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Abstract: This paper addresses a sampling problem for timed continuous Petri
nets under infinite servers semantics. Different representations of the continuous
Petri net system are given, the first two in terms of piecewise linear system and the
third one, for the controlled continuous Petri nets systems, in terms of a particular
linear constrained system with null dynamic matrix. The last one is used to obtain
the discrete-time representation. An upper bound on sample period is given in
order to preserve important information of timed continuous nets, in particular
the positiveness of the markings. The reachability space of the sampled system in
relation to autonomous continuous Petri nets is also studied.
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1. INTRODUCTION

Discrete Petri nets (PNs) (Silva, 1993) are a math-
ematical formalism with an appealing graphical
representation for the description of discrete-event
systems, successfully used for modeling, analysis
and synthesis of such systems. To study perfor-
mance evaluation, timing should be introduced
and timed PNs are obtained.

Discrete PNs may suffer the state explosion prob-
lem, when the number of tokens is large. As in
the case of other formalisms (e.g. integer program-
ming or queuing networks), continuous relaxation
can provide a good approximation for discrete
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models under certain circumstances (Silva and
Recalde, 2002).

Continuous Petri nets (contPNs) are a formal-
ism in which the marking of each place is a
non-negative real number (David and Alla, 2004)
(Silva and Recalde, 2002). As in discrete case,
timing can be associated to transitions resulting
in timed contPNs. Controllers and observers can
be designed for this class of systems but taking
into account that probably they need to be im-
plemented on some computer, the sampling of the
continuous system is required.

For finite servers semantics, sampling is not a
hard problem because the flow of the transitions is
constant inside each invariant behavior (IB) state
(David and Alla, 2004), and the times at which
IB state changes occur can be computed. This
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allows to tackle the problem as an event-driven
control (Júlvez et al., 2004). However, it seems
that infinite servers semantics usually provides a
much better approximation of the discrete system
than finite servers semantics (Mahulea et al.,
2006). Under infinite servers semantics, there is
not an easy way to compute the equivalent to
these IB states, so sampling is an important issue.

In classical Systems and Signal Theory, it is well-
known that the Sampling theorem (frequently
known as the Nyquist-Shannon sampling theo-
rem) provides an upper bound for the sampling
period of limited bandwidth signals in order ”not
to loose information”. Here, it is shown that sam-
pling at ”too low rate”, spurious solutions can
appear, in particular negative markings. In this
paper, for timed contPNs, an upper bound on the
sampling period is given in order to avoid spurious
solutions. In other words, for the sampled timed
contPNs, some ”equivalence results” regarding
the reachability space of sampled timed contPNs
and (autonomous) contPNs are presented.

2. CONTINUOUS PETRI NETS

Definition 2.1. A contPN system is a pair 〈N , m0〉,
where: (1) N = 〈P, T, Pre, Post〉 is the net
structure with set of places P , set of transitions T ,
pre and post incidence matrices Pre, Post : P ×
T → N; and (2) m0 : P → R≥0 is the initial
marking (or distributed state).

The number of places of a net is n = |P | and the
number of transitions is m = |T |. We also denote
m(τ) the marking at time τ and in discrete time
we denote m(k) the marking at sampling instant
k (τ = k ·Θ, where Θ is the sampling period). The
token load contained in place pi at marking m is
denoted mi. Finally, preset and postset of a node
X ∈ P ∪ T are denoted •X and X•, respectively.

A transition tj ∈ T is enabled at m iff ∀pi ∈
•tj ,mi > 0, and its enabling degree is

enab(tj , m) = min
pi∈•tj

{
mi

Pre(pi, tj)

}
.

An enabled transition t can fire in any real amount
0 ≤ α ≤ enab(t,m) leading to a new marking
m′ = m + αC(·, t), where C = Post − Pre is
the incidence matrix ; this firing is also denoted
m[t(α)〉m′.

In general, if m is reachable from m0 through
a sequence σ = tr1(α1)tr2(α2) . . . trk

(αk), and we
denote by σ : T → R≥0 the firing count vector
whose component associated to a transition tj is

σj =
∑

h∈H(σ,tj)

αh,

where H(σ, tj) = {h = 1, . . . , k | trh
= tj},

then we can write: m = m0 + C · σ, which is
called the fundamental equation.

The basic difference between discrete and contin-
uous PN is that the components of the markings
and firing count vectors are not restricted to take
value in the set of natural numbers but in the
non-negative reals. The set of markings that are
reachable with a finite firing sequence for a given
system 〈N ,m0〉 is denoted as RSun(N , m0).

Definition 2.2. Let 〈N , m0〉 be a contPN sys-
tem and RSun(N , m0) the set of reachable mark-
ings, i.e., the set of markings m ∈ Rm

≥0 such that
a finite fireable sequence σ = ta1(α1) · · · tak

(αk)

exists, and m0
ta1 (α1)−→ m1

ta2 (α2)−→ m2 · · · tak
(αk)−→

mk = m, where tai ∈ T and αi ∈ R+.

A relaxation of this space can be considered allow-
ing an infinite firing sequence and lim-reachable
space is obtained:

Definition 2.3. Let 〈N ,m0〉 be a continuous
system. A marking m is lim-reachable iff a se-
quence of reachable markings {mi}i≥1 exists such
that m0

σ1−→ m1
σ2−→ m2 · · · σi−→ mi · · · and

lim
i→∞

mi = m. The set of lim-reachable markings

is denoted as lim−RSun(N , m0).

Definition 2.4. A (deterministically) timed con-
tPN system 〈N , λ, m0〉 is a contPN system
〈N , m0〉 together with a vector λ : T → R>0,
where λj is the firing rate of transition tj .

Now, the fundamental equation depends on time:
m(τ) = m0 + C · σ(τ), where σ(τ) denotes the
firing count vector in the interval [0, τ ]. Deriving
it with respect to time the following is obtained:
ṁ(τ) = C · σ̇(τ). The derivative of firing vector
represents the flow of the timed model f(τ) =
σ̇(τ). Depending on how the flow of the transition
is defined many firing semantics are possible; the
most used in literature are finite servers semantics
(or constant speed) and infinite server seman-
tics (or variable speed) (Recalde and Silva, 2001)
(David and Alla, 2004).

This paper deals with infinite server semantics in
which the flow of transition tj is given by:

fj = λj min
pi∈•tj

{
mi

Pre(pi, tj)

}
(1)

Example 2.5. Let us consider the net system in
Fig. 1. The flow of transitions are:

{
f1 = λ1 ·min

{
m1

2
, m3

}

f2 = λ2 ·min {m1, m2}
.
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Fig. 1. Continuous PN system.
Thus, the state space representation of this un-
forced system (ṁ(τ) = C · f(τ)) is:



ṁ1 = −λ1 ·min

{
m1

2
, m3

}
+ λ2 ·min {m1, m2}

ṁ2 = λ1 ·min

{
m1

2
, m3

}
− λ2 ·min {m1, m2}

ṁ3 = −λ1 ·min

{
m1

2
, m3

}
+ λ2 ·min {m1, m2}

(2)

¥

Because the flow of a transition depends on its
enabling degree which is based on the minimum
function, a timed contPN under infinite servers
semantics is a piecewise linear system. In fact, if
we define

s =
∏
t∈T

|•t|,

the state space of a timed contPN can be parti-
tioned 1 as follows: R1 ∪ · · · ∪ Rs, where each set
Rk (for k = 1, . . . , s) denotes a region (eventually
empty) where the flow is limited by the same
subset of places (one for each transition). For
a given region Rk, we can define the constraint
matrix Πk : T × P → R such that:

Πk(tj , pi) =





1

Pre(pi, tj)
, if (∀m ∈ Rk)

mi

Pre(pi, tj)
= min

ph∈•tj

{
mh

Pre(ph, tj)

}
;

0, otherwise.

(3)

Example 2.6. For the system sketched in Fig. 1,
the flow of t1 can be restricted by the marking of
p1 or p3 and the flow of t2 can be restricted by
the marking of p1 or p2. The number of regions in
this case is s = 4 and they are defined as follows:

• R1: m1
2
≤ m3 and m1 ≤ m2 with Π1 =

[
1

2
0 0

1 0 0

]

• R2: m1
2
≤ m3 and m1 ≥ m2 with Π2 =

[
1

2
0 0

0 1 0

]

• R3: m1
2
≥ m3 and m1 ≤ m2 with Π3 =

[
0 0 1
1 0 0

]

• R4: m1
2
≥ m3 and m1 ≥ m2 with Π4 =

[
0 0 1
0 1 0

]

¥

1 These partitions are disjoint except possibly on the
borders.

If marking m belongs to Rk, we denote Π(m) =
Πk the corresponding constraint matrix. Further-
more, the firing rate of transitions can also be rep-
resented by a diagonal matrix Λ : T × T → R>0,
where

Λ(tj , th) =
{

λj if j = h
0, otherwise

Using this notation, the non-linear flow of the
transitions at a given marking m (see eq. (1) for
fj) can be written as:

f = Λ ·Π(m) ·m (4)

We now consider net systems subject to external
control actions, and assume that the only admissi-
ble control law consists in slowing down the firing
speed of transitions (Silva and Recalde, 2004).

Definition 2.7. The flow of the forced (or con-
trolled) timed contPN is denoted as w(τ) =
f(τ) − u(τ), with 0 ≤ u(τ) ≤ f(τ), u(τ) rep-
resents the control input.

Therefore, the control input will be dynamically
upper bounded by the flow of the corresponding
unforced system. Under these conditions, the over-
all behavior of the system is ruled by the following
system (Mahulea et al., 2005):
{

ṁ(τ) = C · [Λ ·Π(m(τ)) ·m(τ)− u(τ)]
0 ≤ u(τ) ≤ Λ ·Π(m(τ)) ·m(τ) (5)

This is a particular hybrid system: a piecewise
linear system with autonomous switches and dy-
namic (or state-based) constraints in the input.

Example 2.8. Let us consider the net system in
Fig. 1 with λ = [5, 1]T . It is ruled by the following
set of systems of the form (5):

m ∈ R1:





ṁ(τ) =



−3

2
0 0

3

2
0 0

−3

2
0 0


m(τ)−

[ −1 1
1 −1

−1 1

]
u(τ)

0 ≤ u(τ) ≤
[

5

2
0 0

1 0 0

]
m(τ)

m ∈ R2:





ṁ(τ) =



−5

2
1 0

5

2
−1 0

−5

2
1 0


m(τ)−

[ −1 1
1 −1

−1 1

]
u(τ)

0 ≤ u(τ) ≤
[

5

2
0 0

0 1 0

]
m(τ)

m ∈ R3:





ṁ(τ) =

[
1 0 −5

−1 0 5
1 0 −5

]
m(τ)−

[ −1 1
1 −1

−1 1

]
u(τ)

0 ≤ u(τ) ≤
[

0 0 5
1 0 0

]
m(τ)
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m ∈ R4:





ṁ(τ) =

[
0 1 −5
0 −1 5
0 1 −5

]
m(τ)−

[ −1 1
1 −1

−1 1

]
u(τ)

0 ≤ u(τ) ≤
[

0 0 5
0 1 0

]
m(τ)

¥

As a final remark, it should be noted that in this
paper we assume that all transitions are control-
lable 2 , i.e., may be slowed down. It may also be
possible to extend the approach to deal with un-
controllability of certain transitions. If transition
tj cannot be controlled, then it is obvious that
the control input must be uj = 0 at every time
instant.

3. A CONSTRAINED LINEAR
REPRESENTATION OF CONTINUOUS PN

The system in the eq. (5) is a piecewise linear
system with a dynamical constraint on the control
input u that depends on the current value of the
system state m. In this section we provide an
alternative expression that takes the form of a
simple linear system with dynamical constraints
on the control input.

Proposition 3.1. Any piecewise linear constrained
model of the form (5) can be rewritten, by suitably
defining a matrix G, as a linear constrained model
of the form:





ṁ(τ) = C ·w(τ)

G ·
[

w(τ)
m(τ)

]
≤ 0

w(τ) ≥ 0

(6)

that we call continuous time controlled contPN
model, or ct-contPN model for short. The initial
value of the state system is m(0) = m0 ≥ 0.

Proof: The equivalence of the dynamic equa-
tions immediately follows by replacing w(τ) =
f(τ)− u(τ) in (6) being f(τ) defined as in (4).

Concerning the constraints on the input, we first
observe that, by virtute of (4), constraints in
(5) can be rewritten as 0 ≤ w(τ) ≤ f(τ), i.e.,
∀j = 1, · · · , n, and at any marking m,

0 ≤ wj ≤ λj min
pi∈•tj

(
mi

Pre(pi, tj)

)

that is equivalent to the following set of equations

0 ≤ wj ≤ λj
mi

Pre(pi, tj)
(∀pi ∈ •tj).

2 We use ”controllable” in the supervisory control sense.
In (Mahulea et al., 2005) the concept is referred as control-
feasible.

All these equations can be combined as
0 ≤ Q ·w ≤ R ·m

where matrices Q (q × n) and R (q ×m) have as
many rows as there are ”pre” arcs in the net, i.e.,
q =

∑
t∈T |•t|.

In particular, given a pre arc (pi, tj) the corre-
sponding row of Q is the vector


0 · · · 0 1︸ ︷︷ ︸

j

0 · · · 0


 ,

while corresponding row of R is the vector

0 · · · 0

λj

Pre(pi, tj)︸ ︷︷ ︸
i

0 · · · 0


 .

If we let G =
[

Q −R
]

we obtain the constraints
in the last two equations of (6). ¤
The system in eq. (6) is a linear system with a
dynamic-matrix equal to 0 and an input matrix
equal to the token flow matrix of the contPN.
Note however, that there is still a dynamical
constraint on the system inputs that depends on
the value of the system state m.

4. ON SAMPLED (OR DISCRETE-TIME)
CONTINUOUS PETRI NETS MODELS

Let us obtain a discrete-time representation of
continuous-time continuous Petri net under in-
finite servers semantics. Sampling should pre-
serve the important information of the original
model (for example the positiveness of the mark-
ings). This is studied in the next section through
the equivalence of the reachability graph of the
discrete-time model and the untimed model (not
the reachability graph of discrete-time with con-
tinuous time). In this section the discretization is
defined together with a bound for the sampling
period.

The system given by the eq. (6) represents a
continuous-time system and can be discretized.
A first order discretization method is used here
and we are proving that under some conditions, it
ensures the reachability equivalence.

Definition 4.1. Consider a ct-contPN as in eq. (6)
and let Θ be a sampling period (τ = k · Θ).
The discrete-time controlled contPN or dt-contPN
〈N , λ, m0, θ〉 can be written as follows:





m(k + 1) = m(k) + Θ ·C ·w(k)

G ·
[

w(k)
m(k)

]
≤ 0

w(k) ≥ 0

(7)

The initial value of the state of this system is
m(0) = m0 ≥ 0.
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The reachability space of dt-contPN can be de-
fined as follows.

Definition 4.2. We denote RSdt(N , m0, Θ) the
set of markings m ∈ R≥0 such that there exists
a finite input sequence w = w1 · · ·wk and m(0)
w1−→ m(1) w2−→ m(2) · · · wk−→ m(k) = m, where
0 ≤ w(k) ≤ f(k) ∀k, and f(k) is the flow of the
unforced system at time k ·Θ.

Example 4.3. Let us consider the net system in
Fig. 1 with Θ = 1, λ = [5, 1]T . Then the discrete-
time representation is given by:




m(k + 1) = m(k) + Cw(k)

w1(k)− λ1

2
·m1(k) ≤ 0

w1(k)− λ1 ·m3(k) ≤ 0
w2(k)− λ2 ·m1(k) ≤ 0
w2(k)− λ2 ·m2(k) ≤ 0
w(k), m(k + 1) ≥ 0

(8)

and

G =




1 0 −5

2
0 0

1 0 0 0 −5
0 1 −1 0 0
0 1 0 −1 0


 (9)

It is important to stress that, although the evolu-
tion of a sampled contPN occurs in discrete steps,
discrete time evolutions and untimed evolutions
are not the same. As an example, while an un-
timed net can be seen evolving sequentially, exe-
cuting a single transition firing at each step (be-
cause they are executed at the same time instant),
a dt-contPN may evolve in concurrent steps where
more than one transition fires. We denote such a
concurrent step as follows:

m[{ti1 (α1), ti2 (α2), . . . , tik
(αk)}〉m′.

In unforced ct-contPN under infinite servers se-
mantics, the positiveness of the marking is en-
sured if the initial marking m0 is positive, because
the flow of a transition goes to zero whenever
one of the input places is empty (Silva and Re-
calde, 2004).

In a dt-contPN, this is not always true. Let us con-
sider the net in Fig. 1, with m0 = [1.1, 3.9, 0.1]T ,
λ = [5, 1]T , Θ = 0.5. Assume transition t2 is
stopped (w2(0) = 0), then m3(1) = m3(0) − Θ ·
w1(0) = 0.1 − 0.5 · w1(0). But w1(0) is upper
bounded by λ1 · m3(0) = 5 · 0.1 = 0.5. If the
maximum value is chosen, then m3(1) will be
negative!!!

This can be avoided if the sampling period is small
enough. Let Θ be a sampling period such that for
all p ∈ P it holds that:∑

tj∈p•
λjΘ < 1 (10)

Proposition 4.4. Let 〈N , λ, m0, Θ〉 be a dt-
contPN system with m0 ≥ 0 and Θ verifying (10).

(1) Any marking reachable from m0 is non neg-
ative, i.e., RSdt(N ,m0,Θ) ⊆ Rm

≥0.
(2) A place cannot be emptied with a finite

sequence of firings, i.e., if m0(p) > 0, then
for all m ∈ RSdt(N , m0, Θ) it also holds
m(p) > 0.

Proof: Let us consider a place pi with pi
• =

{t1, t2, · · · , tj} and mi(k) > 0. Then: mi(k +

1) = mi(k) + ΘC(i, :)w(k) ≥ mi(k) − Θ(λ1 + λ2 + · · · +

λj)mi(k) = mi(k)

(
1−

∑
tj∈p•

λjΘ

)
> 0 ¤

In the rest of the paper we will assume that all
nets are sampled with a sampling period Θ that
satisfies (10).

Corollary 4.5. If a marking m is reachable in a
dt-contPN system 〈N , λ, m0, Θ〉 with Θ verifying
(10) then is reachable in the underlying untimed
contPN system 〈N ,m0〉 (i.e. RSdt(N , m0, Θ) ⊆
RSun(N , m0)).

In general the converse of Corollary 4.5 is not true:
in fact, the second item of Proposition 4.4 shows
that in a dt-contPN with Θ satisfying (10) it is
never possible to empty a place (only at the limit,
thus timed contPN can be deadlocked only at the
limit), while this may be possible in an untimed
net system. As an example, in the untimed net
system in Fig. 1 from the marking shown it is
possible to fire t1(2)t1(0.5), thus emptying place
p1. This marking is clearly not reachable on the
same net system if we associate to it a firing rate
vector and choose a sampling period Θ satisfying
(10).

In the next section, two relaxations can be done:
(1) considering in the untimed case only those
sequences that never empty a marked place or
(2) allowing the lim-reachable markings of the
discrete-timed model. These relaxations are the
same as in continuous-time case (Mahulea et al.,
2005). So, in fact we will prove that under these
relaxations and with the sampling period as in
(10), the reachability space of the discrete-time
model will be the same with reachability space of
the continuous-time model.

5. REACHABILITY ”EQUIVALENCE”
BETWEEN SAMPLED AND CONTINUOUS

MODELS

The condition (10) can be seen like a ”kind of
Sampling Theorem” for sampling linear-invariant
systems: Θ should be small enough to maintain
some properties as that in Proposition 4.4. But it
does not mean that all information is preserved by
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sampling. The following result characterizes the
reachability set of dt-contPN.

Lemma 5.1. Let 〈N , λ,m0,Θ〉 be a dt-contPN
system and assume that in the underlying un-
timed net system it is possible from m to fire the
sequence m[tj(α)〉m′ and that for a certain a > 1,
for all p ∈ •tj it holds m′(p) ≥ m(p)/a.

Then in 〈N ,λ,m0,Θ〉 marking m′ is reachable
from marking m with a finite sequence of length

r =
⌈

a

Θλj

⌉
.

Proof: Let us first prove by induction that
the firing of a sequence [tj(αΘλj/a)〉 can at least
be repeated r − 1 times in the discrete time net.

(Basic step) It is immediate to observe that
tj(αΘλj/a) can be fired from m, since Θλj/a < 1.
The new marking is m1 = (αΘλj/a) · m′ + (1 −
αΘλj/a) ·m.

(Inductive step) Assume that at a given interme-
diate step mh = βm′ + (1− β) ·m, with 0 < β < 1.
It can be observed that for all p ∈ •tj , it holds
mh(p) = βm′(p) + (1 − β)m(p) ≥ β m(p)

a + (1 −
β)m(p)

a = m(p)
a , hence tj(αΘλj/a) can be fired

from mh, since Θλj/a < 1.

After r − 1 firings tj(αΘλj/a) can still be fired
and it is sufficient to fire tj for a quantity less or
equal to that to reach m′ in one step. ¤
According to the previous lemma, regardless of
the initial token content in a place p, if an untimed
sequence reduces the marking of p by at most
a factor 1/a, then an equivalent finite sequence
exists in the dt-net system.

Theorem 5.2. A marking m is reachable in a dt-
contPN 〈N , λ,m0,Θ〉 system (with Θ satisfying
(10)) iff it is reachable in the underlying untimed
contPN system 〈N , m0〉 with a sequence that
never empties an already marked place.

Proof: Mathematically, a sequence

m[ti1 (α1)〉m1[ti2 (α2)〉m2 · · · [tik
(αk)}〉mk = m′

never empties a marked place if the following
condition is verified

(∀j = 1, . . . , k), (∀p ∈ •tij )mj(p) > 0 (11)

(If) Applying the previous Lemma for each m1,
m2, · · · , mk implies that m′ is reachable with a
finite sequence.

(Only if) Assume there is a finite sequence that
reaches m in the dt-contPN, then there exists an

equivalent firing sequence for the untimed net sys-
tem, according to Corollary 4.5. It is also immedi-
ate to observe that condition (11) holds because
in the dt-contPN a place cannot be emptied with
a finite sequence, according to Prop. 4.4 part 2.

¤
One may wonder what happens if a marking m
is reachable in the untimed PN but there exists
no sequence satisfying condition (11). In this case
it can be easily proved that the marking is lim-
reachable in the timed net, i.e., it is reachable
with an unbounded sequence of steps. The result
is formally proved in Theorem 5.3 by showing how
such an infinite sequence may be determined.

Theorem 5.3. If a marking m is reachable in
the untimed contPN system 〈N ,m0〉, then it is
lim-rechable in a dt-contPN system 〈N , λ,m0,Θ〉
with Θ satisfying (10).

Proof: Assume that in the untimed net
system m0[tr1 (α1)〉m1[tr2 (α2)〉m2 · · · [trk (αk)〉mk =

m, and let us define σ = tr1(α1)tr2(α2) · · · trk
(αk).

We will prove that this sequence is equivalent to
an infinite sequence σ1σ2 · · · in which all the input
places of the fired transitions are reduced by each
firing by at most a factor 1/2. Thus, applying
Lemma 5.1, it can be fired in the discrete time net.
This infinite sequence will fire each transition in σ,
but in a smaller amount, and repeat the process.
It will be seen that the amount of firing of each
transition converges to the value in σ.

For each round, the sequence is defined as
σi = tr1(βi,1α1)tr2(βi,2α2) · · · trk

(βi,kαk) where
βi,1 = 1/2i (i = 1, 2, . . .),

β1,j = 1/2j , (j = 1, . . . , k),

βi,j =
1

2

(
i∑

l=1

βi,j−1 −
i−1∑
l=1

βi,j

)
(i = 2, . . . ; j = 2, . . . , k).

Intuitively, in the first round the proportion of
firing is decreasing each time so that places are
never emptied by more than one half. In the fol-
lowing rounds, it is taken into account how much
the previous transitions in the sequence have been
fired, and how much the actual transition has been
fired until now, again to be sure that the reduction
never exceeds one half.

Formally, consider an intermediate step in which
σ1 . . . σi−1 and only part of σi, namely,

tr1(βi,1α1)tr2(βi,2α2) · · · trj−1(βi,j−1αj−1), have been
fired. If we denote cj = αjC(·, trj ) the actual mark-
ing can be described as

mi,j−1 = m0+
(∑i

h=1
βh,1

)
c1+· · ·+

(∑i

h=1
βh,j−1

)
cj−1+(∑i−1

h=1
βh,j

)
cj+· · ·+

(∑i−1

h=1
βk,j

)
ck =

(
1−

∑i

h=1
βh,1

)
m+(∑i

h=1
βh,1

)
m1+

(∑i

h=1
βh,2

)
c2+· · ·+

(∑i

h=1
βh,j−1

)
cj−1+(∑i−1

h=1
βh,j

)
cj + · · ·+

(∑i−1

h=1
βk,j

)
ck = · · · =
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(
1−

∑i

h=1
βh,1

)
m +

(∑i

h=1
βh,1 −

∑i

h=1
βh,2

)
m1 +

· · ·+
(∑i

h=1
βh,j−1 −

∑i−1

h=1
βh,j

)
mj−1+(∑i−1

h=1
βh,j −

∑i−1

h=1
βh,j−1

)
mj · · ·+(∑i

h=1
βh,n−1 −

∑i−1

h=1
βh,k

)
mk−1+(∑i

h=1
βh,n

)
mk

Hence, mi,j−1 ≥ (
∑i

h=1 βh,j−1−
∑i−1

h=1 βh,j)mj−1

and so trj can be fired half of this amount and
no place looses more that one half of its token
content.

With respect to the convergence to σ, it can be
proved that βi,j = (i+j−2)!

(j−1)!(i−1)! · 1
2i+j−1 , which is the

probability mass distribution of the negative bi-
nomial of parameters j, 1/2. Applying induction,
the proof is based on the fact that the cumulative
distribution function Fj can be immediately ex-
pressed as a regularized incomplete beta function,
i.e., Fj(h) = I1/2(j, h + 1), and that a regular-
ized incomplete beta function enjoys the following
property:

I1/2(a, b)− I1/2(a + 1, b) =
(a + b− 1)!
(a)!(b− 1)!

· 1
2a+b

.

Observe that β1,j = 1
2j = (1+j−2)!

(j−1)!(1−1)! · 1
21+j−1 , and

that βi,1 = 1
2i = (i+1−2)!

(1−1)!(i−1)! · 1
2i+1−1 .

Applying induction “following the rows”, assume
it holds for βl,k, with 1 ≤ l ≤ i−1 and 1 ≤ k ≤ n,
and for βi,k, with 1 ≤ k ≤ j − 1. Let us prove it
for βi,j .

βi,j =
∑i

l=1
βi,j−1−

∑i−1

l=1
βi,j

2 =
βi,j−1

2 +
∑i−1

l=1
βi,j−1−

∑i−1

l=1
βi,j

2 =
βi,j−1

2 + 1
2

(∑i−1
l=1

(l+j−3
j−2 )

2l+j−2 −
∑i−1

l=1
(l+j−2

j−1 )
2l+j−1

)

= βi,j−1
2 + 1

2

(∑i−2
l=0

(l+j−2
j−2 )

2l+j−1 −
∑i−2

l=0
(l+j−1

j−1 )
2l+j

)
=

1
2

(i+j−3
j−2 )

2i+j−2 + 1
2 (I1/2(j − 1, i − 1) − I1/2(j, i − 1)) =

1
2i+j−1

(i+j−3)!
(j−2)!(i−1)! + 1

2i+j−1
(i+j−3)!

(j−1)!(i−2)! =
1

2i+j−1
(i+j−2)!

(j−1)!(i−1)!

This means that the amount in which transition
tj is fired is αj times a cumulative distribution
function, and so in the limit it converges to αj . ¤

6. CONCLUSIONS

In this paper we provide a study of contPNs under
infinite servers semantics. First, different ways of
describing the behavior of controlled contPNs are
presented, starting with a min-based non-linear
system (eq.(1) plus ṁ = C · f), continuing with
a piecewise linear form (eq. (5)) and ending with
a linear constrained form (eq. (6)).

The linear constrained system is then discretized
and we provide a Sampling theorem giving an

upper bound on sampling period. The purpose of
the Sampling theorem presented here is to pre-
serve reachability conditions (in particular non-
negativity of markings), not to reconstruct the
original signal from the sampled one.

The reachability space of the sampled system is
studied in the last part of the paper and some
relations between this space and the space of
the underlying untimed contPN are provided. In
practice, the sampling rate may be higher (like
in Nyquist-Shannon sampling theorem) if signal
reconstruction is required. But this is a topic to be
considered in a future work. Anyhow the classical
sampling theorem for linear systems should be
respected for all embedded ones.
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