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Abstract— In this contribution we address an optimal con-
trol problem for a class of discrete-time hybrid automata under
safety and liveness constraints. The solution is based on a
hierarchical decomposition of the problem, where the low-level
controller enforces safety and liveness constraints while the
high-level controller exploits the remaining degrees of freedom
for performance optimisation. Lower-level control is based on
a discrete abstraction of the continuous dynamics. The action
of low-level control can be interpreted as restricting invariants
in the hybrid automaton representing the plant model.

I. Introduction

Hybrid automata are dynamic systems that consist of both

continuous dynamics (modelled by a set of differential or

difference equations) and a switching scheme (modelled

by invariants and guards). Hybrid automata (and other

modelling paradigms for hybrid systems) have been widely

investigated because of their importance in many applica-

tion areas. Often, the control objective for such systems is

to minimise a cost function while respecting safety and live-

ness constraints. There are a number of abstraction-based

control synthesis approaches that address safety and live-

ness issues while largely ignoring performance optimisation

aspects. On the other hand, optimal control approaches

to hybrid problems are often not able to handle “hard”

safety constraints. It is therefore natural to combine both

approaches to provide a method for synthesising a closed

loop control strategy which minimises a given cost function

under certain safety and liveness constraints.

In a previous paper, [1], the authors merged a super-

visory control problem (addressing safety and liveness

constraints) with an optimal control problem (addressing

cost minimisation) for a hybrid automaton where only a

finite number of switches is allowed. In this contribution

an infinite number of switches is allowed and all dynamics

may be non-Hurwitz. Furthermore in contrast to [1], both

the supervisory control problem and the optimal control

problem are solved within the framework of discrete-time
hybrid automata. This allows a much more coherent way of

treating both control synthesis aspects.
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This contribution is organised as follows: in Section 2,

we recall some basic facts on hybrid automata, introduce the

plant model and formalise the specifications. In Section 3,

the safety and liveness requirements are addressed using

�-complete abstraction of the continuous plant dynamics.

In Section 4, the remaining degrees of freedom are used

to minimise a quadratic cost function. In Section 5, a

numerical example is provided.

Finally, a remark regarding terminology. As time, i.e.

the domain of signals, is discrete throughout this paper,

the words “continuous” and “discrete” will always refer

to the range of signals: continuous signals live in dense

subsets of some Euclidean space, whereas discrete signals

live in discrete, and for the purpose of this paper, finite sets;

continuous (respectively discrete) systems are characterised

by continuous (respectively discrete) signals.

II. PlantModel and Specifications

In this section we first define the class of Hybrid Au-

tomata (HA) on which we focus attention. Then we formally

describe the safety specifications and the optimal control

problem.

A. Hybrid Automata

A discrete-time hybrid automaton HA consists of a “clas-

sic” automaton extended with a continuous state x ∈ Rn

that evolves in discrete time with arbitrary dynamics [2],

[3]. The hybrid automaton considered here is a structure

HA = (L, act, inv, E) defined as follows, (see, e.g. [4]).

• L = {1, . . . , α} is a finite set of locations.

• X ⊆ Rn is a continuous state space.

• act : L → {X → X} is a function that associates to

each location i ∈ L a discrete time difference equation

of the form

x(k + 1) = fi(x(k)). (1)

• inv : L → 2X is a function that associates to each

location i ∈ L an invariant invi ⊆ X.

• E ⊂ L × 2X × L is the set of edges. An edge ei, j =

(i, gi, j, j) ∈ E is an arc between locations i and j with

associated guard region gi, j.
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We denote by hybrid state the pair (i, x) where the index

i identifies the discrete location i ∈ L and x ∈ Rn is the

continuous state.

Starting from initial state ξ0 = (i, x0) ∈ L × X, x0 ∈
invi, the continuous state x may evolve according to the

corresponding discrete-time transition function fi, i.e., x(k+
1) = fi(x(k)), until it is about to leave the invariant invi, i.e.

fi(x(k)) � invi, k ∈ N. This enforces a switch to another

location j satisfying the guard constraint x(k+1) = fi(x(k)) ∈
gi, j, and the future evolution of the continuous state is now

determined by the transition function f j. If several potential

“follow-up” locations satisfy the constraint, this degree of

freedom can be exploited by an appropriate discrete control

scheme. Thus, the sequence l(k) of discrete locations can

be interpreted as a constrained control input. Note that the

hybrid automaton may also switch to a “new” location j
before being forced to leave its “old” location i, if the

corresponding guard constraint is satisfied.

B. The Plant Model

In this paper we assume that the uncontrolled plant is

modelled as a discrete-time hybrid automaton satisfying the

following assumptions:

A1. (1) is linear, i.e.

x(k + 1) = Aix(k) ∀i ∈ L, k ∈ N0.

A2. invi = X ∀i ∈ L.

A3. gi, j = X ∀(i, gi, j, j) ∈ E.

Hence, the uncontrolled plant is a switched linear system

with no restrictions regarding the continuous evolution of

the state (see A2) and the possibility to switch.

It will turn out in Section 3 that adding low-level control

to the plant model will add nontrivial invariants to the plant

automata. This may be interpreted as adding state space

constraints that force the plant dynamics to respect safety

and liveness constraints.

C. Safety Specification

To formalise safety specifications, the continuous plant

state space X is partitioned via a function q : X → Yd, where

Yd is a finite set of symbols. To express both static and

dynamic safety constraints, certain sequences of Yd symbols

are declared illegal or, in other words, the evolution of the

hybrid automaton needs to be restricted such that only legal

Yd strings are generated. It is assumed that this set of strings

can be realised by a finite automaton S PY .

The liveness requirement implies that ∀ i ∈ L, ∀ k ∈ N0,

the following holds: x(k) ∈ invi, fi(x(k)) � invi ⇒ ∃e =
(i, gi, j, j), x(k) ∈ gi, j and x(k + 1) = fi(x(k)) ∈ inv j.

Note that the liveness condition guarantees the existence

of an evolution (i(k), x(k)), k ∈ N0 from every initial hybrid

state (i, x0).

D. Optimal Control Problem

Subject to plant model (Sec. 2.2), safety and liveness con-

straints (Sec. 2.3), we aim at minimising the cost function

J =
∞∑

k=0

x(k)′Qi(k)x(k), (2)

where, for each k ≥ 0 i(k) ∈ L, Qi(k) is a positive

semidefinite real matrix.

This problem will now be approached using a high-

level control hierarchy. Safety and liveness requirements

are being taken care of by the low-level control. This is

described in Section 3. The remaining degrees of freedom

are used to minimise the cost function (2). This is described

in Section 4.

III. The low-level task

In a first step, the hybrid plant automaton is approximated

by a finite state machine using the �-complete approx-

imation approach [5], [6]. Subsequently, Ramadge and

Wonham’s supervisory control theory [7] is implemented

to synthesise a least restrictive supervisor. Note that, in

general, controller synthesis and approximation refinement

are iterated until a nontrivial supervisor guaranteeing live-

ness and safety for the approximation can be computed.

Attaching the resulting supervisor to the hybrid plant model

amounts to introducing restricted invariants. The result-

ing hybrid automaton represents the plant under low-level

control and can be guaranteed to respect both safety and

liveness constraints.

A. Ordered set of discrete abstractions

The low-level control deals with a continuous system (1)

with discrete external signals. l : N0 → L is the discrete

control input and yd : N0 → Yd a discrete measurement

signal. The set of output symbols, Yd, is assumed to be

finite: Yd = {y(1)
d , . . . , y

(β)
d }, and qy : X → Yd is the output

map. Without loss of generality, the latter is supposed to be

surjective (onto). The output map partitions the state space

into a set of disjoint subsets Y (i) ⊂ X, i = 1, . . . , β, i.e.

β⋃
i=1

Y (i) = X,

Y (i) ∩ Y ( j) = ∅ ∀i � j .

To implement supervisory control theory, the hybrid plant

model is approximated by a purely discrete one. This is

done using the method of �-complete approximation [5],

[8], which is described in the following paragraphs.

Denote the behaviour of the hybrid plant model by Bplant,

i.e. Bplant ⊆ (L × Yd)N0 is the set of all pairs of (discrete

valued) input/output signals w = (l, yd) that (1) admits. In

general, a time-invariant system with behaviour B is called

�-complete if

w ∈ B ⇔ σkw|[0,�] � w|[k,k+�] ∈ B|[0,�] ∀k ∈ N0,
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where σ is the unit shift operator and w|[0,�] denotes the

restriction of the signal w to the domain [0, �] [9]. For �-
complete systems we can decide whether a signal belongs

to the system behaviour by looking at intervals of length

�. Clearly, an �-complete system can be represented by

a difference equation in its external variables with lag �.
The hybrid plant model (1) is, except for trivial cases, not

�-complete. For such systems, the notion of strongest �-
complete approximation has been introduced in [8]: a time-

invariant dynamical system with behaviour B� is called

strongest �-complete approximation for Bplant if

(i) B� ⊇ Bplant,
(ii) B� is �-complete,

(iii) B� ⊆ B̃� for any other �-complete B̃� ⊇ Bplant,

i.e. if it is the “smallest” �-complete behaviour containing

Bplant. Obviously, B� ⊇ B�+1 ∀� ∈ N, hence the proposed

approximation procedure may generate an ordered set of

abstractions. Clearly, w ∈ B� ⇔ w|[0,�] ∈ Bplant |[0,�]. For

w|[0,�] = (l0, . . . , l�, y
(i0)
d , . . . , y

(i�)
d ) this is equivalent to

fl�−1

(
. . . fl1

(
fl0
(
q−1

y (y(i0)
d )
)
∩
(
q−1

y (y(i1)
d )
))

. . . (q−1
y (y(i�−1)

d )
)
∩ q−1

y (y(i�)
d ) � X(w|[0,�]) � ∅,

(3)

where li ∈ L. Note that for a given string w|[0,�], X(w|[0,�])
represents the set of possible values for the continuous

state variable x(�) if the system has responded to the input

string l(0) = l0, . . . , l(� − 1) = l�−1 with the output yd(0) =

yi0
d , . . . , yd(�) = yi�

d and that (3) does not depend on l(�). For

linear and affine systems evolving on discrete time N0, (3)

can be checked exactly.

As both input and output signal evolve on finite sets L
and Yd, B� can be realised by a (nondeterministic) finite

automaton. In [5], [8], a particularly intuitive realisation

is suggested, where the approximation state variable stores

information on past values of l and yd. More precisely, the

automaton state set can be defined as

Xd :=

�−1⋃
j=0

Xd j , � ≥ 1,

where Xd0 = Yd

and Xd j is the set of all strings such that ∃ l j ∈ L :

(l0, . . . , l j, y
(i0)
d , . . . , y

(i j)
d ) ∈ B|[0, j].

The temporal evolution of the automaton can be illus-

trated as follows:

From initial state xd(0) ∈ Xd0, it evolves through states

xd( j) ∈ Xd j, 1 ≤ j ≤ � − 1

while

xd( j) ∈ Xd�−1, j ≥ � − 1.

Hence, until time � − 1, the approximation automaton

state is a complete record of the system’s past and present,

while from then onwards, it contains only information on

the “recent” past and present.

As the states x(i)
d ∈ Xd of the approximation realisation

are strings of input and output symbols, we can associate

x(i)
d with a set of continuous states, X(x(i)

d ), in completely

the same way as in (3).

Note that we can associate y(i)
d as the unique output

for each discrete state x(i)
d ∈ Xd. The resulting (non-

deterministic) Moore-automaton M� = (Xd, L,Yd, δ, µ, Xd0 )

with state set Xd, input set L, output set Yd, transition

function δ : Xd×L→ 2Xd , output function µ : Xd → Yd, and

initial state set Xd0 is then a realisation of B�. Note that the

state of M� is instantly deducible from observed variables.

To recover the framework of supervisory control theory

[7] as closely as possible, we finally convert M� into an

equivalent automaton without outputs, G� = (X̃d,Σ, δ̃, X̃d0 ),

where Σ = L∪Yd, L represents the set of controllable events

and Yd the set of uncontrollable events.

Technically, this procedure is carried out according to the

following scheme (for an illustration, see Fig.1):

• Each state x( j)
d ∈ Xd is split into two states: x( j)

d and x̂( j)
d .

Thus, the new state set is formed as X̃d = Xd
⋃

X̂d. The

set of initial states remains the same, X̃d0 = Xd0 .

• The new transition function δ̃ is defined as a union of

two transition functions with nonintersecting domains:

δ̃(x̃(i)
d , σ

( j)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(�x̃(i)
d , σ

( j)), x̃(i)
d ∈ X̂d, σ

( j) ∈ L,

�x̃(i)
d , x̃(i)

d ∈ Xd,

σ( j) = µ(x̃(i)
d ) ∈ Yd,

∅, otherwise,

where � denotes an operation of taking the comple-

mentary state, i.e. �x̂(i)
d � x(i)

d and vice versa. Note

that the first event always belongs to the set Yd, the

following evolution consists of sequences where events

from L and Yd alternate.

B. Specification and supervisor design

Safety requirements can often be formalised as a set of

acceptable pairs of input/output signals. In many applica-

tions we have independent specifications for both inputs

and outputs, which can be realised by finite automata

S PL = (S L, L, δL, S L0) and S PY = (S Y ,Yd, δY , S Y0). These

automata can be characterised according to their current-
state observability:

Definition 1: [10] A finite state machine A = (Q,Σ, φ) is

said to be current-state observable if there exists a nonneg-

ative integer K such that for every i ≥ K, for any initial

state q(0), and for any sequence of events σ(0) . . . σ(i − 1)

the state q(i) can be uniquely determined. The parameter K
is referred to as the index of observability.

Deterministic finite automata are basically current-state

observable. If there are indistinguishable states, they can

be merged without changing the behaviour. Thus, we can

use the current-state observability indices KL and KY to

characterise the specification automata S PL and S PY .

The next step is to design an overall specification mod-

elled by a finite automaton S P = S PL||S PY .
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Fig. 1. Moore-automaton a) and an equivalent automaton without outputs b). Note that y
(i j)
d = µ(x

(i j)
d ) ∈ Yd is the output symbol associated with the

discrete state

Given an approximating automaton Gl and a specification

automaton S P, supervisory control theory checks, whether

there exists a nonblocking supervisor and, if the answer is

affirmative, provides a least restrictive supervisor S UP via

”trimming” of the product of Gl and S P. Hence the state

set of the supervisor, XS UP, is a subset of X̃ × S .

The functioning of the resulting supervisor is very simple.

At time tk it ”receives” a measurement symbol which

triggers a state transition. In its new state x( j)
sup, it enables

a subset Γ(x( j)
sup) ⊆ L and waits for the next feedback from

the plant. As shown in [8], the supervisor will enforce the

specifications not only for the approximation, but also for

the underlying hybrid plant model (1).

In the following, we will be interested in the special

case of quasi-static specifications. To explain this notion,

let papp : XS UP → X̃ denote the projection of XS UP ⊆
X̃ × S onto its first component. If papp is injective, the

specification automaton is called quasi-static with respect

to the approximation automaton Gl.

Proposition 1: S P is quasi-static with respect to G� if

� ≥ max(KL,KY − 1).

C. Closed loop model

For the case of quasi-static specifications, each supervi-

sor state papp(x(i)
sup) corresponds exactly to a state x̃(i)

d =

papp(x(i)
sup) of the approximating automaton, which, in turn,

can be associated with a set X(x̃(i)
d ) = X(papp(x(i)

sup)). Note

that on the underlying, physical level the state x(i)
d ∈ Xd

and its complement x̂(i)
d ∈ X̂d are equivalent in sense that

X(x(i)
d ) � X(x̂(i)

d ).

For k ≥ �, attaching the discrete supervisor to the plant

model (1) is therefore equivalent to restricting the invariants

for each location l j ∈ L according to

invl j =
⋃

l j ∈ Γ(x̂(i)
s )

i, papp(x(i)
sup) ∈ X̂d�−1

X(papp(x(i)
sup)). (4)

Note that for the initial time segment, i.e. k ≤ �, (4) is

more restrictive than the discrete supervisor computed in

Sec.III-B.

The union of all invariants invl j , j = 1, . . . , α forms the

refined state set that contains only safe points, i.e. points

for which exists at least one sequence of control symbols

such that the resulting behaviour satisfies the specification.

The resulting hybrid automaton represents the plant

model (1) under low-level control (for k ≥ �). As control

system has been based on an �-complete approximation of

(1), it is guaranteed that the resulting hybrid automaton

satisfies safety and liveness requirements. The remaining

degrees of freedom in choosing l(k) can be used in a high-

level controller addressing performance issues.

IV. The high-level task

The high-level task requires the solution of an optimal

control problem of the form (2).

In previous works the authors proposed a technique to

solve this problem in the particular cases where

(a) invi ⊆ Rn and a finite number of allowed switches N
[1];

(b) invi ≡ Rn, ∀ i and an infinite number of switches

allowed [11].

In both cases the method consisted in using dynamic

programming approach over an infinite time horizon. The

solution is a partition C of the state space for each location,

that we named as switching tables. When the system evolves

in a given location i ∈ L, then the controller considers the

corresponding table and imposes one switch to location j,
iff the value of x enters a partition mapped by j. In case (a)

we had one table per location i and per number of missing
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switches m, that we called Ci
m. In case (b) we proved that the

switching tables converge to the same one when m grows.

More precisely we proved that there exists a sufficiently big

value of N such that ∀ m > N, Ci
m = Ci

N+1. We called this

table by Ci∞. Furthermore in paper [12] we proved that if the

automaton is completely connected then Ci∞ = C j
∞ = C∞,

i � j.
Here we investigate the possibility of extending the

previous results. In particular we merge (a) and (b), i.e.,

we consider a constrained problem invi ⊆ Rn as in case

(a), where we additionally allow the number of switches

N to grow indefinitely, as in (b). To this aim we introduce

some new definitions and propose some new results. For

simplicity we will only deal with completely connected

automata.

Definition 2 (Forbidden region): A forbidden region for

the HA is a set X f ⊂ X : X f = X \
s⋃

i=1

invi, where s is the

number of locations. �
Thus X f is a region forbidden to all dynamics of the HA.

Definition 3 (Augmented HA and OP): An augmented
automaton HA = (L, act, inv, E) of HA = (L, act, inv, E)

and the corresponding optimal control problem OP of OP,

are related as follows:

(i) HA includes a new dynamics Aα+1 and OP includes

a corresponding weight matrix Qα+1 = qQ̃α+1 (with

rank(Q̃α+1) � 0, and q > 0). such that ∀ x0 ∈ X the

cost value

J(x0) =

∞∑
k=0

x(k)′Qα+1x(k)

s.t. x(k + 1) = Aα+1x(k)

is finite1.

(ii) A new invariant invα+1 = R
n is associated to the new

dynamics.

(iii) The edges ei,α+1 ∈ E and eα+1,i ∈ E are defined

∀ i ∈ L.

�
Thus the augmented automaton HA is the same as HA

except for an extra location (α+1) completely connected to

all the locations in the HA. Its invariant set coincides with

invα+1 = R
n and its dynamics is Aα+1. The corresponding

OP weights location (α + 1) with matrix Qα+1 ≥ 0.

Now we implement the switching table procedure [1]

to the augmented problem OP(HA) with a finite number

of switches N. If we increase N recursively, as described

in [11], we obtain the following results, whose proofs are

briefly sketched, being simple extensions of known results.

Proposition 2: All tables converge when N grows, i.e.,

∀ i ∈ L
lim

N→∞C
i
N = C

i
∞

1Note that a structural property that certainly ensures this condition is
that the matrix Aα+1 is Hurwitz stable, i.e., all its eigenvalues are inside
the unit circle. Nevertheless this condition is not strictly necessary.

e1,2

e2,1

e3,2

e2,3

e3,1
e1,3

1 2

3

Fig. 2. Graph of the automaton HA (continuous) and HA (continuous
and dashed) described in the example.

Moreover if the HA is completely connected then

Ci
∞ = C∞, ∀ i ∈ L,

i.e., all tables converge to the same one. �
Proposition 3: Assume that there exists an exponentially

stabilising switching law for problem OP(HA). Then there

also exists a sufficiently large value of q > 0 in the OP(HA),

such that the tables Ci
∞, solution of OP(HA), i = 1, . . . , α+1,

contain the color of Aα+1 at most in X f . �
Note that Proposition 2 is formally proved in [11] in absence

of state space constraints. It can be trivially extended to

this case, provided that the invariants calculated in Section

III guarantee the liveness of the HA. Proposition 3 allows

one to consider the solution of OP(HA) equivalent to the

solution of OP(HA). This follows from the fact that the

dynamics Aα+1 does not influence at all any solution of the

augmented problem. Therefore it can be removed from the

augmented automaton. These results are formally proved

in [12], in absence of state space constraints. As before

this result can be trivially extended if the liveness of the

automaton is guaranteed. In fact, by definition, it holds that,

for any initial couple (i, x0) � X f of the HA, the hybrid

trajectory, solution of OP(HA), (i(k), x(k)), never enters X f .

V. Numerical example

Consider the HA with two locations and corresponding

dynamics

A1 =

[
0.981 0.585

−0.065 0.981

]
, A2 =

[
0.981 0.065

−0.585 0.981

]

whose eigenvalues are, for both dynamics, λ1,2 = 0.9808 ±
j0.1951, of norm 1 (see Figure 4 for the corresponding

trajectories at the limit cycle). The safety constraint in the

state space is given by the forbidden state set

X f = {x ∈ R2|H′x ≤ h}
where

H =

[
0 0 1 −1

1 −1 −1 −1

]

h =
[

0.8 −0.2 0 0
]
.

(5)
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Fig. 3. Invariants (in white) of locations 1 (a) and 2 (b) and (c) the forbidden region X f = X \ (inv1
⋃

inv2) defined in Def. 2. The interior of the blue
trapezoid is the forbidden region Xd

Xd is the trapezoid depicted in Fig.3. Note that the

set X \ X f can be blocking, i.e., some admissible initial

points will violate the constraint, regardless of the switching

strategy. Thus the previous setup is passed to the procedure

described in Section III, in order to compute the invariants

inv1 and inv2 that guarantee liveness (i.e., the resulting

automaton is non blocking) and safety (i.e., the state never

enters X f ). This leads to an extension of the forbidden

region, as illustrated in Fig.3.

The graph of the hybrid automaton (HA) is depicted in

Figure 2 (the part sketched with continuous lines).

Within the given constraints we want to solve an optimal

control problem2 OP of the form (2), where Q1 = Q2 =

I. For this purpose we consider the augmented problem

OP(HA), with the following data:

A3 =

[
0.9808 0.1950

−0.1950 0.9801

]
, Q3 = qQ1, inv3 ≡ X

where q = 105, and A3 is stable. The graph of the augmented

automaton is depicted in Fig.2 (continuous and dashed part).

Remark 1: Let us observe that, for sake of symmetry,

the solution of OP(HA) when invi ≡ R2, i = 1, 2, is to

use dynamics A2 when x1x2 > 0 and dynamics A1 when

x1x2 < 0. This result is very intuitive if we observe the

trajectories of the given dynamics (Figure 4) and if we use

the identity matrices as weight matrices in problem (2).

Moreover it is simple to prove that for any initial state of

the form x0 = [a 0]′ or x0 = [0 a]′, J(a) = 5.5a2.

Note that the augmented problem OP(HA) satisfies the

conditions given in Definition 3. The switching table pro-

cedure, applied to OP(HA) for a recursively increasing

number of switches, converges after N = 15 switches.

Moreover the tables Ci∞, i = 1, 2, 3 are the same, because

HA is completely connected, as in Proposition 2.

This table is depicted in Figure 5, and it is clearly affected

by numerical disturbances, due to the presence of a state

space discretisation. However some important things should

be remarked:

2Note that neither A1 nor A2 are Hurwitz, hence an infinite number of
switches is necessary.
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Fig. 4. Discrete time trajectories of dynamics A1 and A2, with eigenvalues
along the unitary circle

Location l1

Location l2

Location l3

Fig. 5. Switching table of the problem OP(HA) defined in the example
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Fig. 6. Trajectories x(k) (a) and i(k) (b) of the optimal solution of OP(HA) obtained by using the table in Figure 5 for an admissible initial point
(i0 = 1, x0 = [−1 0]′) (continuous) and a forbidden one (i0 = 1, x0 = [−0.85 0]′)(dashed)

(i) The color of the augmented dynamics exactly covers

the region X f ;

(ii) By virtue of (i) and Proposition 3 the solution of

OP(HA) coincides with the solution of OP(HA);

(iii) The solution of OP(HA) is a perturbation, around the

forbidden region, of the solution described in Remark

1.

From (i) and (ii) we deduce that there exists a finite optimal

solution for any initial hybrid state (i0, x0) � X f of the HA,

and that if (i0, x0) ∈ X f the optimal solution of HA uses

dynamics A3 for the minimum time required to leave X f .

From then on the optimal solution of HA is used. This can

be viewed by the simulations depicted in Figure 6(a) for

an admissible point (continuous line) and a forbidden point

(dashed line). The optimal cost from the admissible point

is J = 15.7, and for the other one is J = 5.05 · 105. For

completeness also the index trajectory i(k) is reported in

Figure 6(b).

From Figure 6(a) it can be seen that once the ”obstacle”

X f is avoided, the systems steers towards the origin by

following the solution provided in Remark 1.

The total computational time (Matlab, up to date laptop)

for constructing the table in Figure 5 is about 40 hours. This

time is extremely big, but a very dense space discretisation

was considered (1.6× 105 points). It is important, however,

to point out that this computational effort is spent off-line.

The on-line part of the procedure consists in measuring the

hybrid state (i(k), x(k)) and comparing its value with the

switching table to decide the optimal strategy.

VI. Conclusion

We addressed the problem of designing a feedback con-

trol law for a discrete time hybrid automaton HA. We

showed that this law can be designed so that the system’s

behaviour satisfies two levels of specifications. The former

(the low level specification) exposes liveness and safety

conditions for the HA. We showed that the action of the

low-level controller is to restrict the invariants of HA.

The latter (the high level task), performs an optimisation

search. In particular, within the degree of freedom left

by the low level task, for a given initial state it finds

the evolution that minimises a given performance index.

Although the procedure is theoretically successful, it may

lack in numerical robustness. One perspective of interest for

future developments is to provide structural conditions of

the HA that guarantee the existence of admissible optimal

control laws.
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