
Identification of unbounded Petri nets
from their coverability graph∗

Maria Paola Cabasino, Alessandro Giua, Carla Seatzu

Dip. Ingegneria Elettrica ed Elettronica, Università di Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy.

Email: {cabasino,giua,seatzu}@diee.unica.it

Abstract

We solve the following problem: given an automaton that represents the coverability
graph of a net, determine a net system whose coverability graph is isomorph to the automa-
ton. Our approach requires solving an integer programming problem whose set of unknowns
contains the elements of the pre and post incidence matrices and the initial marking of the
net.

1 Introduction

In this paper we consider the problem of identifying a Petri net system 〈N, M0〉, where N is the
net structure and M0 the initial marking, from the knowledge of its coverability graph (CG).
More precisely, we present a procedure that given a CG G determines a net system whose CG
is isomorphic to G.

Some original approaches to the identification of a Petri net have been reviewed in [4].
Among them we recall: [5] on safe Petri nets; [8] on Interpreted Petri nets; [2] dealing with
logical constraints; and [1] on the theory of regions.

In our previous work on this topic [4], we presented an approach based on integer program-
ming to identify a net.

Here we turn our attention to identify unbounded Petri nets. In this case, the language of
the net may not be regular and thus it may not be representable using a finite automaton.

A standard technique for the analysis of unbounded nets consists in the construction of a
CG [7]. Consider the simple motivating example in Figure 1.(a) that represents an unbounded
queue: t1 represents the arrival of the customers, t2 the departure of the customers after service.
In (b) we have represented the (infinite) reachability graph of the net that describes all possible
firing sequences. In (c) we have represented the (finite) CG of the net, where a component
labeled ω denotes a place whose token content can grow unbounded.

It is well know that the CG is an automaton that generates a language that is a superset
of the net language. As an example, the CG in the figure generates the firing sequences t1 and
t1t2 but also strings of the form t1t

k
2 with k ≥ 2 that are not firing sequences of the net.

Secondly, we observe that the CG contains structural information on the net that goes beyond
the language. The first type of structural information concerns the existence of ω-increasing
productions: observing the graph one can see that production π : q0t1q1 yields a marking with

∗Published as: M.P. Cabasino, A. Giua, C. Seatzu, ”Identification of unbounded Petri nets from their cover-
ability graph,” CDC06: 45th IEEE Conf. on Decision and Control (San Diego, CA, USA), Dec 2006.

1

(b)
t2

t1
[1 0 1] [1 1 1]

t2

t1
[1 2 1]

t2

t1
…

p3 p2p1

t2t1

(a)

t1,t2

[1 0 1]
t1

[1 ω 1]

(c)

q0 q1

Figure 1: A motivating example.

a number of ω components greater than that of its predecessor. The second type of structural
information concerns the existence of ω-stationary productions: one can see that production
π′ : q1t2q1 does not increase the number of ω components and keeps the token content of all
other places constant. It is important to stress that this information can be extracted from the
unlabeled graph, i.e., from a graph obtained from the one in Figure 1.(c) removing the labels
[1 0 1] and [1 ω 1].

Since on one hand the language of a CG does not exactly characterize the net language,
but on the other hand the graph contains structural information on the net, we believe it is
meaningful in the case of unbounded nets to solve the following problem.

• Problem 3 : given an automaton G that represents the CG of a net, determine a net system
〈N,M0〉 whose CG is isomorph to G.

This problem is solved in this paper using an approach based on integer programming. It
is well known that integer programming has exponential complexity and it gets harder as the
number of integer variables increases. A discussion of the complexity of our approach in terms of
number of binary variables and constraints can be found in [3, 4]: since most of the constraints
we use in these papers are similar to those used in [3, 4], for sake of brevity we omit this
discussion.

Methods based on integer programming have often been frowned upon within the control
community. We agree that these methods are unpractical for on-line control computation.
However, when used off-line they represent a precious tool and as such they are routinely used
to solve large scale problems in all application areas of operations research [10] and several
commercial software packages are readily available.

2 Background

In this section we recall the formalism used in the paper. For more details on Petri nets we
address to [9].

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of
m places; T is a set of n transitions; Pre : P × T → N and Post : P × T → N are the pre–
and post– incidence functions that specify the arcs; C = Post− Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each place of a P/T net a non–negative
integer number of tokens, represented by black dots. We denote M(p) the marking of place p.
A P/T system or net system 〈N, M0〉 is a net N with an initial marking M0.

A transition t is enabled at M iff M ≥ Pre(· , t) and may fire yielding the marking M ′ =
M + C(· , t). We write M [σ〉 to denote that the sequence of transitions σ is enabled at M , and
we write M [σ〉 M ′ to denote that the firing of σ yields M ′.

A marking M is reachable in 〈N, M0〉 iff there exists a firing sequence σ such that M0 [σ〉 M .
In such a case it holds: M = M0 + C · ~σ, where ~σ ∈ Nn denotes firing vector (i.e., the Parikh

vector) of sequence σ. The set of all markings reachable from M0 defines the reachability set of
〈N, M0〉 and is denoted R(N, M0).

Given a Petri net system 〈N,M0〉 we define its language as the set of its firing sequences
L(N, M0) = {σ ∈ T ∗ | M0[σ〉}.

Definition 2.1 A sequence σ ∈ T ∗ is called repetitive if there exists a marking M ∈ R(N, M0)
such that

M1[σ〉M2[σ〉M3[σ〉 · · · (1)

i.e., if it can fire infinitely often starting from M1. It is possible to distinguish two different
types of repetitive sequences:

• stationary sequence: if in (1) it holds Mi = Mi+1 for all i = 1, 2,

• increasing sequence: if in (1) it holds Mi �Mi+1 for all i = 1, 2,

¥

There exists a simple structural condition to characterize repetitive sequences.

Fact 2.2 If sequence σ is enabled at M1, a necessary and sufficient condition for being repetitive
is that in (1) it holds Mi ≤ Mi+1 for all i = 1, 2, . . . , or equivalently C · ~σ ≥ ~0.

Furthermore if C · ~σ = ~0 the sequence is stationary, else if C~σ
 ~0 it is increasing. ¥

3 Coverability graph and properties

One technique used for the analysis of unbounded Petri nets is based on the construction of the
coverability tree/graph (see also [9]).

Algorithm 3.1 Construction of the coverability tree for 〈N,M0〉.
1. Label the root node q0 with the initial marking M0 and tag it ”new”.

2. While a node tagged ”new” exists do

(a) Select a node q tagged ”new” and let M be its label.

(b) For all t enabled at M :

i. Let M ′ = M + C(·, t) be the marking reached from M firing t.
ii. Let q̄ be the first node met on the backward path from q to q0 whose label is

M̄ � M ′. If such a node exists then for all p ∈ P such that M ′(p) > M̄(p) let
M ′(p) = ω.

iii. Add a new node q′ and label it M ′.
iv. Add an arc labeled t from q to q′.
v. If there exists already in the tree a node with label M ′, then tag node q′ ”dupli-

cate”, else tag it ”new”.

(c) Untag node q. ¥

From the coverability tree (CT) one can obtain the CG by fusing duplicate nodes with the
untagged node with the same label: one can always convert a CT in a graph and viz.

In the construction of the CT the existence of a sequence σ that leads from a marking M̄
to a greater marking M ′ is identified at step 2.(b).ii. The components that by the repeated
firing of such a sequence σ grow unbounded are denoted with a special symbol ω that represents
infinity1.

Note that if M̄ contains no ω components then σ is an increasing sequence. However, if M̄
contains ω components we can only say that σ is increasing for all places p such that M̄(p) < ω:
nothing can be said for the remaining places.

Definition 3.2 Let us now consider a node q′ labeled with a marking M ′ that has one or more
components changed to ω at step 2.(b).ii of Algorithm 3.1. With the notation used in step
2.(b).ii, we also denote q̄ the node covered by q′ and q the node father of q′.

• Node q′ is called an ω-increasing node and the corresponding marking is called an ω-
increasing marking.

• The production associated to the path on the graph

π : q̄
σ′−→ q

t−→ q′ (2)

is called an ω-increasing production.

• We also define for any production of the form in eq. (2): ν(π) the set of all nodes of the
production, s(π) = q̄ the start node of the production, l(π) = q the last-but-one node,
e(π) = q′ the end node, and `(π) = σ′t the corresponding sequence. ¥

Example 3.3 Let us consider the net in Figure 2.(a), whose CT is given in Figure 2.(b). The
CG is shown in Figure 2.(c). This net and the successive ones do not have a particular physical
meaning; we only use them to demonstrate properties of interest.

Sequence t1t2 is a repetitive sequence that from M0 = [1 0 0]T yields [1 0 1]T increasing the
marking of place p3: hence in the CG we have an ω-increasing production π : q0t1q1t2q2 that
from s(π) = q0 leads to node e(π) = q2 with label M2 = [1 0 ω]T .

Sequence t3 from [1 0 ω]T yields [1 ω ω]T increasing the marking of place p2: hence in the
CG we have an ω-increasing production π : q2t3q4 that from s(π) = q2 leads to node e(π) = q4

with label M4 = [1 ω ω]T (in this case l(π) = s(π)). Note that although t3 is an ω-increasing
sequence, it is not a repetitive sequence because it decreases the marking of place p3. ¥

Now, let us show how it is possible to recognize those markings that are ω-increasing and
the corresponding ω-increasing productions.

Proposition 3.4 In a CG G of a Petri net a node q′ is ω-increasing and π is the corresponding
ω-increasing production if and only if there exists in the graph a node q̄ 6= q′ such that:

s(π) = q̄, e(π) = q′

and there exists another production π′ such that:

s(π′) = e(π′) = q′, `(π) = `(π′) = σ, ν(π) ∩ ν(π′) = q′.

Proof. As explained in the construction of the CT, a node q′ is labeled by an ω-increasing
marking M ′ if and only if there exists a node q̄ labeled by a smaller marking M̄ and a sequence σ

1For all n ∈ N it holds ω > n and ω ± n = ω.

t1

t2

p2

p1

p3

(a)

t3 t4

dup

t3,t4

[1 0 0] [0 1 0] [1 0 ω] [0 1 ω] [1 0 ω]
t1 t2 t1 t2

t3,t4

[1 ω ω] [0 ω ω]

t2 t2

[ω ω ω] [ω ω ω]

[0 ω ω]t3,t4 dup

dup

(b)

[1 ω ω]

t1,t2,t3,t4
[0 ω ω]

dup

t1

t3,t4

dup

[ω ω ω]

dup

t3,t4
q0 q1 q2 q3

t1 t2 t1

t2 t3,t4

q4 q5

t1,t2,t3,t4

t3,t4t1(d)

q6

t3,t4
t2 t2

t3,t4

[1 0 0] [0 1 0] [1 0 ω] [0 1 ω]
t1 t2 t1

t2 t3,t4
[1 ω ω] [0 ω ω]

t1,t2,t3,t4

t1

(c)

t3,t4

[ω ω ω]

t3,t4

t2 t2

Figure 2: Net in Example 3.3.

such that M̄ [σ〉M̄ ′ where M̄ � M̄ ′ and M ′(p) = ω for all those places p such that M̄ ′(p) > M̄(p),
and M ′(p) = M̄ ′(p) for all those places such that M̄ ′(p) 6= ω. Now since σ is enabled at M̄ it
is also enabled at the greater marking M ′; however since its firing does not change the marking
of a place p such that M ′(p) < ω, its firing from M ′ leads back to M ′. Finally, we observe that
π is ω−increasing iff e(π) (hence2 all nodes in ν(π′)) contains at least one more ω−component
with respect to all nodes in ν(π) \ e(π); this implies that ν(π) ∩ ν(π′) = e(π). ¤

This result enables us to introduce the following notation.

• O is the set of all ω-increasing markings,

• Π is the set of ω-increasing productions,

• Πk is the set of ω-increasing productions that end in qk.

Example 3.5 From the graph in Figure 2.(d) we recognize the following nodes as associated to
ω-increasing markings:

• q2. With the notation used in the proof of the previous proposition, q̄ = q0 and the corre-
sponding ω-increasing production is π = q0t1q1t2q2.

• q4 (resp., q5). Here q̄ = q2 (resp., q̄ = q3) and the two corresponding ω-increasing produc-
tions are π = q2t3q4 or π′ = q2t4q4 (resp., π = q3t3q5 or π′ = q3t4q5).

• q6. We have two choices for q̄: q̄ = q4 and q̄ = q5. The corresponding ω-productions are
π = q4t2q6 and π′ = q5t2q6. ¥

4 Equivalence classes

In this section we introduce some equivalence classes that will be useful in the identification
procedure.

Definition 4.1 (Set of ω components) Given a node q of a CG we define

Ω(q) = {p ∈ P | q is labeled with M,M(p) = ω}
the set of places associated to ω components in node q. ¥

The set of ω components induces two relations on the nodes of a CG.

Definition 4.2 Given two nodes q and q′ we say that:

• q ≡ q′ if Ω(q) = Ω(q′).

• q ¹ q′ (resp., q ≺ q′) if Ω(q) ⊆ Ω(q′) (resp., Ω(q) (Ω(q′)). ¥

One can immediately verify that the first one is an equivalence relation while the second one
is a partial order relation. It is thus possible to partition the set of nodes according to the
equivalence classes of ≡ and to order them according to ≺.

Our identification procedure requires at first to partition the nodes of the graph into equiv-
alence classes for the ≡ relation (we call this partition Q) and to order them. We first observe
that although the unlabeled graph does not contain enough information to exactly reconstruct
such a partition, it allows one to determine a partition Q̂ that refines3 Q.

2This result is formally proved by Proposition 4.4.
3Partition Q̂ refines partition Q iff for all q it holds Q̂[q] ⊆ Q[q], where Q[q] denotes the class that contains q.

p2

2

2

t4

t3

t2

t1

p3

p2

p1

(a)

p4

t4

t3

t2

t1

p3

p1

(b)

t3 t4

t3

[0 0 1][0 1 0]
t4

t2

[0 0 ω][0 ω 0]

[1 0 0]
t1

(c)

t4

t3 t4

t3

[0 0 1 0][0 1 0 0]

t2

[0 0 1 ω][0 1 0 ω]

[1 0 0 0]
t1

(d)

q0

 t3

(e)

q3 q4

 t4

t3

 q1

t4

t2t1

q2

Figure 3: Nets in Example 4.3.

Example 4.3 Let us consider the nets in Figures 3.(a) and (b). The CG of these nets are
given in (c) and (d), respectively, while the unlabled graph is reported in (e) and is the same
in the two cases. In the case of the net in Figure 3.(a) the equivalence classes are: Q0 =
{q0, q1, q2}, Q1 = {q3}, Q2 = {q4}, while in the case of the net in Figure 3.(b) the equivalence
classes are: Q0 = {q0, q1, q2}, Q1 = {q3, q4}.

Thus in this case we cannot exactly reconstruct the equivalence classes by simply looking at
the unlabeled graph. In particular, our algorithm always finds the final partition of the CG of
the net in Figure 3.(a), that is a refinement of the CG of the net in Figure 3.(b). ¥

The following elementary observation also holds.

Proposition 4.4 Let us consider two nodes qi and qj such that

qi
t−→ qj

then the following results hold:

(i) qi ¹ qj ,

(ii) qi ≺ qj iff ∃ π ∈ Πj and l(π) = qi.

Proof. (i) Assume nodes qi and qj are labeled, respectively, M and M ′. In the construction
of the CT whenever a marking M is such that M(p) = ω, then the firing of an enabled transition
t from M leads to M ′ = M + C(·, t), hence M ′(p) = M(p) + C(p, t) = ω + C(p, t) = ω.

(ii) Follows from the fact that an ω is introduced in the graph only by an ω-increasing
production. ¤

This means that along any path of a CG the nodes that one encounters are ordered with
respect to (wrt) ¹. Moreover, the number of ω-components only increases when reaching an
ω-increasing marking from an ω-increasing sequence.

We can finally state the procedure to partition an unlabeled CG in equivalence classes. In
the following algorithm we will say that given two subsets of nodes Q̂i and Q̂j (with i 6= j) the
following predicate holds:

• c(i, j): if there exist two nodes q′ ∈ Q̂i and q′′ ∈ Q̂j such that δ(q′, t) = q′′ for some
transition t ∈ T and it does not exist an ω-increasing production π ∈ Π such that l(π) = q′

and e(π) = q′′.

Algorithm 4.5 Partition of an unlabeled coverability tree

1. Consider an initial partition of the graph in strongly connected components,

Q̂0 ∪ Q̂1 ∪ · · · ∪ Q̂k

where Q̂0 is the component containing the initial node q0 and k + 1 is the number of such
components.

2. While there exist Q̂i and Q̂j such that c(i, j) do merge Q̂i and Q̂j.

3. The final partition is
Q̂0 ∪ Q̂1 ∪ · · · ∪ Q̂r, r ≤ k.

¥

Example 4.6 Consider the graph in Figure 2.(d). The initial partition is Q̂0 = {q0}, Q̂1 = {q1},
Q̂2 = {q2, q3}, Q̂3 = {q4}, Q̂4 = {q5} and Q̂5 = {q6}.

At step 2 of the algorithm we merge Q̂0 with Q̂1 and Q̂3 with Q̂4. The resulting final
partition is Q̂0 = {q0, q1}, Q̂1 = {q2, q3}, Q̂2 = {q4, q5}, Q̂3 = {q6}. ¥

In the previous example the algorithm determines the exact partitionQ in equivalence classes.
In general the following result holds.

Proposition 4.7 The partition Q̂ determined by Algorithm 4.5 is a refinement of the partition
Q in equivalence classes for the ≡ relation.

Proof. We first note that the initial partition refinesQ. In fact, according to Proposition 4.4.i
if two nodes qk and qj belong to the same strongly connected component, then qk ¹ qj and
qj ¹ qk, hence qk ≡ qj .

Secondly, we observe that the classes that are merged at step 2 of the algorithm belong
to the same equivalence class being joined by a transition that is not the terminal path of an
ω-increasing production, hence no component is changed to ω according to Proposition 4.4.ii. ¤

We finally introduce the notion of ω-stationary sequence.

Definition 4.8 A sequence σ is ω-stationary wrt P ′ ⊆ P if C · ~σ ↑P ′= ~0. ¥

Proposition 4.9 In a CG G of a Petri net, a production π with s(π) = q corresponds to a
sequence ω-stationary wrt Ω(q) iff e(π) = q.

Proof. Follows from the previous definition, because a sequence σ is ω-stationary wrt Ω(q)
if and only if it does not modify the token content of places that are not associated to ω
components, i.e., if and only if e(π) = q. ¤

A production π such that σ = `(π) is a stationary sequence, is an ω-stationary production.
However, there may also exist ω-stationary productions that do not correspond to stationary
sequences.

Example 4.10 Let us consider the net in Figure 2. Here σ = t3 is an ω-stationary sequence
wrt Ω(q4) = Ω(q5) = {p2, p3} and wrt Ω(q6) = {p1, p2, p3}. The firing of t3 from any of these
nodes corresponds to a cycle.

¥

5 Synthesis of a PN system from its unlabeled coverability graph

Problem 5.1 Let G = (Q,T, δ, q0) be a given finite state automaton. Chosen a set of places P of
cardinality m, we want to identify the structure of a free-labeled Petri net N = (P, T, Pre, Post)
and an initial marking M0 such that the CG of 〈N, M0〉 is isomorphic to G.

The unknowns we want to determine are the elements of the two matrices Pre, Post ∈ Nm×n

and the elements of the vector M0 ∈ Nm. ¥

In this section we provide a set of linear algebraic constraints and we prove that a net system
〈N, M0〉 is a solution of Problem 5.1 iff it satisfies the given set of constraints. The proof will
be mostly discursive, in the sense that we explain the meaning of each type of constraints.

In the previous section we have characterized the information on the net that can be extracted
from the CG in terms of its language and of ω-increasing and ω-stationary sequences. However,
to ensure that the synthesized net has a CG isomorphic to the given one, it is also necessary to
impose two additional types of constraints.

The first type of constraints requires that if in the graph two sequences σk and σ′k lead to
the same node qk, then for all places p 6∈ Ω(qk) it should hold

M0(p) + C(p, ·) · ~σk = M0(p) + C(p, ·) · ~σ′k. (3)

To do this we introduce the following definition.

Definition 5.2 Given a node qk ∈ Q we denote πk a minimal4 production starting from q0 and
ending in qk. We also denote σk = `(πk) the associated sequence and ~σk the corresponding firing
vector, that will be used to represent the marking Mk = M0 + C · ~σk associated to node qk.

Sequence σk will be used to identify node qk while other sequences σ′k yielding the same
marking will have to satisfy (3).

The second condition is the dual of the previous one. Assume that the graph contains two
nodes qk and qj that are equivalent in the sense that all productions that start from them cannot
be distinguished neither in terms of language nor in terms of ω-increasing nor of ω-stationary
sequences. To make sure that in the graph of the synthesized net these two nodes are not
collapsed into a single one, we need to specify that either the two nodes belong to two different
classes, i.e., Ω(qk) 6= Ω(qj), or they differ for at least a component different from ω, i.e., there
exists p 6∈ Ω(qk) ∪ Ω(qj) such that

M0(p) + C(p, ·) · ~σk 6= M0(p) + C(p, ·) · ~σj . (4)

The nodes that must be distinguished are the nodes that satisfy the following notion of
bisimilarity.

Definition 5.3 Given a finite state automaton G = (Q,T, δ, q0). Let q, q′ ∈ Q. We say that q
is simulated by q′ if the following conditions hold.

• (Language equivalence.) δ(q, σ) is defined ⇒ δ(q′, σ) is defined, for any σ ∈ T ∗.

• (ω-increasing equivalence.) If π1 is a production and π2 is an ω-increasing production
such that s(π1) = q and e(π1) = s(π2) ⇒ there exists a production π′1 and an ω-increasing
production π′2 such that s(π′1) = q′, e(π′1) = s(π′2), `(π1) = `(π′1) and `(π2) = `(π′2).

4By minimal we mean that the production does not contain twice the same node. More than one such
production may exist: we arbitrarily chose one.

[1 0]

[0 0] [0 1]

t1 t2

(b) (a)

p1

t2

t1 t1 t2

(c)

q0

q1 q2

Figure 4: The resulting net in Example 5.4.

• (ω-stationary equivalence.) If π1 is a production and π2 is an ω-stationary production
such that s(π1) = q and e(π1) = s(π2) ⇒ there exists a production π′1 and an ω-stationary
production π′2 such that s(π′1) = q′, e(π′1) = s(π′2), `(π1) = `(π′1) and `(π2) = `(π′2).

We say that q, q′ ∈ Q are bisimilar if q is simulated by q′ and q′ is simulated by q. ¥

Example 5.4 Let us consider the net system in Figure 4.(a) whose CG is shown in (b), while
the unlabeled graph is reported in (c). It is immediate to verify that nodes q1 and q2 are bisimilar.
¥

We finally introduce the notation to describe enabling and disabling of transitions following
[4].

• E = {(q, t) ∈ Q× T | δ(q, t) is defined} is the set of couples (state q – transition t) such
that t is enabled at the state q of G.

• D = {(q, t) ∈ Q × T | δ(q, t) is not defined} is the set of couples (state q – transition t)
such that t is not enabled at the state q of G.

The following theorem characterizes the set of solutions to Problem 5.1.

Theorem 5.5 A net system 〈N, M0〉 is a solution of the identification problem 5.1 if and only
if it satisfies the following linear algebraic constraints.

(a) Enabling constraints: ∀ (qk, tj) ∈ E let

M0 + C · ~σk + K · ~sc(k) ≥ Pre · ~εj

where ~εj is the j-th canonical basis vector and ~σk is chosen as in Definition 5.2.

(b) Constraints related to ω-increasing sequences: ∀ qk ∈ O and ∀ π ∈ Πk let




C · ~σ − ~sc(k) + K · ~sc(i) ≥ ~0 (b1)
−C · ~σ + K · ~sc(k) ≥ ~0 (b2)
~sc(k) ≥ ~sc(i) (b3)
~1T · ~sc(k) > ~1T · ~sc(i) (b4)

where ~σ is the firing vector associated to the generic production π and qi = l(π).

(c) Constraints related to ω-stationary sequences: ∀i = 0, 1, . . . , r and ∀~σ ∈ Si ={~σ ∈ Nn |
∃π : ν(π) ⊆ Q̂i, s(π) = e(π), `(π) = σ}

{
C · ~σ + K · ~si ≥ ~0 (c1)
−C · ~σ + K · ~si ≥ ~0 (c2)

where Si is the set of firing vectors corresponding to cycles in component Q̂i.

(d) Blocking constraints: ∀ (qk, tj) ∈ D let




M0 + C · ~σk −K · ~sk,j < Pre · ~εj (d1)
~1T · ~sk,j ≤ m− 1 (d2)
~sk,j ≥ ~sc(k) (d3)

(e) Equivalence constraints: Assume that the minimal production reaching qk, as in Defini-

tion 5.2, is πk = q0 −→ · · · −→ qr(k)

tr(k)−→ qk. Then we define I(qk) = {(q, t) | q
t−→

qk ∧ (q, t) 6= (qr(k), tr(k))}. In other words I(qk) is the set of couples (state q - transition t)
that lead to qk except the couple (qr(k), tr(k)) that has already been considered in constraints
(a).

∀(qi, t) ∈ I(qk) let

{
C · ~σk − C · ~σ + K · ~sc(k) ≥ ~0 (e1)
−C · ~σk + C · ~σ + K · ~sc(k) ≥ ~0 (e2)

where σ = σit, and σi is the sequence associated to node qi, as in Definition 5.2.

(f) Discriminating constraints: for all bisimilar nodes qk, qj that belong to the same equiva-
lence class Q̂i, let 




C · ~σk − C · ~σj + K ·~lj,k ≥ ~1 (f1)
C · ~σk − C · ~σj −K ·~lk,j ≤ −~1 (f2)
~1T ·

(
~lj,k +~lk,j

)
≤ 2m− 1 (f3)

~lj,k, ~lk,j ≥ ~si (f4)
~lk,j , ~lj,k ∈ {0, 1}m (f5)

(g) Discriminating constraints: for all bisimilar nodes qk, qj that belong to equivalence classes
among which an ordering does not exist, let





~sc(k) − ~sc(j) + K · ~vj,k + K · z1 ·~1 ≥ ~1 (g1)
~sc(k) − ~sc(j) −K · ~vk,j + K · z1 ·~1 ≤ −~1 (g2)
C · ~σk − C · ~σj + K ·~lj,k + K · z2 ·~1 ≥ ~1 (g3)
C · ~σk − C · ~σj −K ·~lk,j −K · z2 ·~1 ≤ −~1 (g4)
~1T · (~vj,k + ~vk,j) ≤ 2m− 1 (g5)
~1T ·

(
~lj,k +~lk,j

)
≤ 2m− 1 (g6)

~lj,k, ~lk,j ≥ ~sc(k) (g7)
~lj,k, ~lk,j ≥ ~sc(j) (g8)
~lk,j , ~lj,k, ~vk,j , ~vj,k ∈ {0, 1}m (g9)
z1 + z2 ≤ 1 (g10)
z1, z2 ∈ {0, 1} (g11)

(h) Integrity constraints.




M0 ∈ Nm (h1)
C = Post− Pre (h2)
Pre, Post ∈ Nm×n (h3)
~si ∈ {0, 1}m, ∀ Q̂i (h4)
~sk,j ∈ {0, 1}m, ∀ (qk, tj) ∈ D (h5)

In the following we denote as C(G, P) the set of constraints (a) to (h) associated to the unlabeled
graph G and to the set of places P .

Proof. We just present a sketch of the proof.
• Constraints (a). To each equivalence class Q̂i we associate a vector ~si ∈ {0, 1}m such that

si(p) = 1 ⇔ ∀ q ∈ Q̂i, p ∈ Ω(q).
If (qk, tj) ∈ E , then the marking Mk = M0 + C · ~σk is such that Mk(p) ≥ Pre(p, t) for all p

such that sc(k)(p) = 0. On the contrary, if sc(k)(p) = 1 regardless of the value of Mk(p), tj is
enabled.

• Constraints (b). Let qk be any node in O, π a production in Πk, and qi = l(π).
We first observe that if there exists a place p ∈ Ω(qi), then by Proposition 3.4 p ∈ Ω(q) for

any q ∈ Q̂c(k). Thus, ~sc(i) ≥ ~sc(k).
Therefore, if sc(i)(p) = 1 then sc(k)(p) = 1, and constraints (b1) and (b2) are trivially verified.
If sc(i)(p) = 0 it may either be sc(k)(p) = 0 or sc(k)(p) = 1. In the first case the firing of the

sequence associated to π does not increase the token contents of p as imposed by constraints
(b1) and (b2). In the second case, it must hold C(p, ·) · ~σ > 0 that is equivalent to impose
constraint (b1), while (b2) is trivially verified.

• Constraints (c). Let π be a production whose characteristic vector is in Si, namely a
production relative to an ω-stationary sequence for Q̂i.

By definition π should not change the content of all places p ∈ Ω(q) for any q ∈ Q̂i, while no
constraint should be imposed on the other places. This is actually the meaning of constraints
(c). In fact, if si(p) = 0, then C(p, ·) · ~σ = 0; if si(p) = 1, then constraints (c) are trivially
verified.

• Constraints (d). If transition tj is not enabled at Mk = M0 + C · ~σk, then for at least one
place p it must hold Mk(p) < Pre · ~εj .

We now define a vector ~sk,j ∈ {0, 1}m such that sk,j(p) = 0 ⇔ Mk(p) < Pre · ~εj .
Assume that each component of Mk is less or equal to K. Then the component of ~sk,j

relative to the generic place p must satisfy the equation

Mk(p)−K · sk,j(p) < Pre · ~εj , (5)

so that if sk,j(p) = 0 it must hold Mk(p) < Pre · ~εj , while if sk,j(p) = 1, equation (5) is trivially
verified. In vector form (and taking into account that all variables are integers) this equation
rewrites as (d1).

Note that there exists at least one place that disables tj if ~1T · ~sk,j ≤ m− 1 so that at least
one sk,j(p) is null.

Finally, the constraint ~sk,j ≥ ~sc(k) imposes that, if sc(k)(p) = 1 then sk,j(p) = 1. That is to
say , tj cannot be disabled by a place p ∈ Ω(qk).

• Constraints (e). Assume that there exists a production π that, as πk, reaches node qk

from q0. Assume also that π = q0 −→ . . . −→ qi
t−→ qk with (qi, t) ∈ I(qk). Then for all places

p /∈ Ω(qk) it should be C(p, ·) · ~σk = C(p, ·) · ~σ, while for the other places no relationship can
be deduced from the CG. This is exactly the meaning of constraints (e1) and (e2). In fact, if
sc(k)(p) = 0, then C(p, ·) · ~σk = C(p, ·) · ~σ; otherwise we get two constraints that are trivially
verified.

• Constraints (f). Let qk and qj be two nodes that are bisimilar and that belong to the same
equivalence class Q̂i. To distinguish between these nodes we impose that there exists at least
one place p, to which it does not correspond ω in Q̂i, such that C(p, ·) · ~σk 6= C(p, ·) · ~σj .

We define two vectors ~lk,j , ~lj,k ∈ {0, 1}m such that ~lk,j , ~lj,k ≥ ~si.
If lj,k(p) = lk,j(p) = 1 constraints (f1) and (f2) are trivially verified, and this occurs for all

places p ∈ Ω(qk) = Ω(qj) being ~lj,k, ~lk,j ≥ ~si. If lj,k(p) = 1 and lk,j(p) = 0 then C(p, ·) · ~σk ≤
C(p, ·) · ~σj − 1. If lk,j(p) = 1 and lj,k(p) = 0 then C(p, ·) · ~σk ≥ C(p, ·) · ~σj + 1.

Note that one of the above two cases always occur being by (f3), ~1T ·
(
~lj,k +~lk,j

)
≤ 2m− 1.

• Constraints (g). Let qk and qj be two nodes that are bisimilar and that belong to equiv-
alence classes among which an ordering does not exist. To distinguish between these nodes we
impose that at least one of the following conditions hold: (I) qk and qj differ in a place not
containing ω, (II) Ω(qk) 6= Ω(qj), i.e., ~sc(k) 6= ~sc(j).

Now, being z1 + z2 ≤ 1, with z1, z2 ∈ {0, 1}, three different cases may occur: z1 = 1 and
z2 = 0, z1 = 0 and z2 = 1, z1 = z2 = 0.

— Assume that z1 = 1 and z2 = 0. In such a case constraints (g1) and (g2) are trivially
verified, and the only significant constraints are (g3), (g4), (g6) to (g8) that are analogous to
constraints (f): they impose that qk and qj differ in a place not containing ω (case (I) above).

— Assume that z1 = 0 and z2 = 1. In such a case constraints (g3) and (g4) are trivially
verified, and the only significant constraints are (g1), (g2) and (g5). Using the same reasoning
as above, it is easy to verify that these constraints impose that sc(k)(p) 6= sc(j)(p) for at least
one place p ∈ P (case (II) above).

— Assume that z1 = z2 = 0. In such a case no constraint in (g) is trivial, thus qk and qj

have ω in different places, and they also differ in some place not containing ω. ¤

Example 5.6 Let us consider the unlabeled graph G in Figure 2.(d). We want to determine a net
system 〈N, M0〉 with N = (P, T, Pre, Post) and m = 3, whose reachability graph is isomorphic
to G. In particular, we want to minimize the tokens in the initial marking and the arc weights.

The set of ω-increasing nodes is O = {q2, q3, q4, q5, q6}. The set of ω-increasing productions
that ends in q2 is Π2 = {π2}, with `(π2) = t1t2. Then Π4 = {π′4, π′′4}, with `(π′4) = t3 and
`(π′′4) = t4; Π5 = {π′5, π′′5}, with `(π′5) = t3 and `(π′′5) = t4; Π6 = {π6} with `(π6) = t2.

We only have ω-stationary productions associated to the equivalence class Q3 = {q6} and
the set of firing vectors is S6 = {~σ′6, ~σ′′6 , ~σ′′′6 } where σ′6 = t1, σ

′′
6 = t3, σ

′′′
6 = t4. Then, E =

{(q0, t1), (q1, t2), (q2, t1), (q2, t3), (q2, t4), (q3, t2), (q3, t3), (q3, t4), (q4, t1), (q4, t2), (q4, t3), (q4, t4), (q5, t2), (q5, t3),
(q5, t4),
(q6, t1), (q6, t2), (q6, t3), (q6, t4)}, and D = {(q0, t2), (q0, t3), (q0, t4), (q1, t1), (q1, t3), (q1, t4), (q2, t2),
(q3, t1), (q5, t1)}.

Moreover, the set of firing vectors associated to minimal sequences that enable to reach
the different nodes of the graph are: Σ1 = {~ε1}, Σ2 = {~ε1 + ~ε2}, Σ3 = {2~ε1 + ~ε2}, Σ4 =
{~ε1+~ε2+~ε3, ~ε1+~ε2+~ε4}, Σ5 = {2~ε1+~ε2+~ε3, 2~ε1+~ε2+~ε4}, Σ6 = {~ε1+2~ε2+~ε3, ~ε1+2~ε2+~ε4}.

Finally we observe that there are no bisimilar nodes, thus we have no constraints of the form
(f) and (g).

The set of constraints C(G, P) is not reported here for sake of brevity but can be found at [6],
together with the file LINDO we used to solve the resulting IPP.

We identify the net system in Figure 2.(a). ¥

6 Conclusions

In this paper we considered the problem of identifying an unbounded Petri net system given its
unlabeled coverability graph, namely an automaton G whose arcs are labeled with the transitions
of the net. The solution we propose ensures that the coverability graph of the resulting net
system is isomorphic to G, and is based on a linear algebraic characterization of the net systems
whose coverability graph is isomorphic to G. Therefore, the identification problem is written in
terms of an IPP.

References

[1] E. Badouel and P. Darondeau. Theory of regions. Lecture Notes in Computer Science:
Lectures on Petri Nets I: Basic Models, 1491:529–586, 1998.

[2] T. Bourdeaud’huy and P. Yim. Synthse de rseaux de Petri partir d’exigences. In Actes
de la 5me conf. francophone de Modlisation et Simulation, pages 413–420, Nantes, France,
September 2004.

[3] M.P. Cabasino, A. Giua, and C. Seatzu. Identification of deterministic Petri nets. In Proc.
WODES’06: 8th Work. on Discrete Event Systems, Ann-Arbor, MI, USA, July 2006.

[4] A. Giua and C. Seatzu. Identification of free-labeled Petri nets via integer programming.
In Proc. 44th IEEE Conf. on Decision and Control, Seville, Spain, December 2005.

[5] K. Hiraishi. Construction of a class of safe Petri nets by presenting firing sequences. In
Jensen, K., editor, Lecture Notes in Computer Science; 13th International Conference on
Application and Theory of Petri Nets 1992, Sheffield, UK, volume 616, pages 244–262.
Springer-Verlag, June 1992.

[6] http:\\bode.diee.unica.it\dehs\CDC06.

[7] R.M. Karp and R.E. Miller. Parallel program schemata. Journ. Computer and System
Sciences 3, (2):147–195, May 1969.

[8] M.E. Meda-Campaa and E. Lpez-Mellado. Required event sequences for identification of
discrete event systems. In Proc. 42th IEEE Conf. on Decision and Control, pages 3778–
3783, Maui, Hawaii, USA, December 2003.

[9] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, April 1989.

[10] L.A. Wolsey. Integer Programming. John Wiley & Sons, 1998.

