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Abstract: We deal with the problem of controlling a safe place/transition nets so
as to avoid a set of forbidden markings F . If a given set of markings has property
REACH, i.e., if it is closed under the reachability operator, using the technique
of unfolding it is possible to efficiently design a maximally permissive supervisor
to solve this control problem. We consider the additional problem of forbidding
a larger set FI that also contains those markings from which a marking in F is
inevitably reached unless the controller introduces a deadlock and show how this
problem can be solved still using the unfolding. Copyright c©2005 IFAC
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1. INTRODUCTION

Although partial order methods (Esparza et al.,
2002; McMillan, 1995) have proved to be a pow-
erful instrument in the verification of concurrent
systems, the application of these techniques to
the control of discrete event systems has not re-
ceived a lot of attention. Recently, He and Lem-
mon (2000; 2002) have presented an original ap-
proach based on unfolding for liveness verification
and enforcing. However we have shown (Xie and
Giua, 2004) that that some key results of these
papers need to be refined. As a result, the applica-
bility of unfolding for Petri net supervision is still
an open issue.
In the paper we consider discrete event systems
modeled by safe place/transition nets with a con-
trol specification that requires avoiding a set of
forbidden marking F . In the current state of in-
vestigation, we assume that all transitions are con-
trollable.
In (Giua and Xie, 2004) we assumed that the set
F has property REACH: once a forbidden marking
is reached, all markings reachable from it will also
be forbidden. Under this assumption the unfolding
has a special property: if a configuration (i.e., a
set of transition firings) is forbidden, any larger
configuration should also be forbidden. We showed
that in this case a simple control structure - that
consists in a set of places to be added to a finite

prefix of the unfolding, called order 1 unfolding -
can be used to implement a maximally permissive
control policy that enforces the specification.
In this paper there are three main new contribu-
tions.
Firstly, we define the notion of order 2 unfolding
and show its relevance to the control of forbidden
markings.
Secondly, we consider the problem of preventing
the larger set FI of impending forbidden marking.
This is a superset of the forbidden markings that
also includes all those markings from which - unless
the supervisor blocks the plant - a marking in F is
inevitably reached in a finite number of steps. In
this case, we use a larger prefix of the unfolding,
that we call order 2, to compute a set of control
places that, added to order 1 unfolding, can be
used to implement a maximally permissive control
policy for this problem.
Finally, unlike (Giua and Xie, 2004) where the
set of forbidden marking was given, we show that
thanks to the special structure of the unfolding (it
is an acyclic net) it is possible to characterize the
deadlock markings of the original net by structural
analysis.
The approach we present in the paper requires
an exhaustive enumeration of the set of forbidden
markings. It has however the advantage of allowing
one to construct a maximally permissive supervisor



in the form of a ”controlled” occurrence net (i.e., an
occurrence net with the addition of control places)
using a procedure where the set of markings of the
plant needs not be exhaustively enumerated. The
closed loop system in this approach can also be
represented by this controlled occurrence net.

2. BACKGROUND ON PETRI NETS

The Petri net model considered in this paper is an
ordinary Place/Transition net (P/T net) denoted
N = (P, T, F ), where P is a set of m places; T is
a set of n transitions; F ⊆ (P × T ) ∪ (T × P ) is
the flow function. The preset and postset of a node
x ∈ P ∪ T are denoted •x , {x′ |(x′, x) ∈ F } and
x• , {x′ |(x, x′) ∈ F }.
A marking is a vector M : P → N; we denote
M(p) the marking of place p. A P/T system or net
system 〈N,M0〉 is a net N with an initial marking
M0.
A transition t is enabled at M iff M(p) > 0 for
all p ∈ •t. If t is enabled, it may fire yielding the
marking M ′ = M + C(· , t). We write M |σ〉 M ′

to denote that the sequence of transitions σ =
tj1 · · · tjk

is enabled at M and its firing yields M ′.
We can associate to a sequence σ a firing vector
X : T → N such that X(t) = k if the transition t
is contained k times in σ.
A marking M is reachable in 〈N,M0〉 iff there
exists a firing sequence σ such that M0 |σ〉 M .
The set of all markings reachable from M0 is called
reachability set and is denoted R(N,M0).
The incidence matrix of a net is an m× n matrix
C where; C(p, t) = 1 if (t, p) ∈ F and (p, t) /∈ F ,
C(p, t) = −1 if (p, t) ∈ F and (t, p) /∈ F , else
C(p, t) = 0.
A place p is safe if for all M ∈ R(N, M0) it holds
M(p) ≤ 1. A net system 〈N,M0〉 is said safe if
all its places are safe. A marking M of a safe net
system is a binary vector and can also be seen as
a set of places M = {p ∈ P |M(p) = 1}.

3. UNFOLDING

In this section we informally recall how it is possi-
ble, given a safe net system 〈N, M0〉, to unfold it
constructing a labelled occurrence net Ñ(M0).
To the unfolding Ñ(M0) = (P̃ , T̃ , F̃ ) a labelling
function ` : (P̃ → P )∪ (T̃ → T ) is also associated:
it maps each node of the unfolding into a node of
the original net N . Note that usually a node p or
t of N may correspond to more than one node of
the unfolding, i.e., `−1(p) ⊂ P̃ and `−1(t) ⊂ T̃ .
The labelling function can also map set of nodes
into set of nodes. In particular, in the following pro-
cedure given a set of places P ′ ⊆ P of the original
net, we write P ′ = ˆ̀(P̃ ′) to denote that the set of
places P̃ ′ of the unfolding has the same cardinality
of P ′ and P ′ =

{
p ∈ P

∣∣∣p̃ ∈ P̃ ′, p = `(p̃)
}

, hence

each place of P̃ ′ maps into a place of P ′ but no
two places in P̃ ′ map into the same place of P ′.

Procedure 1. (Unfolding of a safe net system
〈N, M0〉 into an occurrence net Ñ(M0))
(1) Add to the unfolding a set of source places P̃0

with ˆ̀(P̃0) = {p ∈ P |M0(p) = 1}.
(2) Let i := 0.
(3) Let P̃exp := P̃i

(4) If P̃i = ∅ then STOP.
(5) Let i := i + 1.
(6) Let P̃i := ∅.
(7) For all transitions t ∈ T

For all sets of places P̃ ′ ⊆ P̃exp such that the
following three conditions are all verified:

- ˆ̀(P̃ ′) = •t,
- all places in P̃ ′ are concurrent,
- P̃ ′ ∩ P̃i−1 6= ∅,

(a) Add to the unfolding a new transition t̃

with ˆ̀(t̃) = t.
(b) Add to the unfolding a set of new places

P̃ ′′ with ˆ̀(P̃ ′′) = t•.
(c) Add an arc from each place in P̃ ′ to t̃.
(d) Add an arc from t̃ to each place in P̃ ′′.
(e) Let P̃i := P̃i ∪ P̃ ′′.
(f) Let P̃exp := P̃exp ∪ P̃ ′′.

(8) Goto 4. ¥
A discussion of this procedure can be found in
(Giua and Xie, 2004).
We can consider an unfolding both as a net and
as a marked net where the initial marking assigns
to each source place in P̃0 a token, so we need
not specify its initial marking and simply write
R(Ñ(M0)) to denote its reachability set.
Note that the unfolding is a safe net so we can
represent a marking with the set of non-empty
place: we write M̃0 = P̃0 and in general M̃ ={

p̃ ∈ P̃
∣∣∣M̃(p̃) = 1

}
. It is also possible to apply the

mapping ˆ̀ to markings.
Definition 2. To each marking M̃ of the unfolding
corresponds a marking of the original net M =
ˆ̀(M̃) ,

{
p ∈ P |p = `(p̃) , p̃ ∈ M̃

}
. If ˆ̀(M̃) =

ˆ̀(M̃ ′) we write M̃ =P M̃ ′. ¥
A firing vector X̃ of the unfolding is a binary
vector that can also be seen as a set of transitions
X̃ =

{
t̃ ∈ T̃

∣∣∣X̃(t̃) = 1
}

.

Definition 3. Given a transition t̃ ∈ T̃ , the
minimal firing vector of the unfolding that contains
it is called its local configuration; it can be show
that this vector is unique and we denote it [t̃]. The
marking reached firing configuration X̃ (resp., [t̃])
will be denoted M̃(X̃) (resp., M̃([t̃])). ¥
It is also clear that each marking M̃ reachable
in Ñ(M0) corresponds to a unique configuration
in Ñ(M0) (the unfolding net is acyclic) that we
sometimes denote conf(M̃).
Given a net system 〈N,M0〉, following He and
Lemmon (2002), we consider a finite prefix of its
unfolding.
Definition 4 (Order 1 unfolding). The order
1 unfolding, denoted Ñ1(M0), is a finite prefix of
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Fig. 1. A safe Petri net.

the unfolding obtained by Procedure 1 stopping the
construction of the unfolding when we reach a cut-
off transition t̃, i.e., a transition such that:
EITHER firing the local configuration of t̃ brings
back to the initial marking, i.e., M̃([t̃]) =P M̃0;
OR there exists another transition t̃′ with the fol-
lowing properties:
(a) t̃′ has a smaller configuration than t̃: [t̃′]⊂ [t̃];
(b) the markings reached firing the two configura-
tions are equivalent, i.e., M̃([t̃′]) =P M̃([t̃]).
In the following we call t̃′ the mirror transition of
t̃ in Ñ1(M0). ¥
The complexity of checking if a given transition t̃
is a cut-off is linear in the size of [t̃].
Algorithm 5. The order 1 unfolding can be con-
structed using a modified version of Procedure 1
where the instruction 7.(f) is changed to
7.(f ’) If t is not a cut-off transition, then let
P̃exp := P̃exp ∪ P̃ ′′. ¥
Example 6. Consider the net shown in Figure 1.
Its order 1 unfolding is shown in Figure 2 (ig-
nore the red subnet). Places and transitions are
arranged in tiers (levels): tier 0 contains the ini-
tially marked places, tier 1 the initially enabled
tansitions and their output places, etc. A place p̃
of the unfolding such that `(p̃) = pk is labelled k.
A transition t̃ of the unfolding such that `(t̃) = tk
is labelled k. The cut-off transitions are denoted
by a thick line: they are transition 2 on tier 3
and transition 6 on tier 4. Transition 5 on tier 2
is not not a cut-off transition: after its firing the
unfolding cannot proceed because a deadlock is
reached. Note that we also consider as part of the
order 1 unfolding the cut-off transitions and their
output places. ¥
The following result follows from an original result
presented in (McMillan, 1995).
Proposition 7. The labelling function maps the
reachability set of the order 1 unfolding Ñ1(M0)
into that of the original system, i.e., R(N, M0) ={

M ∈ Nm
∣∣∣M = `(M̃) , M̃ ∈ R(Ñ1(M0))

}
. ¥

We can also define a larger finite prefix of the
unfolding.
Definition 8 (Order 2 unfolding). Once con-
structed Ñ1(M0) , assume we continue the unfold-
ing until we reach a transition t̃ such that there
exist a transition t̃′ with the following properties:
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Fig. 2. The order 1 unfolding (subnet in black) and
the order 2 unfolding (the complete net) of the
net in Figure 1.

(a) either t̃′ does not belong to Ñ1(M0) or it is a
cut-off transition of Ñ1(M0);
(b) t̃′ has a smaller configuration: [t̃′] ⊂ [t̃];
(c) the two configurations reach equivalent mark-
ings: M̃([t̃′]) =P M̃([t̃]).
The resulting net, called order 2 unfolding, will be
denoted Ñ2(M0). ¥
Example 9. Consider the net shown in Figure 1.
Its order 2 unfolding is shown in Figure 2. The cut-
off transitions of the order 2 unfolding are the red
transitions drawn with a thick line. ¥

4. A CLASS OF FORBIDDEN MARKINGS

We consider a control problem where the set of
forbidden marking F has a special structure.
Definition 10. A set F ⊆ R(N, M0) has prop-
erty REACH wrt a net system (N, M0) if M ∈
F and M ′ ∈ R(N, M) ⇒ M ′ ∈ F . ¥
Thus property REACH implies that the set is
closed under the reachability operator. The follow-
ing result shows an important consequence of the
property REACH.
Theorem 11 (Giua and Xie (2004)). Given a
set F with property REACH and a marking M̃ such
that ˆ̀(M̃) ∈ F , if M̃ is reachable with configuration
X̃, then any larger configuration X̃ ′ ≥ X̃ leads to
a marking M̃ ′ such that ˆ̀(M̃ ′) ∈ F . ¥
A forbidden marking M̃ can be prevented control-
ling the transitions inputting into the places that
belong to M̃ and that do not precede any other
such transition.
Definition 12. If M̃ is reachable with configu-
ration X̃, the set of control transitions of M̃ is
X̃c =

{
t̃ ∈ X̃

∣∣∣(6 ∃t̃′ ∈ X̃) t̃′ 6= t̃, t̃ ∈ [
t̃′
]}

. ¥



We will use the following control structure to
prevent reaching M̃ .
Definition 13. Given a marking M̃ with set of
control transitions X̃c, the control place p̃c for
M̃ is a new place initially marked with

∣∣∣X̃c

∣∣∣ − 1
tokens and with an arc going to each transition in
X̃c. The incidence matrix of the control place is
C̃(p̃c, t̃) = −1 if t̃ ∈ X̃c, else C̃(p̃c, t̃) = 0. ¥
The net obtained by adding these control places to
the order 1 unfolding is called Ñ1,c(M0). This net
is not necessarily an occurrence net because the
control places may contain more than one token.
Example 14. Given the net in Figure 1, as-
sume we want to forbid the set of markings F =
{(00010001)}. The (unique) forbidden marking is
{p4, p8}. The two corresponding markings on the
unfolding are: (a) place 4 on tier 0 and place 8
on tier 2; (b) places 4 and 8 on tier 3. The corre-
sponding control places are, respectively, pc1 and
pc2 shown in Figure 3. Control place pc1 is empty
because its corresponding set of control transitions
is a singleton: this means that transition 5 on tier
1 can never fire.
If we ignore all other control places except pc1 and
pc2, Figure 3 shows the net Ñ1,c(M0). ¥
Definition 15. The control policy for F uses the
net Ñ1,c(M0) and can be defined as follows.
(1) The plant and the net Ñ1,c(M0) are initialised

with the respective initial marking.
(2) Compute a control pattern as follows: if T̃e

is the set of transitions enabled in Ñ1,c(M0),
the set of transitions that are enabled by the
controller on the plant is Te = `(T̃e).

(3) If a transition t fires in the plant, the unique
transition t̃ ∈ `−1(t) enabled in Ñ1,c(M0) is
fired. If t̃ is a cut-off transition with mirror
transition t̃′ and whose firing yields M̃ , after
the firing of t̃ the marking of the unfolding
is reset to the mirror marking M̃ ′ = M̃ −
C̃

(
[t̃]− [t̃′]

)
.

(4) Goto 2. ¥
This control policy is maximally permissive if F
has property REACH (Giua and Xie, 2004).

5. CONTROL POLICIES THAT DO NOT
INTRODUCE BLOCKING

For some control problems it is not sufficient to
prevent a net from reaching markings in a set F
but it is also necessary to prevent the set FI of
markings that will inevitably lead to a marking in
F .
Definition 16. Given a set F ⊆ R(N,M0) we
define its impending set as

FI = {M ∈ R(N, M0) | (∃k ∈ N)R≥k(N,M) ⊆ F ,
R<k(N,M) ∩D(N, M0) ⊆ F},

where R≥k(N,M) (resp., R<k(N, M)) denotes the
set of markings reachable from M with a firing
sequence containing at least (resp., less than) k
transitions, and D(N,M0) is the set of dead mark-
ings of the net system 〈N, M0〉. ¥

Thus, starting from a marking in FI any evolution
of length k or more and any evolution of length
less than k that cannot be continued leads to F .
Clearly if a marking in FI\F is reached, the only
means the supervisor has to prevent the plant from
reaching a marking in F is that of blocking it.
Hence avoiding FI allows the supervisor to prevent
F without having to block the plant. Note that by
definition F ⊆ FI .
In this paper we extend the results presented in
(Giua and Xie, 2004), assuming that the larger set
FI must be avoided. Property REACH will allow
us to use unfolding to design optimal controllers.
Theorem 17. If a set F has property REACH,
then also the set FI has property REACH.

Proof. Consider any marking M ∈ FI . From the
definition, there exists an integer k such that
R≥k(N,M) ⊆ F , R<k(N,M) ∩ D(N, M0) ⊆ F .
Consider any marking M ′ reachable from M such
that M ′ ∈ Ri(N, M). If i ≥ k, then M ′ ∈ F
and hence M ′ ∈ FI . If i < k, then M ′ ∈
FI since R≥k−i(N, M ′) ⊆ R≥k(N, M) ⊆ F ,
and R<k−i(N, M ′) ∩ D(N,M0) ⊆ R<k(N,M) ∩
D(N, M0) ⊆ F .

Since FI also has the REACH property, the control
policy for F applies if FI is known and the order
1 unfolding is enough. Unfortunately, for most
control problems, FI is not given. To check whether
ˆ̀(M̃) ∈ FI , we need to check whether F is
avoidable starting from M̃ . Order 1 unfolding is no
longer enough as it does not allow the reachability
analysis for all reachable markings. Next theorem
shows this is possible with order 2 unfolding.
Theorem 18. Given a net system 〈N,M0〉, let
M ∈ R(N, M0) be a reachable marking and let
M̃ ∈ R(Ñ1(M0)) be a marking of the unfolding
such that ˆ̀(M̃) = M . Then the order 1 unfolding
Ñ1(M) of net N with initial marking M is a subnet
of N2(M0) starting at M̃ .

Proof. Consider any configuration X̃ of Ñ1(M0)
corresponding to marking M̃ . Considering the or-
der 1 unfolding Ñ1(M̃) starting at M̃ . For any
configuration of Ỹ of Ñ1(M̃), from the complete-
ness of the unfolding net Ñ(M0), X̃ + Ỹ is a
configuration of Ñ(M0) and Ñ1(M̃) is a subnet
of Ñ(M0). The theorem is proved if any transition
t̃ in Ỹ is either a cut-off transition of Ñ2(M0) or
its local configuration [t̃] does not contain any cut-
off transition of Ñ2(M0). For this purpose assume
that there exists a transition t̃ in Ỹ such that its
local configuration [t̃] contains a cut-off transition
w̃ of Ñ2(M0). Of course w̃ belongs to Ñ1(M̃) as
well. From the definition of Ñ2(M0), there exists
another transition w̃′ such that (a) either w̃′ does
not belong to Ñ1(M0) or it is a cut-off transition
of Ñ1(M0); (b) w̃′ has a smaller configuration:
[w̃′] ⊂ [w̃]; (c) the markings reached firing the two
configurations are equivalent: M̃([w̃′]) =P M̃([w̃]).
From the above definition, w̃′ is a transition of the



local configuration [t̃]. Further by construction t̃

is not in conflict with any transition in X̃ and
hence w̃′ is not in conflict with X̃. As a result,
Z̃ = X̃ ∪ [w̃′] is configuration, Z̃ ⊂ X̃ and w̃′ is
a transition of Ñ1(M̃). Similarly w̃ is a transition
of Ñ1(M̃) and it is a cut-off transition of Ñ1(M̃).
Because t̃ follows w̃, it cannot be in Ñ1(M̃). This
contradicts the fact that t̃ is a transition of Ñ1(M̃)
and concludes the proof.

Hence, if we identify in the order 2 all markings M̃

such that ˆ̀(M̃) ∈ F , then we can easily identify,
by reachability analysis, all markings in FI .
We finally show that the controlled net, when all
markings in FI have been forbidden, does not
contain controller induced deadlocks.
Theorem 19. Let Ñ1,c(M0) be the controlled un-
folding net in all markings M̃ such that ˆ̀(M̃) ∈ FI

are forbidden by their related control places. Then
there exist no dead marking in M̃ of Ñ1,c(M0)
unless it is also a dead marking of Ñ1(M0).

Proof. Let us assume, it is possible to reach in
the controlled net a marking M̃ that is a control
induced dead marking, i.e., a marking that is dead
because of the controller but that is not dead in
the order 1 unfolding. Since the control places
only forbid transitions firings that lead to FI ,
then without control all transitions enabled at M̃
would lead to a marking in FI in one step. By
definition, this implies that ˆ̀(M̃) ∈ FI . But this is
a contradiction, because we assumed no markings
in FI is reachable in the controlled net.

6. DEADLOCK AVOIDANCE CONTROL

We present an approach based on linear algebra to
identify markings in FI and to prevent them.
We consider a particular case in which the set of
forbidden marking F is the set of dead markings.
Hence the set FI is the set of the impending
deadlocks and a control law that avoids this set
is a maximally permissive control law that makes
a blocking net nonblocking.
In this section, when we need not distinguish
between order 1 and order 2 we denote an unfolding
Ñ while its incidence matrix is the m̃ × ñ matrix
C̃. Similarly, the controlled net with the addition of
m̃c control places is denoted Ñc while its incidence
matrix is the (m̃ + m̃c)× ñ matrix C̃c.
We first observe an important advantage of work-
ing on the unfolding.
Proposition 20. Let us consider an unfolding
net Ñ(M̃0). If the vector X̃ ∈ Nñ satisfies M̃0 +
C̃X̃ ≥ 0, then there exists a firing sequence enabled
in Ñ(M̃0) whose firing count vector is X̃. The same
result applies to the controlled net Ñc(M̃c,0).

Proof. This is a classic result that holds for all
acyclic nets. The unfolding is acyclic by construc-
tion, and the addition of control places (with only
output arcs) does not modify this property.

As an obvious corollary of this result, one can
characterize reachability with the state equation.
Corollary 21. The set of reachable markings of
an unfolding net Ñ(M̃0) is equal to the set of
potentially reachable markings, i.e., R(Ñ(M0)) ={

M̃ ∈ Nm̃
∣∣∣M̃ = M̃0 + C̃X̃, X̃ ∈ Nñ

}
. The same

result holds for a controlled net Ñc(M̃c,0). ¥
The following result gives a linear algebraic char-
acterization of the set of deadlock markings.
Proposition 22. Given an unfolding net Ñ(M̃0),
we have that a marking M̃ is dead if and only if
for all t̃ ∈ T̃ if holds

∑

p̃∈• t̃

M(p̃) ≤ |•t̃| − 1.

Proof. The result follows from the fact that the
unfolding is a safe net, hence t̃ if enabled if and
only if M(p̃) = 1 for all p̃ ∈ •t̃.

This result does not hold for the controlled net,
because the control places are not necessarily safe.
However, the following result holds.
Proposition 23. Given a controlled net Ñc(M̃c,0),
let P̃ be the set of places of the unfolding net, and
P̃c the set of control places. Given any marking M̃ ,
we can associate to each place p̃c ∈ P̃c a binary
counter µ(p̃c) ∈ {0, 1} that satisfies the following
equations:

µ(p̃c) ≤ M(p̃c) ∨ Mc,0(p̃c)µ(p̃c) ≥ M(p̃c). (1)

Then a marking M̃ is dead if and only if for all
t̃ ∈ T̃ if holds

∑

p̃∈P̃∩• t̃

M(p̃) +
∑

p̃c∈P̃c∩• t̃

µ(p̃c) ≤ |•t̃| − 1.

Proof. We first observe that the first equation
(1) implies that µ(p̃) = 0 if M(p̃c) = 0, while
the second equation (1) implies that µ(p̃) = 1 if
M(p̃c) > 0 (note that by construction the control
place is such that Mc,0(p̃c) ≥ M(p̃c)), i.e., µ(p̃) = 1
if and only if p̃ is marked. The results follows
because t̃ is enabled if and only if all its input places
are marked.

Our third and final preliminary result characterizes
redundant control places, i.e., places that can be
removed without changing the behavior of the
controlled net.
Definition 24. Given a controlled net Ñc(M̃c,0),
let Ñ ′

c(M̃
′
c,0) be the net obtained from Nc removing

control place p̃′c. Place p̃′c is redundant in Ñc(M̃c,0)
if for all reachable markings M̃ ∈ R(Ñc(M̃c,0))
and for all transitions t̃ ∈ p̃′• it holds (∀pc ∈ •t̃ \
{p′c}) M(pc) > 0 =⇒ M(p′c) > 0. ¥
Proposition 25. With the notation of the previ-
ous definition, place p̃′c is redundant in Ñc(M̃c,0)
if and only if the following integer programming
problem (IPP)

k = min C(p̃′c, ·)X̃
s.t. M̃ ′

c,0 + C̃ ′X̃ ≥ 0



— where C̃ and C̃ ′ are, respectively, the incidence
matrices of Ñc and Ñ ′

c — has optimal solution k∗

such that Mc,0(p̃′) + k∗ ≥ 0.

Proof. By Proposition 20, any vector X̃ satisfy-
ing the IPP corresponds to a firable sequence of
Ñ ′

c(M̃
′
c,0). This sequence is never disabled by place

p′c in Ñc(M̃c,0) if Mc,0(p̃′)+k∗ ≥ 0. Hence Ñ ′
c(M̃ ′

c,0)
and Ñc(M̃c,0) have the same firable sequences.

Next algorithm shows how to design a maximally
permissive deadlock avoidance controller.
Algorithm 26. Control law for FI

(1) Construct the order 2 unfolding Ñ2(M̃0).
(2) Determine the set of dead markings of Ñ2(M̃0),

excluding the markings that include the output
places P̃out of the cut-off transitions of the
order 2 unfolding 1 . This set corresponds to
the feasible solutions M̃ of the following con-
straint set




M̃ = M̃0 + C̃2X̃
∑

p̃∈• t̃

M(p̃) ≤ |•t̃| − 1 (∀t̃ ∈ T̃ )

M̃(p̃) = 0 (∀p̃ ∈ P̃out)

M̃ ∈ Nm̃, X̃ ∈ Nñ

and for each marking M̃ add to the unfold-
ing the corresponding set of control places to
obtain a net Ñ2,c(M̃c,0).

(3) Determine the set of dead markings of Ñ2,c(M̃c,0)
as the set of feasible solutions M̃ of the follow-
ing constraint set




M̃ = M̃c,0 + C̃2,cX̃

µ(pc) ≤ M̃(pc) (∀p̃c ∈ P̃c)

M̃c,0(pc)µ(pc) ≥ M̃(pc) (∀p̃c ∈ P̃c)
∑

p̃∈P̃∩• t̃

M(p̃) +
∑

p̃c∈P̃c∩• t̃

µ(p̃c) ≤ |•t̃| − 1 (∀t̃ ∈ T̃ )

M̃(p̃) = 0 (∀p̃ ∈ P̃out)

M̃ ∈ Nm̃, X̃ ∈ Nñ, µ ∈ {0, 1}m̃c

(4) If the set of dead markings determined at the
previous step is not empty, add to Ñ2,c the
corresponding control places and go to 3.

(5) Let Ñ1,c be the net obtained from Ñ2,c re-
moving all places and transitions that do not
belong to the order 1 unfolding, and removing
all control places that have arcs going to a
transition that has been removed.

(6) Check all control places of Ñ1,c for redun-
dancy, using the IPP of Proposition 25, and
remove the redundant ones. ¥

The net constructed with the previous algorithm
can be used to compute a maximally permissive
nonblocking control policy, as in Definition 15.

1 These markings even if they are dead in Ñ2(M̃0), do not
necessarily correspond to dead markings in the original net.
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Fig. 3. The net Ñ1,c in Example 27 before removing
the redundant control places.

Example 27. The net in Figure 1 is blocking.
Using the previous algorithm we first construct
its order 2 unfolding (see Figure 2) and at step
2 identify three blocking markings corresponding
to the unique dead marking of the original net
{p4, p8}: (a) place 4 on tier 0 and place 8 on
tier 2, (b) places 4 and 8 on tier 3, (c) places 4
and 8 on tier 6 (the rightmost places). Iterating
at step 3 of the algorithm we identify new con-
trol induced markings, and add the corresponding
control places to the order 2 unfolding. At step
5, removing the second order subnet, we obtain
the net Ñ1,c shown in Figure 3. Finally at step 5
we eliminate the redundant places: only places pc,3

and pc,6 remain at the end of the algorithm. ¥
7. CONCLUSIONS

In this paper we have used the technique of unfold-
ing to design maximally permissive nonblocking
supervisors for safe Petri nets assuming that the
specification is given by a set of forbidden markings
with property REACH.
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