
Identification of free-labeled Petri nets via integer programming

Alessandro Giua, Carla Seatzu

Abstract— In this paper we deal with the problem of
identifying a Petri net system, given a finite language that it
generates. In particular, we consider the problem of identifying
a free-labeled Petri net system, i.e., a net system where each
transition is assigned a unique label. We show that the iden-
tification problem can be solved via an integer programming
problem. We also discuss how additional structural constraints
can be easily imposed to the net.

I. INTRODUCTION

In this paper we present a linear algebraic approach for
the identification of a free-labeled Petri net system from the
knowledge of a finite set of strings that it generates. Free-
labeled Petri nets are nets where each transition is assigned
a unique label: in this case the set of transitions T coincides
with the sets of observed events.

A. The proposed approach

Identification is a classical problem in system theory:
given a pair of observed input-output signals it consists
in determining a system such that the input-output signals
approximate the observed ones [11]. We consider this
problem in the context of Petri nets. The observed behavior
in this case is the language of the net, i.e., the set of
transition sequences that can be fired starting from the initial
marking.

Assume that a language L ⊂ T ∗ is given, where T is
a given set of n transitions. Let this language be finite,
prefix-closed and let k be the length of the longest string
it contains. Given a fixed number of places m, the iden-
tification problem we consider consists in determining the
structure of a net N , i.e., the matrices Pre, Post ∈ Nm×n,
and its initial marking M0 ∈ Nm such that the set of all
firable transition sequences of length less or equal to k is
Lk(N,M0) = L.

Note that the set L explicitly lists positive examples, i.e.,
strings that are known to belong to the language, but also,
implicitly, defines several counterexamples, namely all those
strings of length less or equal to k that do not belong to
the language.

The solution we propose in Section IV is based on the
definition of a linear integer constraint set whose admissible
solutions define all nets solving the identification problem.
Note that it is also possible to define several suitable
objective functions so that, if more that one solution exists,
the optimal one (e.g., the one with the minimal structure
in terms of number of arcs or tokens) can be found. The

A. Giua and C. Seatzu are with the Department of Electrical and
Electronic Engineering, University of Cagliari, Piazza D’Armi, 09123
Cagliari, Italy (giua,seatzu)@diee.unica.it.

approach is extremely general and can be applied to any
class of place/transition nets.

There are also many other possibile requirements that can
be imposed on the net to be synthesized: as an example, the
existence of P or T-invariants, the decomposition of the net
in subsystems, or the fact that the net should be a marked
graph or a state machine. These additional requirements can
be easily characterized by suitable linear constraints as we
discuss in Section V.

Finally, in Section VI we show how this approach can be
used to solve a different problem, namely that of identifying
a bounded net system whose language is given in terms of
its reachability tree represented as a finite state automaton.
This problem has also been addressed within the framework
of the theory of regions [2].

An original feature of the proposed approach is the
fact that, by choosing a suitable objective function, it can
also be used to determine a minimal net according to a
given measure. The main drawback is its computational
complexity, in the sense that the number of unknowns grows
with the number of counterexamples.

The complexity of the constraint sets we use to char-
acterize the set of admissible solutions is analyzed in the
paper.

B. Related literature

The idea of learning the structure of an automaton
from positive examples and from counterexamples has been
explored since the early 80’s in the formal language domain.
As an example, we recall the early work of Gold [5] and
Angluin [1].

One of the first original approaches to the identification of
safe Petri nets was discussed by Hiraishi [6], who presented
an algorithm for the construction of a free-labeled Petri
net model from the knowledge of a finite set of its firing
sequences. In a first phase, a language is identified in the
form of a finite state automaton from given firing sequences.
In a second phase, the dependency relation is extracted from
the language, and the structure of a Petri net is guessed.
Provided that the language is generated by a special class
of net, the algorithm uniquely identifies the original net if
a sufficiently large set of firing sequences is given.

A different approach is based on the theory of regions
whose objective is that of deciding whether a given graph
is isomorphic to the reachability graph of some free-labeled
net and then constructing it. This problem has been solved
in the literature for various types of nets ranging from
elementary nets to Petri nets. The general principle for the
synthesis is to inspect regions of the graph representing
extensions of places of the candidate nets. An excellent

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThIB19.5

0-7803-9568-9/05/$20.00 ©2005 IEEE 7639

survey of this approach, that also presents some efficient
algorithms for net synthesis based on linear algebra, can be
found in the paper by Badouel and Darondeau [2].

Meda and Mellado [7], [8] have also presented an ap-
proach for the identification of free-labeled Interpreted Petri
nets. Their approach consists in observing the marking of
subset of places and, given some additional information on
the dependency between transitions, allows one to recon-
struct the part of the net structure related to unobservable
places.

Bourdeaud’huy and Yim [4] have presented an approach
to reconstruct the incidence matrix and the initial marking of
a free-labeled net given some structural information on this
net, such as the existence of P-invariants or T-invariants.
This approach can also deal with positive examples of
firing sequences but not with counterexamples. Unlike the
approach we present in this paper, that is based on linear
algebraic formalism, the approach of the authors is based
on logic constraints.

Finally, in a recent paper Sreenivas [10] dealt with a
related topic: the minimization of Petri net models. Given
a λ-free labeled Petri net generator and a measure function
— that associates to it, say, a non negative integer — the
objective is that of finding a Petri net that generates the
same language of the original net while minimizing the
given measure. In our approach we are able to use as
a performance index of the identification procedure some
of the measures considered by Sreenivas, thus we can
identify a minimal solution among all the possible ones.
Note that the undecidability results proved by Sreenivas
do not apply to our approach because we only ensure the
identity between a given finite language and the set of finite
prefixes of the synthesized net language.

II. BACKGROUND ON PETRI NETS

In this section we recall the formalism used in the paper.
For more details on Petri nets we address to [9].

A Place/Transition net (P/T net) is a structure N =
(P, T, Pre, Post), where P is a set of m places; T is a set
of n transitions; Pre : P×T → N and Post : P×T → N
are the pre– and post– incidence functions that specify the
arcs; C = Post − Pre is the incidence matrix.

A marking is a vector M : P → N that assigns to each
place of a P/T net a non–negative integer number of tokens,
represented by black dots. We denote M(p) the marking of
place p. A P/T system or net system 〈N, M0〉 is a net N
with an initial marking M0.

A transition t is enabled at M iff M ≥ Pre(· , t) and
may fire yielding the marking M ′ = M + C(· , t). We
write M [σ〉 to denote that the sequence of transitions σ
is enabled at M , and we write M [σ〉 M ′ to denote that
the firing of σ yields M ′. Note that in this paper we always
assume that two or more transitions cannot simultaneously
fire (non-concurrency hypothesis).

A marking M is reachable in 〈N,M0〉 iff there exists a
firing sequence σ such that M0 [σ〉 M . The firing vector

of σ is denoted �σ. The set of all markings reachable from
M0 defines the reachability set of 〈N,M0〉 and is denoted
R(N,M0).

Given a Petri net system 〈N, M0〉 we define its free-
language1 as the set of its firing sequences

L(N, M0) = {σ ∈ T ∗ | M0[σ〉}.

We also define the set of firing sequences of length less
than or equal to k ∈ N as:

Lk(N,M0) = {σ ∈ L(N,M0) | |σ| ≤ k}.

III. LOGICAL CONSTRAINTS TRANSFORMATION

In this section we provide an efficient technique to con-
vert logical or constraints into linear algebraic constraints,
that is inspired by the work of Bemporad and Morari [3].
In particular, we consider two different cases: inequality
constraints and equality constraints.

A. Inequality constraints

Let us consider the following constraint:

r∨
i=1

�ai ≤ �0n (1)

where �ai ∈ Rn, i = 1, . . . , r, and
∨

denotes the logical or
operator.

Equation (1) can be rewritten in terms of linear algebraic
constraints as: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�a1 ≤ z1 · �K
...
�ar ≤ zr · �K
z1 + . . . + zr = r − 1
z1, . . . , zr ∈ {0, 1}

(2)

where �K is any constant vector in Rn that satisfies the
following relation

Kj > max
i∈{1,...,r}

ai(j), j = 1, . . . , n.

In fact, if zi = 0 then the i-th constraint is active, while if
zi = 1 it is trivially verified, thus resulting in a redundant
constraint. Moreover, the condition z1 + . . . + zr = r − 1
implies that one and only one zi is equal to zero, i.e.,
only one constraint is active. This means that �ai ≤ �0n

for one i, while no condition is imposed for the other i’s
(in such cases the corresponding constraints may either be
violated or satisfied). Obviously, analogous considerations
can be repeated if the ≤ constraints in (1) are replaced by
≥ constraints.

1As it will appear in the next subsection, free specifies that no labeling
function is assigned to the considered Petri net system.

7640

B. Equality constraints

Let us now consider the constraint
r∨

i=1

�ai = �bi (3)

where �ai,�bi ∈ Rn, i = 1, . . . , r.
Equation (3) can be rewritten in terms of linear algebraic

constraints as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�a1 −�b1 ≤ z1 · �K

�a1 −�b1 ≥ −z1 · �K
...
�ar −�br ≤ zr · �K

�ar −�br ≥ −zr · �K
z1 + . . . + zr = r − 1
z1, . . . , zr ∈ {0, 1}

(4)

where �K is any constant vector in Rn such that

Kj > max
i∈{1,...,r}

|ai(j) − bi(j)|, j = 1, . . . , n.

Repeating a similar reasoning as in the previous case, we
can immediately observe that, if zi = 0 then{

�ai −�bi ≤ �0n

�ai −�bi ≥ �0n

⇒ �ai = �bi.

On the contrary, if zi = 1 then{
�ai −�bi ≥ �K

�ai −�bi ≤ − �K

that are trivially verified, i.e., they are redundant constraints.
Finally, the condition on the sum of zi’s imposes that
one constraint is active, i.e., �ai = �bi for at least one
i ∈ {1, . . . , r}.

IV. FREE-LABELED PETRI NETS

The problem we consider in this paper can be formally
stated as follows.

Problem 4.1: Let L ⊂ T ∗ be a finite prefix-closed
language2, and

k = max
σ∈L

|σ|

be the length of the longest string in L. Chosen a set of
places P of cardinality m, we want to identify the structure
of a net N = (P, T, Pre, Post) and an initial marking M0

such that
Lk(N,M0) = L.

The unknowns we want to determine are the elements of
the two matrices Pre, Post ∈ Nm×n and the elements of
the vector M0 ∈ Nm. �

A solution to the above identification problem can be
computed thanks to the following theorem, that provides a

2A language L is said to be prefix-closed if for any string σ ∈ L, all
prefixes of σ are in L.

linear algebraic characterization of the place/transition nets
with m places and n transitions such that Lk(N, M0) = L.

Theorem 4.2: A net system 〈N,M0〉 is a solution of the
identification problem (4.1) if and only if it satisfies the
following set of linear algebraic constraints

G(E ,D) �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M0 + Post · �σ − Pre · (�σ + �εj) ≥ �0
∀(σ, tj) ∈ E (a)

−KSσ,j + M0 + Post · �σ
−Pre · (�σ + �εj) ≤ −�1m ∀(σ, tj) ∈ D (b)

�1 T Sσ,j ≤ m − 1 ∀(σ, tj) ∈ D (c)
M0 ∈ Nm (d)
Pre, Post ∈ Nm×n (e)
Sσ,j ∈ {0, 1}m (f)

(5)
where

E = {(σ, tj) | σ ∈ L, |σ| < k, σtj ∈ L} (6)

and
D = {(σ, tj) | σ ∈ L, |σ| < k, σtj
∈ L}. (7)

Proof:

• Assume that tj ∈ L. Then transition tj is enabled
at M0 and the following relation must hold: M0 ≥
Pre(·, tj). This relation can be rewritten as

M0 − Pre · �εj ≥ �0n

where �εj is the j-th canonical basis vector.
Generalizing, assume that σtj ∈ L. Then transition tj
is enabled from the marking Mσ = M0 + (Post −
Pre) · �σ and the following relation must hold

Mσ ≥ Pre(·, tj).
This relation can be rewritten as

M0 + Post · �σ − Pre · (�σ + �εj) ≥ �0n. (8)

• Assume that tj
∈ L. Then transition tj is not enabled
from M0, and for at least one place pi it must hold:

M0(pi) < Pre(pi, tj).

We want now to define a vector

Sε,j =

⎡
⎢⎣

s1

...
sm

⎤
⎥⎦ ∈ {0, 1}m,

such that for all i = 1, . . . , m it holds

si = 0 =⇒ M0(pi) < Pre(pi, tj).

Assume that each component of M0 is less or equal to
K. Then the i-th component of Sε,j (for i = 1, . . . , m)
must satisfy the equation

−Ksi + M0(pi) − Pre(pi, tj) < 0, (9)

7641

so that if si = 0 it must hold M0(pi)−Pre(pi, tj) < 0,
while if si = 1 equation (9) is trivially verified. In
vector form (and taking into account that all variables
are integers) this equation rewrites

−KSε,j + M0 − Pre · �εj ≤ −�1m. (10)

Finally, there exists at least a place that disables tj if

m∑
i=1

si ≤ m − 1, (11)

so that at least one si is null. In vector form this
equation rewrites

�1 T Sε,j ≤ m − 1. (12)

Generalizing, assume that σ ∈ L and σtj
∈ L. Then
transition tj is not enabled from the marking

Mσ = M0 + (Post − Pre) · �σ.

We now define a vector

Sσ,j =

⎡
⎢⎣

s1

...
sm

⎤
⎥⎦ ∈ {0, 1}m,

such that for all i = 1, . . . , m it holds

si = 0 =⇒ Mσ(pi) < Pre(pi, tj).

If we assume that each component of Mσ is less than
or equal to K, following the previous reasoning we
can immediately see that there exists at least a place
that disables tj if the following equations are verified

−KSσ,j +M0+Post·�σ−Pre·(�σ+�εj) ≤ −�1m (13)

and
�1 T Sσ,j ≤ m − 1. (14)

Note that for determining the value of K it is not
necessary that the net be K-bounded. In fact, since
we are given a set of finite sequences L of length less
than or equal to k, regardless of the value of σ it is
sufficient to take a value

K ≥ maxi M0(pi) + k · maxi,j Post(i, j)
≥ maxi M(pi) + |σ| · maxi,j Post(i, j)
≥ maxi Mσ(pi).

�
In general the set (5) is not a singleton, thus there

exist more than one Petri net system 〈N,M0〉 such that
Lk(N,M0) = L. To select one among these Petri net
systems we choose a given performance index and solving
an appropriate IPP we determine a Petri net system that
minimizes the considered performance index3. In particular,
if f(M0, P re, Post) is the considered performance index,
an identification problem can be formally stated as follows.

3Clearly, also in this case the solution may be not unique.

t1

t2

p2p1

(a)

t1

t2

p2p1

(b)

Fig. 1. The Petri net system of Example 4.4 (a); the Petri net of the same
example when the additional constraint m1 + m2 = const is added.

Problem 4.3: Let us consider the identification problem
(4.1) and let f(M0, P re, Post) be a given performance
index. The solution to the identification problem (4.1) that
minimizes f(M0, P re, Post) can be computed by solving
the following IPP{

min f(M0, P re, Post)
s.t. G(E ,D). (15)

�
As an example, assume we want to determine a Petri net

system that minimizes the sum of the tokens in the initial
marking and of the arc weights. In such a case we choose

f(M0, P re, Post) = �1T
m · M0 +�1T

m · (Pre + Post) ·�1n.

Example 4.4: Let L = {ε, t1, t1t1, t1t2, t1t1t2, t1t2t1}
and m = 2, thus k = 3. Assume that we want to determine
the Petri net system that minimizes the sum of initial tokens
and all arcs such that L3(N,M0) = L. This requires the
solution of an IPP of the form (15) where

E = {(ε, t1), (t1, t1), (t1, t2), (t1t2, t1), (t1t1, t2)}
and

D = {(ε, t2), (t1t2, t2), (t1t1, t1)}.
The procedure identifies a net system with

Pre =
[

1 0
0 1

]
, Post =

[
0 1
0 0

]
, M0 =

[
2
0

]

namely the net system in Fig. 1.a. �

A. Complexity of IPP (15)

Let n be the cardinality of T , k the length of the longest
string in L, and νr (for r = 0, . . . , k) the number of strings
in L of length r.

Then the constraint set (5) contains
∑k

r=1 νr constraints
of type (a) and

∑k−1
r=0(nνr − νr+1) constraints of type (b)

and of type (c). The total number of scalar constraints is
thus:

m

(
k∑

r=1

νr

)
+ (m + 1)

(
k−1∑
r=0

(nνr − νr+1)

)
.

The total number of unknown is

u = m + 2(m × n) + m

(
k−1∑
r=0

(nνr − νr+1)

)
.

7642

Note that given a value of k and of n, it is possible to
find a worst case bound for ρ =

∑k−1
r=0(nνr − νr+1). In

fact, it holds:

ρ =
∑k−1

r=0(nνr − νr+1)
= ν0 + (n − 1)

(∑k−1
r=1 νr

)
− νk

= n + (n − 1)
(∑k−1

r=1 νr

)
− νk.

This expression is maximized if we assume νk = 0 while
all other νr must take the largest value, i.e., νr = nr. Hence
we have

ρ = n + (n − 1)(n + · · · + nk−1) = nk,

and the total number of unknowns in the worst case is

u = m + 2(m × n) + m nk

= m(1 + 2n + nk)
= O(m nk),

i.e., it has exponential complexity with respect to k.

B. Linear relaxation of integer programming

The main drawback of the proposed procedure is that it
requires solving an integer programming problem to iden-
tify the net system. For large values of m, n and in particular
of k, the solution of this problem may be computational
demanding, thus reducing the usefulness of the proposed
approach. The most natural way to overcome this difficulty
consists in the linear relaxation of some constraints in the
integer programming problem (15). In particular, we may
relax the constraints M0 ∈ Nm and Pre, Post ∈ Nm×n

into M0 ∈ (R+
0)m and Pre, Post ∈ (R+

o)m×n.
In most of the cases we have considered the relaxation

of the constraints on M0, Pre and Post does not affect the
admissibility of the solution.

On the contrary, if the integer constraints on the binary
variables Sσ,j are relaxed, in all the cases we considered
we found out that only unfeasible solutions are obtained.

V. STRUCTURAL CONSTRAINTS

In our approach it is also possible to force the net
to satisfy some structural constraints. In particular, the
presence of P-invariant (P-decreasing, P-increasing) and
T-invariant (T-decreasing, T-increasing) can be imposed
by simply adding appropriate linear constraints to the set
G(E ,D). As an example, assume that we want to determine
a net system that satisfies the language specifications on
Lk(N,M0) and such that �x ∈ Rm is a given P-invariant.
To this aim, given a performance index f(M0, P re, Post),
we need to solve an IPP of the form⎧⎨

⎩
min f(M0, P re, Post)
s.t. G(E ,D) (a)

�xT (Post − Pre) = �0T
n (b)

(16)

Analogously, if our goal is that �x ∈ Rm be a P-
increasing (P-decreasing) for the net, we simply need to
replace the above constraint (b) with �xT (Post−Pre) > �0T

n

(�xT (Post − Pre) < �0T
n).

Finally, if we want �x ∈ Rn be a T-invariant (T-increasing,
T-decreasing), constraint (b) of equation (16) becomes
(Post − Pre) · �x = �0m (> �0m, < �0m, respectively).

Example 5.1: Let us consider again the case of Exam-
ple 4.4 but assume we want the net to be conservative. In
particular, we want m1 +m2 always keeps constant. To this
aim we solve an IPP of the form (16) where �x = [1 1]T .
We identify a net system with

Pre =
[

1 0
0 1

]
, Post =

[
0 1
1 0

]
, M0 =

[
2
0

]

namely the net in Fig. 1.b. �
Adding appropriate constraints to problem (15) we can

also impose that the net should have a particular structure,
e.g., it should be ordinary, a marked graph or a state
machine.

In the first case we need to impose that Pre, Post ∈
{0, 1}m×n.

In the second case, being a marked graph an ordinary
Petri net such that each place has exactly one input and one
output transition, we need to force the following additional
constraints {

Pre ·�1n = 1
Post ·�1n = 1.

Finally, being a state machine an ordinary Petri net where
every transition has exactly one input and one output place,
the following additional constraints should be verified{

�1T
m · Pre = 1

�1T
m · Post = 1.

A structural decomposition of the net in a given number
r of subnets can similarly be imposed. Let

P = P1 ∪ P2 ∪ . . . ∪ Pr

be a given partition of P . Assume that for all t ∈ T we are
given a set Π(t) ⊂ {1, . . . , r} such that q ∈ Π(t) implies
•t• ∩ Pq = ∅. In plain words, Π(t) represents the set of
indices of Pq’s such that t has no input/output arc from/to
a place in Pq . This can be imposed solving an IPP of the
form (16) where constraint (b) is replaced by the following
set of linear constraints for all t ∈ T :∑

q∈Π(t)

∑
p∈Pq

(Pre(p, t) + Post(p, t)) = 0.

VI. SYNTHESIS OF A PETRI NET SYSTEM FROM ITS

REACHABILITY GRAPH

In this section we assume that the net system we want
to synthesize is bounded, and the language it generates is
given in terms of its reachability graph that is represented
as a finite state automaton G = (Q,T, δ, q0) where Q is the
set of states, the alphabet T is the set of transitions of the
net, δ : Q×T → Q is the transition function, and q0 is the
initial state.

7643

A cycle in the automaton identifies a repetitive sequence
and we define the corresponding set of firing vectors, that
are the T -invariants of the net, as

Γ(G) = {�y ∈ Nn | (∃ σ ∈ T+) (∃ q ∈ Q) :
δ(q, σ) = q ∧ �y = �σ} (17)

while the set of minimal T -invariants is

Γmin(G) = {�y ∈ Γ(G) | (� �y
′
� �y) �y

′ ∈ Γ(G)}. (18)

Finally, we define the set of sequences that are generated
by the automaton without passing through a cycle as

LT (G) = {σ ∈ T ∗ | ∀ u, v � σ, u
= v
⇒ δ(q0, u)
= δ(q0, v)} ⊆ L(G),

(19)
where L(G) denotes the language generated by the automa-
ton, and the subscript T denotes the words generated by its
spanning tree with root q0.

We consider the following problem.
Problem 6.1: Let G = (Q,T, δ, q0) be a given finite

state automaton. Chosen a set of places P of cardinality
m, we want to identify the structure of a net N =
(P, T, Pre, Post) and an initial marking M0 such that
L(N, M0) = L(G). The unknowns we want to determine
are the elements of the two matrices Pre, Post ∈ Nm×n

and the elements of the vector M0 ∈ Nm. �
Theorem 6.2: A net system 〈N,M0〉 is a solution of the

identification problem (6.1) if and only if it satisfies the
following set of linear algebraic constraints{ G(E ,D) (a)

(Post − Pre) · �y = �0 ∀ �y ∈ Γmin(G) (b)
(20)

where E = {(σ, t) | σ ∈ LT (G), σt ∈ L(G)}
and D = {(σ, t) | σ ∈ LT (G), σt
∈ L}.

Proof: For sake of brevity, we just give a sketch of
the proof. Let us first consider a word σ = σ′t with
σ′ ∈ LT (G): since all constraints corresponding to this
word are explicitly listed in (20), then the net solution of
(20) generates σ if and only if σ ∈ L(G).

Consider now any word σ = σ′tσ′′ where σ′ ∈ LT (G)
and σ′t ∈ L(G) \ LT (G) (i.e., σ′t passes though a cycle).
The constraints corresponding to σ′t are explicitly listed
in (20), and if we denote u the sequence obtained by σ′t
removing the cycle, it is easy to see that σ′tσ′′ is generated
by the net if and only if uσ′′ is generated. �

Example 6.3: Let us consider the finite state automaton
G in Fig. 2.a. It holds Γmin(G) = {[1 1]T } and LT (G) =
{ε, t1, t1t1} thus E = {(ε, t1), (t1, t1), (t1, t2), (t1t1, t2)}
and D = {(ε, t2), (t1t1, t1)}. Now, assume that we want
to determine the Petri net system that minimizes the sum
of initial tokens and all arcs.

For m = 1 we get no feasible solution, while for m =
2 we found the net system in Fig. 1.b whose reachability
graph is shown in Fig. 2.b. Note that in this particular case
the reachability graph of the net is isomorphic to the given
automaton G. �

t1 t1

t2t2

(a)

t1 t1

t2t2

(b)2 0 1 1 0 2

q0 q1 q2

Fig. 2. The finite state automaton G of Example 6.3.

ACKNOWLEDGEMENTS

We thank the anonymous referees for their useful com-
ments and suggestions that we have incorporated in the
present version.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we provided a solution to the problem
of identifying a Petri net system that generates a given
language, that is based on the solution of appropriate IPP.
In particular, the case of free-labeled Petri net systems is
considered. The problem of imposing structural constraints
on the net is also addressed.

Our future work in this topic will be twofold. First, we
want to extend the proposed approach to the case of λ-free
labeled Petri nets, i.e., nets where two ore more transitions
may share the same label. Secondly, we plan to derive
appropriate heuristics in order to overcome problems related
to the computational complexity.

REFERENCES

[1] D. Angluin. Inference of reversible languages. Journal of the ACM,
29(3):741–765, 1982.

[2] E. Badouel and P. Darondeau. Theory of regions. Lecture Notes
in Computer Science: Lectures on Petri Nets I: Basic Models,
1491:529–586, 1998.

[3] A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics and constraints. Automatica, 35(3):407–429, 1999.

[4] T. Bourdeaud’huy and P. Yim. Synthèse de réseaux de Petri à partir
d’exigences. In Actes de la 5me conf. francophone de Modélisation
et Simulation, pages 413–420, Nantes, France, September 2004.

[5] E. Mark Gold. Complexity of automaton identification from given
data. Information and Control, 37(3):302–320, 1978.

[6] K. Hiraishi. Construction of a class of safe Petri nets by presenting
firing sequences. In Jensen, K., editor, Lecture Notes in Computer
Science; 13th International Conference on Application and Theory
of Petri Nets 1992, Sheffield, UK, volume 616, pages 244–262.
Springer-Verlag, June 1992.

[7] M.E. Meda-Campaña and E. López-Mellado. Incremental synthesis
of Petri net models for identification of discrete event systems. In
Proc. 41th IEEE Conf. on Decision and Control, pages 805–810, Las
Vegas, Nevada USA, December 2002.

[8] M.E. Meda-Campaña and E. López-Mellado. Required event se-
quences for identification of discrete event systems. In Proc. 42th
IEEE Conf. on Decision and Control, pages 3778–3783, Maui,
Hawaii, USA, December 2003.

[9] T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, April 1989.

[10] R.S. Sreenivas. On minimal representations of Petri net languages.
In Proc. WODES’02: 6th Work. on Discrete Event Systems, pages
237–242, Zaragoza, Spain, October 2002.

[11] J.H. van Schuppen. System theory for system identification. Journal
of Econometrics, 118(1-2):313–339, January-February 2004.

7644

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

