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Abstract— This paper compares three different control design
methods with regard to their application to a quarter car
semiactive suspension model, namelyoptimal gain switching,
discontinuous variable structure controland explicit model pre-
dictive control. All of them divide the state space into convex
regions and assign one linear or affine state feedback controller
to each region. The partition of the state space is computed off-
line. During the on-line phase, the controller switches between
the subcontrollers according to the current state.

I. I NTRODUCTION

In this paper we considerlinear systems with constraints.
It is well accepted that for these systems, in general, sta-
bility and good performance can only be achieved with a
non-linear control law. Here we investigated three different
approaches to design a non-linear controller for linear con-
strained systems, namelyoptimal gain switching(OGS) [16],
discontinuous variable structure control(dVSC) [1], [2], [10]
and explicit model predictive control(eMPC) [3], [5]. All
these methods consist of an off-line and an on-line phase.
The off-line phase divide the state space into several regions
and assign them linear subcontrollers in the case of OGS
and dVSC, and affine subcontrollers in the case of eMPC.
During the on-line phase the controller switches between
these subcontrollers according to the current system state.

A first remark is in order: of the three approaches eMPC
is the most general in the sense that it can take into account
general constraints of the form

Vuu(t) + Vxx(t) ≤ V (1)

whereu(t) ∈ Rr is the control input,x(t) ∈ Rn is the state
and Vu, Vx and V are matrices of suitable dimension. On
the contrary, the other two approaches can only deal with
symmetricconstraints of the form

|u(t)− kT x(t)| ≤ umax (2)

whereu(t) ∈ R is a scalar input andk ∈ Rn is a constant
gain vector. Constraints (2) are obviously a particular case
of (1).

To compare the three design methods, we applied them
to a quarter-car suspension system, where the constraint on
the input takes the form|u(t)| ≤ umax, i.e., is a special
case of (2). The three approaches can be used for the design
of active control laws, that we then approximate using a
semiactivesuspension system.
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The design of active suspensions for road vehicles aims
to optimize the performance of the vehicle with regard to
comfort, road holding and rideability [9], [14]. In an active
suspension the interaction between vehicle body, the so-
called sprung mass, and wheel (nonsprung mass) is regulated
by an actuator of variable length. The actuator is usually hy-
draulically controlled and applies between body and wheel a
force that represents the control action generally determined
with an optimization procedure [8].

In contrast to active suspensions, passive suspensions
consist of dampers and springs and the interaction between
body and wheel is determined by their elastic constants and
damping coefficients, that are constant.

Active suspensions have a better performance than passive
suspensions, but they are much more complex and expensive.
As a viable alternative to a purely active suspension system,
the use of semiactive suspensions has been investigated a lot
in the past [6], [11]. Such a system consists of a spring whose
stiffness is constant and of a damper whose characteristic
coefficientf is adjustable within an interval[fmin, fmax]. The
valuef is determined such that an active control considered
as target is approximated as close as possible.

The control design and simulation results are presented in
a series of figures that, given the page limitation, are small.
A file containing all figures in larger scale can be found at
http:\\kalman.diee.unica.it\giua\MED06\figs.pdf.

II. DYNAMICAL MODEL OF THESUSPENSIONSYSTEM

In this paper we consider two different dynamical models
of a quarter-car suspension system. The first one is a two-
degrees of freedom fourth-order model [8]. The second one
is a one-degree of freedom second-order model that neglects
the dynamics of the tire.

Since the reduced model does not describe the interaction
of the tire with the suspended mass and the ground, it
cannot be used to evaluate features like road holding and
rideability. However, as it will be discussed later, it allows a
significant comparison among the different design techniques
we considered.

A. The Two-Degrees of Freedom Model

The two-degrees of freedom model is depicted in Fig. 1.a
(active suspension) and b (semiactive suspension), where we
used the following notation:Mw is the nonsprung mass
consisting of the wheel and its moving parts;Ms is the
sprung mass, i.e. the part of the whole body mass and
the load mass pertaining to only one wheel;x1(t) is the
nonsprung mass displacement at timet with respect to a
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Fig. 1. Model of the two-degrees of freedom model (a) active (b) semi-
active suspension; model of the one-degree of freedom model (c) active
(d) semiactive suspension;

fixed reference;x2(t) is the sprung mass displacement at
time t with respect to a fixed reference;x3(t) = ẋ1(t) is
the velocity of the nonsprung mass at timet; x4(t) = ẋ2(t)
is the velocity of the sprung mass at timet; uact(t) is the
active control force at timet; λt is the elastic constant of the
tire, whose damping characteristics have been neglected. This
is in line with almost all researchers who have investigated
synthesis of active suspensions for motor vehicles as the tire
damping is minimal;λs is the elastic constant of the spring
of the semiactive suspension;f(t) is the adjustable damper
coefficient of the semiactive suspension at timet.

The state space model of the active suspension is governed
by the following state equation

ẋ(t) = Ax(t) + B u(t) (3)

where

A =




0 0 1 0
0 0 0 1

− λt

Mw
0 0 0

0 0 0 0


 , B =




0
0

− 1
Mw
1

Ms


 .

The control force should satisfy the following constraint:

|uact(t)| ≤ umax. (4)

This constraint bounds the acceleration of the sprung mass
– at least in nominal operating conditions, i.e., when the
linear model of the suspension is valid – so as to ensure the
confort of the passengers. Furthermore, this constraint limits
the maximal force required from the controller, i.e., it leads
to the choice of a suitable actuator.

The control laws we propose all requires the knowledge
of the system’s statex1.

Since both the concepts of OGS and eMPT make use of
a discrete-time state space model, we choose a sampling
interval T and discretize2 the model (3), thus getting the
new model

x(k + 1) = Gx(k) + Hu(k) (5)

where

G = eAT , H =

(∫ T

0

eAτdτ

)
B. (6)

The effect of the semiactive suspension which is com-
posed of a spring and a damper with an adjustable damper
coefficient (see Fig. 1.b) leads to the semiactive control law
usem(k) = −[−λs λs − f(k) f(k)] · x(k).

Note that, asf may vary,usem(k) is both a function off
and ofx(k).

In general, f may only take values in a real set
[fmin, fmax]. We propose to choose at each stepk the value
of f(k) to minimize the differenceF [f, x(k)] = (uact(k) −
usem(k))2. Let us first assumex3(k) 6= x4(k), then the value
f∗(k) such thatF [f∗(k), x(k)] = 0 is

f∗(k) = −uact(k) + λs ∆ x(k)
∆ v(k)

(7)

where∆x(k) = x2(k)−x1(k) is the suspension deformation
and∆v(k) = x4(k)− x3(k) is its rate of change.

As the admissible values off lie in the interval
[fmin, fmax] the adjusted damper coefficient becomes

f(k) = minargf∈[fmin,fmax]F [f, x(k)] =



fmax if f∗(k) > fmax

f∗(k) if f∗(k) ∈ [fmin, fmax]
fmin if f∗(k) < fmin

(8)

When x3(k) = x4(k), regardless to the values off , the
damper does not give any contribution tousem(k). Thus, in
this case we assumef(k) = fmax, which we choose also as
the initial value for the damper coefficientf(0) = fmax.

B. The One-Degree of Freedom Model

The one-degree of freedom model of the suspension
system is schematized in Fig. 1.c (active suspension) and
d (semiactive suspension), where we used the following new

1Since not every component ofx(t) is directly measurable, we reconstruct
the state through an appropriate state observer. To do this, we choose a
suitable outputy(t) = Cx(t), with C = [1 − 1 0 0; 0 0 0 1], which
corresponds to measuring the suspension deformation and the sprung mass
velocity. The resulting system is thus observable and controllable.

2It is well known [13] that a system that is observable and controllable
in the absence of sampling maintains these properties after the introduction
of sampling if and only if, for every eigenvalue ofA for the contin-
uous time control system, the relationshipRe{λi} = Re{λj} implies
Im{λi − λj} 6= 2nπ

T
, n = ±1,±2, . . .. The problem at hand results

in the following set of eigenvalues:
n
0, 0,

q
− λt

Mw
,−
q
− λt

Mw

o
. Under

these conditions it is necessary to choose a sampling periodT , such that:

T 6= nπ
q

Mw
λt

.



notation:x1(t) is the sprung mass displacement at timet with
respect to a fixed reference;x2(t) = ẋ1(t) is the velocity of
the sprung mass at timet. The continuous-time state space
model is in the form (3) with constraint (4), and

A =
[

0 1
0 0

]
, B =

[
0

1/Ms

]
.

while the discrete-time model can be obtained using eq. (6).
Finally, the effect of the semiactive suspension is equivalent
to that of a control forceusem(k) = −[λs f(k)] x(k).
Thus, minimizing(uact(k)−usem(k))2 under the assumption
x2(k) 6= 0, results in a damper coefficient

f∗(k) = −uact− λs x1(k)
x2(k)

. (9)

As the damper coefficient has to be chosen out of the set
[fmin, fmax], f(k) is determined considering (8).

III. O PTIMAL GAIN SWITCHING

Let us consider a linear and time-invariant system

x(k + 1) = Gx(k) + Hu(k). (10)

We want to determine the control lawu∗(·) that minimizes
a performance index of the form:

J =
∞∑

k=0

xT (k)Qx(k), (11)

(with Q positive semidefinite) under the constraint

|u(k)| ≤ umax (k ≥ 0). (12)

It is well known that the optimal solutionu∗(·) does not
correspond to a feedback control law, thus its application
may be unfeasible [15].

The OGS approach, firstly proposed by Yoshida in [16]
approximates the optimal control lawu∗(·) by switching
among a certain number of feedback control laws whose
gains can be computed as the solution of a family of LQR
problems. More precisely, to determine the OGS control law
uOGS we consider a family of performance indices

Jρ =
∞∑

k=0

[ ρ xT (k)Qx(k) + uT (k)Ru(k)], ρ > 0, R > 0.

(13)
For a given value ofρ, the unconstrained control law that
minimizesJρ can be written as

uρ(k) = −Kρ x(k) (14)

where the gain matrixKρ is obtained by solving an alge-
braic Riccati equation. The resulting controller then switches
among different control laws in the form (14) depending on
the current value of the system state.

For a given value ofρ it is possible to compute alinear
regionΓρ in the state space such that for any pointx0 within
this region the following equation holds:

|uρ(k)| ≡ |Kρ(G−HKρ)k x0| ≤ umax, (k ≥ 0). (15)

Thus, considering the system (10) controlled withuρ and
an initial statex0 ∈ Γρ, we can be sure that in its future
evolution the value of the control input will always satisfy
the constraint (12).

A finite set ofm values ofρ, namely{ρ1, . . . , ρm} should
be first selected3. Then, following a simple procedure given
in [16], the regionsΓρ’s are computed off-line. Such a proce-
dure, that is not reported here for brevity’s requirements, is
based on the solution ofm linear programming problems
that provide appropriate matricesZρ’s. At each sampling
time k the on-line phase of the approach simply requires
to determine the largest valuev such that

v = max{ i | x(k) ∈ Γρi
, i = 0, . . . ,m} (17)

and setρ(k) = ρv. The conditionx(k) ∈ Γρ is true iff

−umax ≤ Zρx0 ≤ umax. (18)

Thus the control law at timek is chosen equal to

uOGS(k) = −Kρv
. (19)

It has been shown by Yoshida that if no disturbance is
acting on the system,ρ(k) is a nondecreasing function ofk.

IV. D ISCONTINUOUSVARIABLE STRUCTURECONTROL

The basic ideas of discontinuous VSC (dVSC) have been
firstly proposed by Kiendl and Schneider [10], and a suitable
design method was presented by Adamy [1]. Most of the
literature on this topic is in German, but a good survey in
English is available [2].

Similar to the OGS method the variable structure con-
troller, depending on the system’s state, either switches be-
tween a finite number of linear subcontrollers (discontinuous
VSC) or changes the controller parameters continuously (soft
VSC) with the objective of obtaining a better performance in
terms of shorter settling times avoiding violation of control
signal constraints.

The dVSC method makes use of a set of nested, positively
invariant sets each with a dedicated linear controller. During
the regulation cycle, the trajectory runs from a positively
invariant region in the state space into the next smaller one
simultaneously activating the assigned controller.

Here we briefly outline the general structure of the dVSC.
Consider the linear time-invariant plant in continuous time

ẋ(t) = Ax(t) + Bu(t) (20)

3The selection of the weighting coefficients needs some further com-
ments. A good choice of the valuesρi may influence the performance
of the OGS law. Asm increases, the performance indexJρ decreases,
but the procedure becomes computationally more intensive. The weighting
coefficientρ1 should be determined such that the linear regionΓρ1 contains
all the initial conditions of interest. The weighting coefficientρm should be
selected such that the regionΓρm covers small disturbances or very small
system noises. The coefficientsρ2, . . . , ρm−1 should be chosen taking into
account the size of the linear regionΓi. Onceρ1, ρm andm are determined,
the intermediate values ofρ can be chosen such that the ratios of the norm
between two adjacent gains are constant, i.e.,

‖Kρi‖
‖Kρi−1‖

=

�‖Kρm‖
‖Kρ1‖

� 1
m

. (16)



under the control signal constraint

|u(t)| ≤ umax. (21)

The control input is chosen according to

udV SC(t) = F(x(t), p) (22)

where F is an operator4 that depends on the system’s
statex and a selection parameterp, that is computed by
a selection strategy or supervisor, i.e.,p = S(x), defined by
a discontinuous functionS. The selection strategy switches
between a finite numberm of different subcontrollers so as
to optimize the system’s performance in terms ofsettling
times.

Note that in the following we consider only bounded sets
X0 ⊂ Rn of possible initial vectorsx(t = 0), sinceX0 = Rn

is usually not of practical interest. The three major steps of
the dVSC design procedure are:

(D1) Choose a family ofm linear state controllersu(t) =
−Kp x(t) leading to stable control loops

ẋ(t) = (A−BKp)x(t) = Âp x(t), p = 1, . . . , m
(23)

whose response times decrease with increasing indexp.
(D2) According to each control loop (23) construct a Lya-

punov region

Gp = {x | vp(x) < cp} (24)

where cp determines the size ofGp. Moreover, Gp

should be such that allx ∈ Gp satisfy the constraint
|udV SC | = |Kp x| ≤ umax.

(D3) The Lyapunov regions should be nested one inside the
other in accordance with

Gp+1 ⊂ Gp, p = 1, . . . , k − 1 (25)

with an increasing indexp.

Analogously to the OGS design process the dVSC method
consists of an off-line and an on-line phase. The three
steps mentioned above represent the off-line phase. During
the on-line phase the controller determines the smallest
Lyapunov region that contains the current system’s state and
activates the subcontroller belonging to this region. Upon
the trajectory’s entry into a smaller region, the controller
switches to the next assigned subcontroller.

In the first step the subcontrollers’ matricesKp are deter-
mined utilizing pole placementsuch that then eigenvalues
λp,j of Âp conform to

λp+1,j = hλp,j , h > 1 (26)

and lead to a stable closed loop, i.e.Re{λp} < 0. These
controllers thus accelerate the control system’s behavior,
while simultaneously causing a similar behavior, since the
eigenvalue configuration remains the same.

In a second step the Lyapunov regions are constructed
employing quadratic Lyapunov functionsvp(x) = xT Rp x,

4A common practice, as we do in this section, is that of choosing
udV SC(t) = Kpx(t).

where the matrixRp is the solution of the Lyapunov equation
ÂT

p Rp + Rp Âp = −Qp.
The matricesQp have to be positive-definite:Qp+1 =

Qp is frequently a reasonable choice. Thus, the Lyapunov
regions will be ellipses determined by the matricesRp. Since
the condition|Kp x| ≤ umax has to be satisfied for allx ∈
Gp and should be exploited as good as possible, thecp in
(24) are chosen such that the hyperplanes±Kp x = umax

are tangent to the elliptical Lyapunov regions. In order to
determine thesecp we solve the optimization problem





max
Rp

xT Rp x

s.t. ±Kp x = umax

(27)

whose solution yields

cp =
u2

max

Kp R−1
p KT

p

. (28)

The largest Lyapunov regionG1 has to be determined such
thatX0 ⊆ G1, i.e. the first region includes all possible initial
states.

Finally, in a third step we verify that all regionsGp’s are
nested: if all points of interest satisfy

xT Rp x

cp
<

xT Rp+1 x

cp+1
< 1 (29)

then Gp+1 ⊂ Gp is ensured. To check whether (29) is true
or not it is sufficient to make sure that the matrices

Rp+1

cp+1
− Rp

cp
(30)

are positive definite forp = 1, . . . ,m− 1.

V. EXPLICIT MODEL PREDICTIVE CONTROL

Model Predictive Control(MPC) [4], also referred as
moving horizon controlor receding horizon control, is an
advanced control method that has become an attractive
feedback strategy, especially for linear and time-invariant
systems of the form (10) under the constraint (12), that are
those of interest here.

The basic idea of MPC is the following: at every time
step, the control action is chosen solving an optimal control
problem, minimizing a performance criterion over a future
horizon. Only the first control command will be applied
and after one time step other measurements will be got
and the optimization problem is repeated. This is an on-
line procedure and in many cases it is difficult (or even
impossible) to implement because the on-line solution of a
linear or quadratic program, depending on the performance
index, is required. Various MPC algorithms use different
cost functions to obtain the control action. In this paper we
consider the following standard form:

J(x(k), u(k), N) =
N∑

j=0

x(k + j)T Qx(k + j) + u(k + j)T Ru(k + j) (31)

whereQ andR are positive definite matrices.



The main limitation of the implicit MPC is that the com-
putations are executed on-line, so that it is only applicable
to relatively slow and/or small problems.

The eMPC approach is based on multiparametric program-
ming. It moves all the burdensome computations off-line
and partitions the state space into polytopic regions, so that
during the on-line phase of the control procedure according
to the current state the actual subcontroller can be found
out of a table. The on-line phase of the eMPC is similar to
that one of the other approaches presented above (OGS and
dVSC).

In this paper, in order to avoid repeating results already
published in other papers [3], [5] we do not provide details
on how the polytopic regions are computed. Moreover,
the eMPC controller can be computed using the Multi-
Parametric Toolbox called MPT [12], a free and user-friendly
MATLAB toolbox for design, analysis and deployment of
optimal controllers for constrained linear and hybrid systems.

As already pointed out by the authors in [3], [5], the main
drawback of the eMPC is that it may easily lead to controllers
with prohibitive complexity, both in runtime and solution.
In particular, there are three aspects which are important in
this respect: performance, closed-loop stability and constraint
satisfaction. The MPT toolbox provides several possibilities
to compute the controller and the partition of the state space,
which are specified below and that we have investigated.

— Finite Time Optimal Control (FTOC).This method
yields the finite time optimal controller, i.e. the performance
will be N -step optimal but may not be infinite horizon
optimal. The complexity of the controller depends strongly
on the prediction horizonN , the largerN the more complex
the controller is. Furthermore, within this method, the MPT
toolbox provides three different modes.
• probstruct:Tconstraint=0: The controller will

be defined over a superset of the maximum controllable set
(i.e. all states, which are controllable to the origin), but no
guarantees on stability or closed-loop constraint satisfaction
can be given. As the prediction horizonN is increased
the feasible set of states will converge to the maximum
controllable set from "the outside-in", i.e., the controlled set
will shrink as N increases.
Even though closed loop stability and constraint satisfaction
are not guaranteed, MPT provides a function to extract the
set of states which satisfy the constraints for all time and
another function to analyze these states for stability.
• probstruct:Tconstraint=1: The resulting con-

troller will guarantee stability and constraint satisfaction for
all time, but will only cover a subset of the maximum con-
trollable set of states. By increasing the prediction horizon,
the controllable set of states will converge to the maximum
controllable set from "the inside-out", i.e. the controlled set
will grow larger asN increases.

— Infinite Time Optimal Control (ITOC).This method
yields the infinite time optimal controller, i.e. the best
possible performance for the control problem. Asymptotic
stability and constraint satisfaction are guaranteed and the
maximum controllable set will be covered by the resulting

Fig. 2. The resulting partitions in the fourth-order case (cut through
x3 = x4 = 0). (a) FTOC,probstruct:Tconstraint=0 , N = 10,
557 regions; (b) FTOC,probstruct:Tconstraint=0 , N = 15, 1038
regions; (c) FTOC ,probstruct:Tconstraint=1 , N = 10, 2195
regions; (c) FTOC ,probstruct:Tconstraint=1 , N = 15, 3852
regions.

controller. However, the controller’s complexity may be
prohibitive and the computation may take a very long time.

Two other options are possible when designing the eMPC
controller using the toolbox MPT, namelyMinimum Time
Control and Low Complexity Control. However, we do not
discuss these cases here because we have not been able to
apply them to our application: in both cases the computation
did not finish in adequate times.

VI. A COMPARISON AMONG THE DIFFERENT

APPROACHES

In this section we compare the three control design meth-
ods above applying them to the suspension system illustrated
in Section II.

Following [8], we take:Mw = 28.58 Kg, Ms=288.90 Kg,
λt = 155900 N/m, λs = 14345 N/m. We assume the
sampling time equal toT = 0.01 s, to which it corresponds
the sampling frequencyωs = 2π/T ' 6 · 102 rad/s5.

We takeumax = 3000 N that is slightly less than the
total weight resting on one wheel. A control force of higher
magnitude may cause loss of contact between wheel and
road. Furthermore, this constraint also limits the acceleration
of the sprung mass and this is a necessary condition for the
comfort of passengers.

5This is essentially due to the following reasons. Firstly, the bandwidth
of the passive suspension system described by (3) isωb < 2 · 102 rad/s.
A sampling frequency ofωs ' 6 · 102 rad/s is in good agreement with
Shannon’s theorem [13] that requiresωs > 2ωb. Moreover, this choice
of sampling interval is consistent ensures that the system will maintain
the properties of controllability and observability. Finally, to changef
the controller must change the opening of the damper valve. Present
technologies impose a limit of about102 Hz on the updating frequency
of the damper coefficient.



Finally we choosef(k) ∈ [800, 3000] Ns/m.
For the OGS approach we consider two different cases.
— OGS (Case A) When dealing with the

fourth order model we assumeQ = [11 −
1 0 0; −1 1 0 0; 0 0 0 0; 0 0 0 0] and R = 0.8 · 10−9,
that lead to a good performance in terms of road holding
and passenger’s comfort. Finally, as in [8] we choose the
parametersρi’s as follows:ρ1 = 0.01, ρ2 = 0.1, ρ3 = 0.5,
ρ4 = 1, ρ5 = 4, ρ6 = 20, ρ7 = 50, ρ8 = 100, ρ9 = 1000,
ρ10 = 105. When dealing with the second order model we
assumeQ = [1 0; 0 0], R = 0.8 · 10−9, and ρ1 = 0.5,
ρ2 = 1, ρ3 = 4, ρ4 = 20, ρ5 = 50.

— In the case of the fourth-order model with dVSC con-
troller we assume the set of eigenvalues reported in Fig. 4.b.
The first set of eigenvalues in (26) was chosen according
to the closed loop eigenvalues of the OGS for the fourth
largest region, while the remaining four are chosen assuming
h = 1.5 in (26). In the case of the second-order model with
dVSC controller we assumeλ1,2 = −7.8224 ± 7.8224j,
h = 1.5 andm = 5.

— OGS (Case B)In order to obtain a more immediate
and meaningful comparison among the OGS and the dVSC
approach, we determined the feedback gain matrices for the
OGS controller such that the closed loop eigenvalues in the
OGS case are the discrete-time counterpart of the dVSC
closed loop eigenvalues. As an example, in the case of the
fourth order model, the closed loop eigenvalues are those
shown in Fig. 4.a. Note that the closed loop matrices obtained
in this manner do not guarantee that the Yoshida regions are
nested.

— For the eMPC we considered the same weighting
matrix on the states (Q) as in the OGS (Case A). The weight
on the input is taken equal to the weight on the input for the
OGS (Case A) divided byρmax, i.e.,ReMPC = R/ρmax. This
guarantees for both approaches the same level of optimality.

A. Some remarks on eMPC

In this section we highlight some problems we encoun-
tered when applying the eMPC to the fourth-order model.
Let us first observe that in order to reduce the run times we
determined the partition of the state space for the fourth-
order suspension model considering:X = {x ∈ R4 | |xi| ≤
1, i = 1, . . . , 4}.

In order to clarify which kind of problems we get into, we
reported in Fig. 2 some of the resulting partitions, where a
cut atx3 = x4 = 0 is done. The results relative to the FTOC
case withprobStruct. Tconstraint=0 are shown in
Fig. 2.a and b: increasing the prediction horizonN from
10 to 15 the controlled set converges towards the maximum
controllable set from the outside inwards. As expected the
partition in figure (a) cover a larger set than the partition in
figure (b).

The partitions for the FTOC employing
probStruct.Tconstraint=1 are illustrated in
Fig. 2.c and d forN = 10 and N = 15, respectively.
As mentioned above, by increasing the prediction horizon
N the controllable set should converge to the maximum

Fig. 3. Projection of the partition into thex1-x2-plane for the fourth-order
suspension system for the ITOC
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Fig. 4. Sets of designated eigenvalues for the fourth-order suspension
system (a) in the z-plane and (b) in the s-plane.h = 1.5

controllable set from the inside outwards. Clearly, this is
not occurring in this case because parts of the state space
that have been covered by the partition withN = 10 are not
covered by the partition obtained withN = 15. Thus, we
conclude that some numerical error should have occurred: it
is obviously not possible that a state is controllable under a
given prediction horizon, but does not maintain this property
after increasing the latter.

In the case of the ITOC the unfeasability of the result
is even more evident as illustrated in Fig. 3. Only very few
parts of the state space that were identified to be controllable
(see Fig. 2.c) are covered by the ITOC partition.

B. A comparison among partitions

Fig. 5 shows the different state space partitions in the case
of the second-order suspension model: the Yoshida regions
for the OGS (Case A) and (Case B) are depicted in Fig. 5.a
and b, respectively; figures c and d illustrate the regions
resulting from dVSC and eMPC, respectively.

Note that in order to limit the run times of the computation
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Fig. 5. Partition of the state space for the second-order model: (a) OGS
(Case A); (b) OGS (Case B); (c) dVSC; (d) eMPC.

of the polytopic regions employing eMPC we considered the
following bounded polyhedron for the second-order suspen-
sion model:X = {x ∈ R2 | |xi| ≤ 1, i = 1, 2}. Further-
more, we considered the FTOC with a prediction horizon
N = 10 and we setprobStruct.Tconstraint=1 to
obtain a controller that guarantees closed loop stability and
constraint satisfaction for all times.

By looking at Fig. 5 we realized that: the OGS regions are
those who cover the largest portion of the state space, while
the dVSC’s cover the smallest portion of the state space.
Then, also in Case B the OGS regions are nested, thus we
can use them to design a controller. Finally, we observe that
the eMPC regions are constrained in thex2-direction by the
assumptions we made in order to reduce the run time (i.e.,
x ∈ X), but also in thex1-direction they are smaller than
the OGS regions (Cases A and B).

Fig. 6 depicts a cut throughx3 = x4 = 0 of the partitions
obtained with the fourth-order model resulting from the OGS
(Case A) and the eMPC. Here the difference on the size of
two state space partitions is even more evident.

We have not reported here the regions obtained when
implementing the OGS (Case B) and the dVSC with the
the fourth-order model, because in the OGS case the regions
were not nested, and in the dVSC case they cover a too
small portion of the state space with respect to the nominal
operating conditions. Thus they are both useless for the
considered application.

Some important remarks should be done to interpret the
above results. In the dVSC case the size of the regions
depends onRp and therefore on the choice ofQp in the Lya-
punov equation. Becausecp, that determines the Lyapunov
regions, is a function ofR−1

p , the regions seem to be nearly
independent on the choice ofQp. As a consequence, we have
not been able to enlarge the Lyapunov regions significantly

Fig. 6. A cut atx3 = x4 = 0 of the regions obtained for the fourth-order
model: (a) OGS (Case A) (b) eMPC.

acting onQp.
Note that this problem cannot be overcome using soft VSC

rather than dVSC [2]. This is the reason why we do not go
on details of soft VSC in this paper.

In the eMPC case the size of the covered state space is
related to different issues, namely, the constraints on the
states (x ∈ X) we introduce to implement the procedure,
the options we choose (see the discussion above relative to
the setting of parameters in the MPT toolbox), and, in the
case of FTOC, the prediction horizonN .

As a result, we draw the following conclusions. (1) The
dVSC regions cover a very small subset of the state space
of interest, but the computational effort is very low. (2) The
OGS (Case A) seems to lead to the best results both in terms
of computational effort and in terms of dimension of the state
space partition. (3) The eMPC provides intermediate results
in terms of size of the state space partition, and is the hardest
in terms of computational complexity and implementation.

C. The control performance: second-order model

In the case of active suspensions we only present the re-
sults of numerical simulations carried out on the second order
model, because in such a case all the considered techniques
provide state space partitions that are large enough to deal
with realistic cases.

We computed the system’s evolution for the initial state
x0 = [0.01 0.1]T . The simulation results are summarized
in Fig. 7. We can observe that the OGS (Case A) and the
eMPC provide satisfactory results, and the system evolution
is practically the same in the two cases. On the contrary,
the results obtained with the dVSC controller are not so
satisfactory: this is due to the fact that it does not yield a good
exploitation of the maximal allowed control input. The OGS
controller (Case B) provides the best performance in terms
of sprung mass position, but its behaviour is less satisfactory
in terms of sprung mass velocity and acceleration. Finally,
in the right bottom graph of Fig. 7 we have pointed out the
variation of the index denoting the current region of the state
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Fig. 7. Active suspension and initial statex0 = [0.01 0.1]T .

space in the OGS cases (A and B) and in the dVSC case.
Here1 denotes the largest region and5 the smallest one.

D. The control performance: fourth-order model

In this section we compare the simulation results for the
fourth-order suspension model.

Assume that the initial state isx0 = [0.015 0.1 0 0]T .
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Fig. 8. Semiactive suspension withx0 = [0.015 0.1 0 0]T .

Fig. 8 shows the evolution of the semiactive suspension
system compared to that of the active suspension. Again
the OGS and the eMPC performances are very similar as
the states at each time instant only differ in the order of
magnitude of|xi,OGS − xi,eMPC| ≈ 10−10. In the bottom
left of Fig. 8 we have reported the evolution of the target
control laws computed with the OGS and the eMPC, and
the control laws that are "really" applied to the system
by the semiactive suspension when appropriately adjusting
the damping coefficientf (whose variation is shown in the
bottom right of Fig. 8).

VII. C ONCLUSIONS

In this paper we deal with the problem of designing a
semiactive suspension system for car vehicles. To this aim
we considered three different techniques, namelyoptimal
gain switching, discontinuous VSC andexplicit MPC. All
these approaches are based on the computation of an off-line
partition of the state space. To each convex region a linear
or an affine control law is associated, and the on-line phase
of the approaches simply consists in selecting the current
region. A detailed comparison among these techniques is
provided, both in terms of magnitude of the resulting state
space partitions, and in terms of the system behaviour. As
a result, in this application the OGS controller proved to
be the most effective of the three approaches in terms of
performance, applicability and computational complexity.
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