subcontroller. horizon. Only the first control command will be applied
In the first step the subcontrollers’ matric&S, are deter- and after one time step other measurements will be got
mined utilizing pole placemensuch that then eigenvalues and the optimization problem is repeated. This is an on-
Ap.; of A, conform to line procedure and in many cases it is difficult (or even
A\ b Bl (26) impossible) to implement because the on-line solution of a
ptLJ B2 linear or quadratic program, depending on the performance
and lead to a stable closed loop, iBe{\,} < 0. These index, is required. Various MPC algorithms use different
controllers thus accelerate the control system’s behavigipst functions to obtain the control action. In this paper we
while simultaneously causing a similar behavior, since theonsider the following standard form:

eigenvalue configuration remains the same. J(@(k), u(k), N) =
In a second step the Lyapunov regions are constructed x ’ ’
employing quadratic Lyapunov functions,(z) = 27 R, «, Zx(k 4 )TQa(k + §) + ulk + /)T Ru(k + j) (31)
7=0

4A common practice, as we do in this section, is that of choosing . o )
uqysc(t) = Kpx(t). where@ and R are positive definite matrices.



The main limitation of the implicit MPC is that the com-
putations are executed on-line, so that it is only applicable
to relatively slow and/or small problems. 05

The eMPC approach is based on multiparametric program
ming. It moves all the burdensome computations off-line# °©
and partitions the state space into polytopic regions, so the
during the on-line phase of the control procedure according
to the current state the actual subcontroller can be founc -1
out of a table. The on-line phase of the eMPC is similar to
that one of the other approaches presented above (OGS a
dVvSC). 03

In this paper, in order to avoid repeating results already ©2
published in other papers [3], [5] we do not provide details *'|/
on how the polytopic regions are computed. Moreover,”
the eMPC controller can be computed using the Multi- ),
Parametric Toolbox called MPT [12], a free and user-friendly 5
MATLAB toolbox for design, analysis and deployment of
optimal controllers for constrained linear and hybrid systems

As already pointed out by the authors in [3], [5], the main
drawback of the eMPC is that it may easily lead to controllersig. 2.  The resulting partitions in the fourth-order case (cut through

1

with prohibitive complexity, both in runtime and solution.z3_= 4 = 0). (&) FTOC, probstruct:Tconstraint=0 N =10,

] ] X 557 regions; (b) FTOMrobstruct:Tconstraint=0 , N =15,1038
In particular, there are three aspects which are important Byions: (c) FTOC probstruct:Tconstraint=1 N = 10 2195
this respect: performance, closed-loop stability and constraifgions; (c) FTOC probstruct: Tconstraint=1 , N = 15, 3852

satisfaction. The MPT toolbox provides several possibilitieggions.
to compute the controller and the partition of the state space,
which are specified below and that we have investigated.
— Finite Time Optimal Control (FTOC)This method
yields the finite time optimal controller, i.e. the performanc

controller. However, the controller's complexity may be
é)rohibitive and the computation may take a very long time.

will be N-step optimal but may not be infinite horizon Two other options are possible when designing the eMPC

optimal. The complexity of the controller depends strongl)?:omtrmller gsLlng t(r;e tO(I)lb.(iX ('\:/IP-[ rljmeMlnlmudelmet
on the prediction horizowV, the largerN the more complex ontrol and Low -.omplexity LontrolHowever, we do no

the controller is. Furthermore, within this method, the MP'Id'SCUSs these cases h_ere. be.c.ause we have not been aple 0
toolbox provides three different modes. apply them to our application: in both cases the computation

did not finish in adequate times.

e probstruct:Tconstraint=0: The controller will
be defined over a superset of the maximum controllable set VI. A COMPARISON AMONG THE DIFFERENT
(i.e. all states, which are controllable to the origin), but no APPROACHES

guarantees on stability or closed-loop constraint satisfaction |, ihis section we compare the three control design meth-

can be given. As the prediction horizaN is increased ¢ apove applying them to the suspension system illustrated
the feasible set of states will converge to the maximuny, section I

controllable set from "the outside-in", i.e., the controlled set Following [8], we take:M,, — 28.58 Kg, M,=288.90 Kg,

will shrink as N increases. A+ = 155900 N/m, A\, = 14345 N/m. We assume the

Even though closed loop stability and constraint satisfactioggmp"ng time equal t@ = 0.01 s, to which it corresponds

are not guaranteed, MPT provides a function to extract the, sampling frequency, = 27/T ~ 6 - 10? rad/$.
set of states which satisfy the constraints for all time and We take w _ 3005 N that is slightly less than the
max

another functlc.)n to ana!yz_e t.hese states for stability. total weight resting on one wheel. A control force of higher
* probstruct:Tconstraint=1: The resulting con-  agnitude may cause loss of contact between wheel and

troller will guarantee stability and constraint satisfaction fofqo,4 Fyrthermore, this constraint also limits the acceleration

all time, but will only cover a subset of the maximum con-,¢ e sprung mass and this is a necessary condition for the

trollable set of states. By increasing the prediction horizorn,,¢ort of passengers.
the controllable set of states will converge to the maximum

controllable set from "the inside-out”, i.e. the controlled set 5This is essentially due to the following reasons. Firstly, the bandwidth
will grow Iarger asN increases. of the passive suspension system described by (8)is< 2 - 102 rad/s.

- . . . A sampling frequency ofvs ~ 6 - 102 rad/s is in good agreement with
T Infm'te_ T'me O_ptlm(:ﬂ Qontrol (ITOC)Th'S method Shannon’s theorem [13] that requires > 2wj;. Moreover, this choice
yields the infinite time optimal controller, i.e. the bestof sampling interval is consistent ensures that the system will maintain
possible performance for the control problem. Asymptotié“e properties of controllability and observability. Finally, to chanfe

" . . . he controller must change the opening of the damper valve. Present
stability and constraint satisfaction are guaranteed and thghnologies impose a limit of aboud? Hz on the updating frequency

maximum controllable set will be covered by the resultingf the damper coefficient.



Finally we choosef (k) € [800,3000] Ns/m.

For the OGS approach we consider two different cases.

— OGS (Case A) When dealing with the
fourth order model we assumey = [11 -
100; =1100; 0000; 0000]andR = 0.8-1077,
that lead to a good performance in terms of road holding
and passenger’s comfort. Finally, as in [8] we choose the  *
parameters;’s as follows:p; = 0.01, po = 0.1, p3 = 0.5,
pa =1, p5s = 4, ps = 20, pr = 50, pg = 100, py = 1000,
p10 = 10°. When dealing with the second order model we
assume@ = [1 0; 0 0], R = 0.8-1077, and p; = 0.5,
p2:1,p3:4,p4:20,p5=50. '

— In the case of the fourth-order model with dVSC con- - - x
troller we assume the set of eigenvalues reported in Fig. 4.b.
The first set of eigenvalues in (26) was chosen accordirf. 3. Projection of the partition into the; -z2-plane for the fourth-order
to the closed loop eigenvalues of the OGS for the fourthuspension system for the ITOC
largest region, while the remaining four are chosen assuming

h = 1.5 in (26). In the case of the second-order model with . @
dVSC controller we assumg; , = —7.8224 £ 7.8224j,
h=1.5andm = 5. g 08 )
— OGS (Case B)n order to obtain a more immediate g o ™
and meaningful comparison among the OGS and the dVSC E’ o5 A
approach, we determined the feedback gain matrices for the -
OGS controller such that the closed loop eigenvalues in the = 0 1
OGS case are the discrete-time counterpart of the dVSC Ref’z'b;‘“s
closed loop eigenvalues. As an example, in the case of the 400 —————
fourth order model, the closed loop eigenvalues are thoseg ,! T T— |
shown in Fig. 4.a. Note that the closed loop matrices obtaineds. \\V\x
in this manner do not guarantee that the Yoshida regions are,  °[ e
nested. E 200 1
— For the eMPC we considered the same weighting _4 ‘ ‘ ‘ ‘ ‘ ‘
matrix on the stateg) as in the OGS (Case A). The weight 40 o200 S0 80 o e 0

on the input is taken equal to the weight on the input for the

OGS (Case A) divided bymax' I.e., Rempc = R/pmaX' Th_iS Fig. 4. Sets of designated eigenvalues for the fourth-order suspension
guarantees for both approaches the same level of optimalitystem (a) in the z-plane and (b) in the s-plahe= 1.5

A. Some remarks on eMPC

In this section we highlight some problems we encouncontrollable set from the inside outwards. Clearly, this is
tered when applying the eMPC to the fourth-order modehot occurring in this case because parts of the state space
Let us first observe that in order to reduce the run times wi@at have been covered by the partition with= 10 are not
determined the partition of the state space for the fourtteovered by the partition obtained with' = 15. Thus, we
order suspension model considering:= {z € R* | |z;/ < conclude that some numerical error should have occurred: it
1,i=1,...,4}. is obviously not possible that a state is controllable under a

In order to clarify which kind of problems we get into, we given prediction horizon, but does not maintain this property
reported in Fig. 2 some of the resulting partitions, where after increasing the latter.
cut atzs = x4 = 0 is done. The results relative to the FTOC In the case of the ITOC the unfeasability of the result
case withprobStruct. Tconstraint=0 are shown in is even more evident as illustrated in Fig. 3. Only very few
Fig. 2.a and b: increasing the prediction horizdhfrom parts of the state space that were identified to be controllable
10 to 15 the controlled set converges towards the maximu(eee Fig. 2.c) are covered by the ITOC partition.
controllable set from the outside inwards. As expected the ) »
partition in figure (a) cover a larger set than the partition ifs- A COmMparison among partitions

figure (b). Fig. 5 shows the different state space partitions in the case
The  partitions for the FTOC  employing of the second-order suspension model: the Yoshida regions
probStruct.Tconstraint=1 are llustrated in for the OGS (Case A) and (Case B) are depicted in Fig. 5.a

Fig. 2.c and d forv = 10 and N = 15, respectively. and b, respectively; figures ¢ and d illustrate the regions
As mentioned above, by increasing the prediction horizoresulting from dVSC and eMPC, respectively.
N the controllable set should converge to the maximum Note that in order to limit the run times of the computation
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Fig. 6. A cut atzz = x4 = 0 of the regions obtained for the fourth-order
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acting on@,,.
Fig. 5. Partition of the state space for the second-order model: (a) OGS Note thatpthis problem cannot be overcome using soft VSC
(Case A); (b) OGS (Case B); (c) dVSC; (d) eMPC. rather than dVSC [2]. This is the reason why we do not go
on details of soft VSC in this paper.

following bounded polyhedron for the second-order suspefielated to different issues, namely, the constraints on the
sion model:X = {z € R? | |z;] < 1, i = 1,2}. Further- States £ € X) we introduce to implement the procedure,

more, we considered the FTOC with a prediction horizof'€ Options we choose (see the discussion above relative to

N = 10 and we seiprobStruct. Tconstraint=1 to the setting of parameters in the MPT toolbox), and, in the
obtain a controller that guarantees closed loop stability arf@se of FTOC, the prediction horizaW. _
constraint satisfaction for all times. As a result, we draw the following conclusions. (1) The

By looking at Fig. 5 we realized that: the OGS regions ar8VSC regions cover a very small subset of the state space
those who cover the largest portion of the state space, whig interest, but the computational effort is very low. (2) The
the dVSC’s cover the smallest portion of the state spac®GS (Case A) seems to lead to the best results both in terms
Then, also in Case B the OGS regions are nested, thus wkcomputational effort and in terms of dimension of the state
can use them to design a controller. Finally, we observe th@Pace partition. (3) The eMPC provides intermediate results
the eMPC regions are constrained in thedirection by the in terms of size of the state space partition, and is the hardest
assumptions we made in order to reduce the run time (i.d0 terms of computational complexity and implementation.

x € X), but also in ther;-direction they are smaller than
the OGS regions (Cases A and B). C. The control performance: second-order model

Fig. 6 depicts a cut throughs = =, = 0 of the partitions In the case of active suspensions we only present the re-
obtained with the fourth-order model resulting from the OGSults of numerical simulations carried out on the second order
(Case A) and the eMPC. Here the difference on the size afodel, because in such a case all the considered techniques
two state space partitions is even more evident. provide state space partitions that are large enough to deal

We have not reported here the regions obtained whewith realistic cases.
implementing the OGS (Case B) and the dVSC with the We computed the system’s evolution for the initial state
the fourth-order model, because in the OGS case the regions = [0.01 0.1]7. The simulation results are summarized
were not nested, and in the dVSC case they cover a tawm Fig. 7. We can observe that the OGS (Case A) and the
small portion of the state space with respect to the nominaMPC provide satisfactory results, and the system evolution
operating conditions. Thus they are both useless for the practically the same in the two cases. On the contrary,
considered application. the results obtained with the dVSC controller are not so

Some important remarks should be done to interpret theatisfactory: this is due to the fact that it does not yield a good
above results. In the dVSC case the size of the regiomxploitation of the maximal allowed control input. The OGS
depends oR?, and therefore on the choice g, in the Lya- controller (Case B) provides the best performance in terms
punov equation. Becauss, that determines the Lyapunov of sprung mass position, but its behaviour is less satisfactory
regions, is a function oR;l, the regions seem to be nearlyin terms of sprung mass velocity and acceleration. Finally,
independent on the choice €,. As a consequence, we havein the right bottom graph of Fig. 7 we have pointed out the
not been able to enlarge the Lyapunov regions significantlariation of the index denoting the current region of the state
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VIl. CONCLUSIONS

In this paper we deal with the problem of designing a
semiactive suspension system for car vehicles. To this aim
we considered three different techniques, namatyimal
gain switching discontinuous VSC anéxplicit MPC All
these approaches are based on the computation of an off-line
partition of the state space. To each convex region a linear
or an affine control law is associated, and the on-line phase
of the approaches simply consists in selecting the current
region. A detailed comparison among these techniques is
provided, both in terms of magnitude of the resulting state
space partitions, and in terms of the system behaviour. As
a result, in this application the OGS controller proved to

the most effective of the three approaches in terms of

performance, applicability and computational complexity.

Fig. 7. Active suspension and initial statg = [0.01 0.1]7.
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Here 1 denotes the largest region ahdhe smallest one.

D. The control performance: fourth-order model i
In this section we compare the simulation results for the
fourth-order suspension model. (2]

Assume that the initial state is, = [0.015 0.1 0 0]7". 3]
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Fig. 8. Semiactive suspension withy = [0.015 0.1 0 0]7. [11]
Fig. 8 shows the evolution of the semiactive suspension
system compared to that of the active suspension. Aga[iJrF]
the OGS and the eMPC performances are very similar ag
the states at each time instant only differ in the order of
magnitude of|z; oes — #sempd ~ 10710, In the bottom 4]
left of Fig. 8 we have reported the evolution of the targefs;
control laws computed with the OGS and the eMPC, and
the control laws that are "really" applied to the syste 6
by the semiactive suspension when appropriately adjusting
the damping coefficienf (whose variation is shown in the

bottom right of Fig. 8).
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