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Abstract

In this paper we deal with the problem of determining a set of decentralized controllers for P/T nets that
are able to impose a given global specification on the net behaviour. More precisely, both the global
specification and the decentralized specifications are given in terms of generalized mutual exclusion
constraints (GMECs) thus the controllers take the form of monitor places.

In this paper we provide some preliminary results that are a first step towards a more general and
systematic approach to the problem. The lines of our future research in this topic are described in details
in the last section, devoted to conclusions and future works.
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1. Introduction

In the last years decentralized control has received a great attention in the discrete event system control
(DES) area [6]. This fact has a lot of motivations. (a) Sometimes, real world systems are so large in scale
that they require solutions that are modular such as modern automated manufacturing systems. (b) Plants
may be in nature distributed across space or across a network of devices such as modern communication
systems, public utilities or railway networks.

In the context of supervisory control based upon formal languages specifications a lot of decentralized
DES control problems have been studied [7, 8, 9, 10]. On the contrary, decentralized supervisory control
has not received a great attention in the context of Petri Nets (PNs). The compact representation of PNs
may help in reducing the complexity of decentralized supervisory control problems. In the few works
that can be found in the literature a state predicates formulation is adopted: in [5] global specification-
s are implemented by local supervisors with communication, and in [11] a central coordinator is also
present; in [3] global specifications without central coordination is considered and decentralized admis-
sibility of a state predicate formulated in terms of generalized mutual exclusion constraints (GMECs) is
defined; finally, in [4], the transformation of inadmissible decentralized constraints into admissible ones
is considered.

In this paper the attention is focused on global state specifications given in terms of GMECs and on a
control architecture without central coordinator and without communication between local supervisors.
This choice is motivated by the following considerations. (i) It is not always possible to have commu-
nication with all plant sensors or actuators because of economic reasons or bandwidth limitations. This
problem is particularly relevant for plants having a wide geographic extension, or a large numbers of
devices such as in modern communication systems. (ii) Even if centralized control is possible, the com-
munication with a certain area of the plant can be lost. It could be useful to use a decentralized control
without communication for this area until communication comes back.

More precisely, in this paper, that is a preliminary contribution in this context, we assume that the set
of places is partitioned into a given number nr of subsets Pi’s. Our goal is that of determining nr

decentralized GMECs in order to impose a certain specification given in terms of a global GMEC (l, k),
where the i-th decentralized GMEC (li, ki) is defined over the i-th subset of places Pi. Assuming that
the vectors li’s are taken equal to the projection of l on Pi, we investigate the possibility of determining
the constants ki’s via integer programming, so as to maximize the cardinality of the set of legal markings
under the decentralized control.

Note that the problem we deal with in this paper is different from that considered by Iordache and
Antsaklis [4] whose their goal was that of appropriately transform a given GMEC in order to guarantee
d-admissibility.

2. Background on Petri nets

In this section we recall the formalism used in the paper. For more details on Petri nets we address to [2].

A place/transition (P/T) net is a structure N = ⟨P, T,Pre,Post⟩ where: P is a set of m places
represented by circles; T is a set of n transitions represented by bars; P ∩ T = ∅, P ∪ T ̸= ∅; Pre

(Post) is the m × n sized, natural valued, pre-(post-)incidence matrix. For instance, Pre(p, t) = w

(Post(p, t) = w) means that there is an arc from p(t) to t(p) with weight w. The incidence matrix C of
the net is defined as C = Post− Pre. A marking is a m× 1 vector m : P → N that assigns to each
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place of a P/T net a non-negative integer number of tokens. A P/T system or net system ⟨N,m0⟩ is a P/T
net N with an initial marking m0. A transition t ∈ T is enabled at a marking m iff m ≥ Pre(·, t). If t
is enabled, then it may fire yielding a new marking m′ = m+ Post(·, t)− Pre(·, t) = m+C(·, t).
The notation m[t > m′ means that an enabled transition t may fire at m yielding m′. A firing sequence
from m0 is a (possibly empty) sequence of transitions σ = t1, . . . , tk such that m0[t1 > m1[t2 >

m2 . . . [tk > mk. A marking m is reachable in ⟨N,m0⟩ iff there exists a firing sequence σ such that
m0[σ > m. Given a net system ⟨N,m0⟩ the set of reachable markings is denoted R(N,m0).

3. Background on monitor approach

Assume we are given a set of legal markings L ⊆ Nm, and consider the basic control problem of
designing a supervisor that restricts the reachability set of the plant in closed loop to L ∩ R(N,m0).
Of particular interest are those PN state-based control problems where the set of legal markings L is
expressed by a set of nc linear inequality constraints called Generalized Mutual Exclusion Constraints.
A single GMEC is a couple (l, k) where l : P → Z is a 1 × m weight vector and k ∈ Z. Given the
net system ⟨N,m0⟩, a GMEC defines a set of markings that will be called legal markings: M(l,k) =

{m ∈ Nm | lm ≤ k}. The markings that are not legal are called forbidden markings. A controlling
agent, called supervisor, must ensure the forbidden markings will be not reached. So the set of legal
markings under control is Mc(l, k) = M(l, k) ∩ R(N,m0). Without loss of generality, from now on
we confine our attention to the case of nc = 1.

It has been shown [1] that the Petri net controller that enforces (l, k) is a place pc called monitor with
incidence matrix cc ∈ Z1×n given by cc = −lCp where Cp is the incidence matrix of the plant. The
initial marking of the monitor, denoted as mc0 ∈ N, is given by mc0 = k − lmp0 where mp0 ∈ Nm×1

is the initial marking of the plant. The controller exists iff the initial marking is a legal marking, i.e.
k − lmp0 ≥ 0. By definition a monitor is loop-free1, thus its incidence matrix cc uniquely defines
the post- and pre- incidence matrices c+c and c−c , i.e., c+c = max{cc,0} and c−c = max{−cc,0}.
The monitor so constructed is maximally permissive, i.e. it prevents only transitions firings that yield
forbidden markings.

4. Problem statement

Let ⟨N,mp0⟩ be the P/T system to be controlled, where N = ⟨P, T,Pre,Post⟩.

Assume that the set of places P is partitioned into nr subsets P1, . . . , Pnr , i.e., Pi ∩Pj = ∅ if i ̸= j, and
∪nr
i=1Pi = P .

Assume that a global specification is given in terms of a GMEC (l, k) with nonnegative weights, i.e.,
l(p) ≥ 0 for all p ∈ P , and k > 0.

We want to determine a set of decentralized GMECs (li, ki), i = 1, . . . , nr, whose support of places are
Pi, i = 1, . . . , nr, respectively, such that

∩nr
i=1M(li, ki) ⊆ M(l, k).

We call decentralized monitors the set of monitor places forcing the GMECs (li, ki), i = 1, . . . , nr.

1A transition t cannot be at same time input and output transition of a monitor.
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Note that here we are assuming that all transitions are controllable and observable. The relaxation of this
hypothesis will be one of the main goals of our future research in this topic.

5. Synthesis of decentralized GMECs

Different criteria can be followed to determine the vectors li’s and the constants ki’s of the decentralized
GMEC.

A very natural choice is that of assuming that each vector li is obtained by simply projecting the vector
l of the global GMEC on the support Pi of the i-th decentralized GMEC, thus leaving the constants ki’s
as the only unknowns of the problem. This is the case considered in this paper, namely we assume that

(A1) li(p) = l(p) if p ∈ Pi, li(p) = 0 otherwise.

Under the above assumption the following result clearly holds.

Corollary 1 Let (l, k) be a global GMEC over a net system ⟨N,mp0⟩. Let P1, . . . , Pnr be a given
partition of places as described in Section 4. Assume that the vectors li’s of the nr decentralized GMECs
are chosen as in Assumption (A1). The following implication holds

(l1m ≤ k1) ∧ . . . ∧ (lnrm ≤ knr) ⇒ lm ≤ k

if
∑nr

i=1 ki ≤ k with ki ∈ N for all i = 1, . . . , nr.

Obviously, different values of ki’s provide different sets of legal markings. Our goal here is that of trying
to determine a systematic criterion to select the values of ki’s in order to maximize the cardinality of the
set of markings that are legal under the decentralized control, namely the cardinality of the set

∩nr
i=1M(li, ki).

The solution we propose here is based on intuitive geometrical considerations that lead to an optimality
criterion if the constraint m ∈ Nm is relaxed to m ∈ (R+

0 )
m. In particular, the solution we propose is

based on the following result.

Lemma 2 Let
m∑
i=1

wixi ≤ b, wi, xi, b ∈ R+
0

be a convex region in the m-dimensional space. The (generalized) volume of this region, that we denote
as Vm, is equal to

Vm =
1

m!

bm∏m
i=1wi

.

Proof: If m = 1 the volume is the length of the segment described by the equation x1 ≤ b/w1, thus the
statement clearly holds.

If m = 2 the volume is the area of a strait-angled triangle having base equal to b/w1 and height equal to
b/w2, thus

V2 =
1

2

b2

w1w2
.
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Figure 1. Proof of Lemma 2 in the case of m = 3.

If m = 3 the volume can be easily computed by simple integration, namely using the notation of Figure 1:

V3 =
1

2

∫ b/w3

0
γ1(x)γ2(x)dx

=
1

2

∫ b/w3

0

(b− w3x)
2

w1w2
dx =

1

3!

b3

w1w2w3
.

Generalizing, the volume Vm can be obtained as∫ b/wm

0

1

(m− 1)!

(b− wmx)m−1∏m−1
i=1 wi

dx =
1

m!

bm∏m
i=1wi

,

thus proving the statement. �

Using Lemma 2 we can prove the following proposition.

Proposition 3 Let (l, k) be a global GMEC over a given net system. Let P1, . . . , Pnr be a given partition
of places as described in Section 4. Assume that the vectors li’s of the nr decentralized GMECs are
chosen as in Assumption (A1). Assume that the integrality constraint on the marking m, i.e., m ∈ Nm,
is relaxed to m ∈ (R+

0 )
m.

Let ki, i = 1, . . . , nr, be a solution of the following nonlinear integer programming problem:
max

∏nr
i=1 k

ni
i

s.t.
∑nr

i=1 ki = k (a)

ki ∈ N, i = 1, . . . , nr.

(1)

The (generalized) volume of the convex set

∩nr
i=1MR(li, ki),

where
MR(li, ki) = {m ∈ (R+

0 )
m | lim ≤ ki}

is the set of relaxed markings that are consistent with the GMEC (li, ki), is greater or equal to the volume
of any other convex set ∩nr

i=1MR(li, k
′
i) ⊆ MR(l, k) with k′i ̸= ki for some i = 1, . . . ,m.
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Figure 2. The numerical Example 4.

Proof: By Lemma 2 each decentralized GMEC (li, ki) defines a convex region MR(li, ki) in the ni-
dimensional space having a volume equal to

1

ni!

kni
i∏ni

i=1 li(pi)
.

Moreover, the region defined by the intersection of MR(li, ki) for i = 1, . . . , nr, has a volume that is
equal to the product of the nr volumes.

Thus, in order to maximize the whole volume we look for the constants ki’s such that
∏nr

i=1 k
ni
i is

maximum, being the other terms constant with respect to ki’s.

Finally, by Corollary 1, (a) is the less restrictive constraint on k′is ensuring that the global GMEC (l, k)

is satisfied. �

Example 4 Let (l, k) be a global GMEC over a given P/T system where l = [3 2]T and k = 5. Assume
P = {p1, p2} and P1 = {p1}, P2 = {p2}.

The decentralized GMECs are 3m1 ≤ k1 and 2m2 ≤ k2 where k1 and k2 have to be determined.

Assume that the integrality constraint on m is relaxed. In such a case the decentralized GMECs (l1, k1)
and (l2, k2) that maximize the (generalized) volume MR(l1, k1) ∩MR(l2, k2) can be found by solving
the nonlinear integer programming problem:

max k1k2

s.t. k1 + k2 = 5

k1, k2 ∈ N.

The above problem has two different optimal solutions, namely k′1 = 2, k′2 = 3, and k′′1 = 3, k′′2 = 2.

In Figure 2 we can see the set MR(l, k), i.e., the triangle of base 5/3 and height 5/2; the set MR(l1, k
′
1)∩

MR(l2, k
′
2), i.e., the square of unitary sides; and the set MR(l1, k

′′
1) ∩MR(l2, k

′′
2), i.e., the rectangle of

base 2/3 and height 3/2.

The volumes of the convex sets MR(l1, k
′
1) ∩MR(l2, k

′
2) and MR(l1, k

′′
1) ∩MR(l2, k

′′
2) are obviously

the same, being both decentralized GMECs optimal with respect to the considered objective. �

It is important to observe that Proposition 3 is no more valid if the integrality constraint m ∈ Nm is not
relaxed. To prove this let us simply look at the following example.

Example 5 Let us consider again the numerical case of Example 4 with the constraint m ∈ N2.
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As it can be seen in Figure 2, there are five integer markings that are consistent with the global GMEC
(l, k), namely

M(l, k) = {[0 0], [0 1], [1 0], [1 1], [2 0]}.

Moreover,
M(l1, k

′
1) ∩MR(l2, k

′
2) = {[0 0], [0 1], [1 0], [1 1]},

while
M(l1, k

′′
1) ∩MR(l2, k

′′
2) = {[0 0], [1 0]},

thus making it evident that the second solution is not optimal. �

At present we are not still able to extend the results of Proposition 3 to the case of m ∈ Nm and arbitrary
partitions of the set of places P = P1 ∪ . . . ∪ Pr. Nevertheless, if all subsets Pi’s only contain one
place, we can prove the following result, that provides an optimality criterion to select the decentralized
GMECs.

Proposition 6 Let (l, k) be a global GMEC over a given net system. Using the notation of Section 4, let
nr = m and Pi = {pi} for i = 1, . . . ,m (thus ni = 1 for all i = 1, . . . , nr). Assume that li’s are chosen
as in Assumption (A1).

Let ki, i = 1, . . . ,m, be a solution of the following nonlinear integer programming problem:

max
∏nr

i=1 ki

s.t.
∑nr

i=1 ki = k (a)
ki

l(pi)
∈ N i = 1, . . . , nr (b)

ki ∈ N, i = 1, . . . , nr.

(2)

The cardinality of the set ∩nr
i=1M(li, ki) is greater or equal to the cardinality of any other set ∩nr

i=1M(li, k
′
i) ⊆

M(l, k) with k′i ̸= ki.

Proof: The validity of the statement follows from Proposition 3 and the consideration that, thanks to
constraint (b), we reject all those decentralized GMECs that lead to polyedra whose vertices are not
characterized by integer coordinates, namely polyedra whose volume is maximum but whose number of
“integer” points in their inside is not maximum. �

Example 7 Let us consider again the case of Example 4. The integer programming problem (2) only
provides the solution k1 = 3 and k2 = 2, thus M(l1, k1) ∩M(l2, k2) = {[0 0], [0 1], [1 0], [1 1]}, i.e., it
only provides the optimal solution. �

6. Conclusions and future work

In this paper we investigated the problem of determining a set of decentralized GMECs (li, ki) that are
able to impose a specification on the net behaviour given in terms of a global GMEC (l, k). In particular
we assume that the set of places is partitioned into a given number of subsets Pi’s and the vectors li’s are
taken equal to the projection of l on Pi. In such a way, based on geometrical considerations and under
appropriate assumptions, we suggest a procedure to compute ki’s that requires the solution of an integer
programming problem.

There are still many open questions we plan to investigate, that can be briefly summarized as follows.
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• What happens if the vectors li are not chosen as in Assumption (A1)? Is it possible to improve the
solution?

• How can we generalize the result of Proposition 6 to the case of an arbitrary partition of places?

• What happens if the partition of P is not given a priori?

• What happens if not all transitions are controllable and observable?

• Assuming that the partition of places is given a priori, is it possible to assume that each subset Pi

may only observe and/or control a given subset Ti of transitions?

• How can we keep into account constraints on the net behaviour, e.g. boundness?
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