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Abstrat

In this paper we present an e�ient approah for the fault detetion of disrete event

systems using Petri nets. We assume that some of the transitions of the net are unobservable,

inluding all those transitions that model faulty behaviors. We prove that the set of all

possible �ring sequenes orresponding to a given observation an be desribed as follows.

First a set of basis markings orresponding to the observation are omputed together with the

minimal set of transitions �rings that justify them. Any other marking onsistent with the

observation must be reahable from a basis marking by �ring only unobservable transitions.

For the omputation of the set of basis markings we propose a simple tabular algorithm and

use it to determine a basis reahability tree that an be used as a diagnoser.

1 Introdution

The diagnosis of disrete event systems is a researh area that has reeived a lot of attention

in the last years and has been motivated by the pratial need of ensuring the orret and safe

funtioning of large omplex systems. Several original theoretial approahes have been proposed

[12, 6, 4, 14, 7, 9℄ to solve this problem.

Petri net models have often been used in this ontext: the intrinsially distributed nature of

Petri nets where the notion of state (i.e., marking) and ation (i.e., transition) is loal has often

been an asset to redue the omputational omplexity involved in solving a diagnosis problem.

Among the di�erent ontributions in this area we reall the work of Ushio et al. [13℄, Benveniste

et al [1, 2℄, Jiroveanu and Boel [3, 8℄

In this paper we deal with the failure diagnosis of disrete event systems modelled by plae/transition

nets. We assume that faults are modelled by unobservable transitions, but there may also exist

other transitions that represent legal behaviors that are unobservable as well. Thus we assume

that the set of transitions an be partitioned as T = To ∪ Tu where To is the set of observable

∗
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Figure 1: A net desribing a ommuniation system.

transitions, and Tu is the set of unobservable transitions. The set of fault transitions is denoted

Tf and it holds Tf ⊆ Tu.

As an example onsider the net in Fig. 1. The set of observable transitions is To = {t1, t4, t7}.

The set of unobservable transition is Tu = {t2, t3, t5, t6} and, for a better understanding, an

unobservable transition ti is labelled εi. The only fault transition is t6. This net models a

ommuniation system: messages ready to be sent are divided into two pakets (transition t1) to

be sent on two separate hannels (plae p4 and p5). The two pakets are �nally ombined and an

aknowledgement is sent to the sender (transition t7). A fault ours when a paket that should

be travelling on the seond hannel is erroneously moved to the �rst hannel (transition t6). As

an be seen, the fault transition t6 is not observable but there exist several other unobservable

transitions as well.

This paper builds on the results of [5℄ where an observer for nets with unobservable transitions

was designed. Under two strutural assumptions, namely that the unobservable subnet was

ayli

1

and bakward on�it-free

2

, it was possible to easily haraterize the set C(w) of markings

onsistent with an observed �ring sequene w ∈ T ∗

o . This haraterization takes the following

form: for eah observed sequene it is possible to determine a basis marking Mb,w while the set of

markings in whih the system ould atually be is C(w) = {M ∈ Nm | Mb,w[σ〉M,σ ∈ T ∗

u}, i.e., it

onsists of all those markings reahable from the basis marking �ring a sequene of unobservable

transitions.

The assumption that the net is bakward on�it-free is essential to ensure that the basis marking

Mb,w orresponding to a given observation w is unique. The assumption that the unobservable

subnet is ayli allows us to use the state equation to haraterize the markings reahable from

the basis marking by �ring a sequene of unobservable transitions.

In this paper we extend the previous work as follows.

Firstly we relax the assumption that the unobservable net be bakward on�it-free. In this ase

the basis marking assoiated to a given observation w ∈ T ∗

o is not neessarily unique any more,

1

In Fig. 1 the unobservable subnet is ayli beause there exists no oriented yle ontaining only unobservable

transitions.

2

A net is bakward on�it-free if all transitions have no output ommon plae. In Fig. 1 the unobservable

subnet is not bakward on�it-free beause plae p4 has in input two unobservable transitions, ε2 and ε6.
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and we disuss how this set an be desribed in terms of minimal explanations

3

following also

the approah of Jiriveanu and Boel [3, 8℄. A tabular algorithm for the omputation of minimal

explanations is also presented in the paper.

Seondly, we present an original tehnique to design an observer for bounded nets. We de�ne for

eah observation w a set M(w) omposed of pairs (M,y) where M is a basis marking orrespond-

ing to w and y, that we all its justi�ation, is the �ring vetor of unobservable transitions that

must have �red to reah it. We also present an algorithm for onstruting a basis reahability tree

(BRT); this is a deterministi automaton whose edges are labelled by the observable transitions,

while a node reahable from the root with a �ring sequene w is labelled with the set M(w).

The important feature of this approah is that the BRT provides an e�ient haraterization of

the reahability set and of the language of the original net: the set of markings onsistent with an

observation w an be determined omputing the markings reahable on the unobservable subnet

starting from any of the basis markings in M(w). If we assume that the unobservable subnet

is ayli, this an be done solving the state equation while in the onstrution of the BRT we

only need to enumerate the smaller subset of basis markings.

Finally, we apply the BRT to the problem of failure diagnosis. In partiular we use it on-line

to assoiate a diagnosis to eah observation. It may also be possible to use the BRT o�-line

to study the di�erent properties of diagnosability and determine whether in a given system the

ourrene of a failure is reognizable. This issue is not addressed in the paper.

Our work has several points of ontats with the work of Jiriveanu and Boel [3, 8℄. The main

di�erene is the tabular algorithm for the omputation of minimal explanations and the hara-

terization of the reahability set in terms of basis markings that we propose.

2 Bakground on Petri nets

In this setion we reall the formalism used in the paper. For more details on Petri nets we

address to [11℄.

A Plae/Transition net (P/T net) is a struture N = (P, T, Pre, Post), where P is a set of m

plaes; T is a set of n transitions; Pre : P × T → N and Post : P × T → N are the pre� and

post� inidene funtions that speify the ars; C = Post− Pre is the inidene matrix.

A marking is a vetor M : P → N that assigns to eah plae of a P/T net a non�negative integer

number of tokens, represented by blak dots. We denote M(p) the marking of plae p. A P/T

system or net system 〈N,M0〉 is a net N with an initial marking M0.

A transition t is enabled at M i� M ≥ Pre(· , t) and may �re yielding the marking M ′ =

3

The term minimal explanation is used in [3, 8℄ to denote the smallest sequene of unobservable transitions

that must have �red to explain an observation. As an example, onsider in the net in Fig. 1 an initial marking

that assigns to plaes p2 and p3 a token while all other plaes are empty. If the �ring of t4 is observed then the

token required to enable this transition may have been put in p4 by the �ring of either ε2 or ε3ε6.
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M +C(· , t). We write M [σ〉 to denote that the sequene of transitions σ = tj1 · · · tjk is enabled

at M , and we write M [σ〉 M ′
to denote that the �ring of σ yields M ′

.

Given a sequene σ ∈ T ∗
, we all π : T ∗ → Nn

the funtion that assoiates to σ a vetor y ∈ Nn
,

named the �ring vetor of σ. In partiular, y = π(σ) is suh that y(t) = k if the transition t is

ontained k times in σ.

A marking M is reahable in 〈N,M0〉 i� there exists a �ring sequene σ suh that M0 [σ〉 M .

The set of all markings reahable from M0 de�nes the reahability set of 〈N,M0〉 and is denoted

R(N,M0). Finally, we denote PR(N,M0) the potentially reahable set, i.e., the set of all markings

M ∈ Nm
for whih there exists a vetor y ∈ Nn

that satis�es the state equationM = M0+C·y, i.e.,

PR(N,M0) = {M ∈ Nm | ∃ y ∈ Nn : M = M0+C ·y}. It holds that R(N,M0) ⊆ PR(N,M0).

A Petri net having no direted iruits is alled ayli. For this sublass the following result

holds.

Theorem 2.1 [5℄ Let N be an ayli Petri net.

(i) If the vetor y ∈ Nn
satis�es the equation M0 + C · y ≥ 0 there exists a �ring sequene σ

�rable from M0 and suh that the �ring vetor assoiated to σ is equal to y.

(ii) A marking M is reahable from M0 i� there exists a non negative integer solution y satisfying

the state equation M = M0 + C · y, i.e., R(N,M0) = PR(N,M0). �

A net system 〈N,M0〉 is bounded if there exists a positive onstant k suh that, forM ∈ R(N,M0),

M(p) ≤ k. A net is said struturally bounded it is bounded for any initial marking.

A labeling funtion L : T → E ∪ {ε} assigns to eah transition t ∈ T either a symbol from a

given alphabet E or the empty string ε.

We denote as Tu the set of transitions whose label is ε, i.e., Tu = {t ∈ T | L(t) = ε}. Transitions

in Tu are alled unobservable or silent.

In this paper we assume that the same label e ∈ E annot be assoiated to more than one

transition. Thus, being the labeling funtion restrited to To = T \ Tu an isomorphism, with no

loss of generality we assume E = To. Transitions in To are alled observable.

In the following we denote as Cu (Co) the restrition of the inidene matrix to Tu (To).

We denote as w the word of events assoiated to the sequene σ, i.e., w = L(σ). Note that the

length of a sequene σ (denoted |σ|) is always greater or equal than the length of the orresponding

word w (denoted |w|). In fat, if σ ontains k′ transitions labeled ε then |σ| = k′ + |w|.

Moreover, we denote as σ0 the sequene of null length and ε the empty word. We use the notation

wi 4 w to denote the generi pre�x of w of length i ≤ k, where k is the length of w.

De�nition 2.2 Given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of its transitions, we

de�ne the T ′−indued subnet of N as the new net N ′ = (P, T ′, P re′, Post′) where Pre′, Post′

are the restrition of Pre, Post to T ′
. The net N ′

an be thought as obtained from N removing

4



all transitions in T \ T ′
. We also write N ′ ≺T ′ N . �

3 Minimal explanations

In this setion we provide some basi de�nitions that will be useful in the following.

De�nition 3.1 Given a marking M and an observable transition t ∈ To, we de�ne

Σ(M, t) = {σ ∈ T ∗

u | M [σ〉M ′, M ′ ≥ Pre(·, t)}

the set of explanations of t at M , and we denote

Y (M, t) = {y ∈ Nn | ∃σ ∈ Σ(M, t) : π(σ) = y}

the orresponding set of �ring vetors. �

Thus Σ(M, t) is the set of unobservable sequenes whose �ring at M is neessary to enable t.

Among the above sequenes we want to selet those whose �ring vetor is minimal, that we all

minimal explanations.

De�nition 3.2 Given a marking M and a transition t ∈ To, we de�ne

Σmin(M, t) = {σ ∈ Σ(M, t) | y = π(σ),

∄ σ′ ∈ Σ(M, t) : π(σ′) � y}

the set of minimal explanations of t at M , and we denote

Ymin(M, t) = {y ∈ Nn | ∃σ ∈ Σmin(M, t) : π(σ) = y}

the orresponding set of �ring vetors. �

Similar de�nitions have also been given in [3, 8℄.

Example 3.3 Let us onsider the net in Fig. 1.

Let M0 be the marking shown in �gure. Then Σ(M0, t1) = {ε}, namely the empty word, and

Ymin(M0, t1) = {~0}. In fat, t1 is enabled at M0 and no unobservable transition is neessary to

�re to enable t1.

If we onsider transition t7, then Σ(M0, t7) = ∅, thus also Ymin(M0, t7) = ∅. In fat, t7 is not

enabled at M0, and no sequene of unobservable transitions may enable it.

Now, let M1 = [0 1 0 0 0 0 0]T . Then Σ(M1, t4) = Σmin(M1, t4) = {ε2}.

Then, let M2 = [0 1 1 0 0 0 0]T . Then Σ(M2, t4) = Σmin(M2, t4) = {ε2, ε3ε6}.

Finally, let M3 = [0 1 1 0 1 0 0]T . Then Σ(M3, t4) = {ε2, ε6, ε3ε6}, while Σmin(M3, t4) = {ε2, ε6}.

⋄
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In [5℄ we proved the following important result.

Theorem 3.4 [5℄ Let N = (P, T, Pre, Post) be a Petri net with T = To ∪ Tu. If the Tu-indued

subnet is ayli and bakward on�it-free, then |Ymin(M, t)| = 1. �

Di�erent approahes an be used to ompute Ymin(t,M), e.g., see [3, 8℄.

In this paper we suggest an approah that terminates �nding all vetors in Ymin(M, t) if applied

to nets whose Tu-indued subnet is ayli. It simply requires algebrai manipulations, and is

inspired by the proedure proposed by Martinez and Silva [10℄ for the omputation of minimal

P-invariants. It an be brie�y summarized by the following algorithm.

Note that the proposed approah an also be applied to Tu-indued subnets that are not ayli.

However, in this ase the algorithm may enter a loop: to guarantee to terminate in a �nite

number of steps we need to add suitable termination riteria.

Algorithm 3.5 [Computation of Ymin(M, t)℄

1. Let Γ :=
CT
u Inu×nu

A B
where AT := M − Pre(·, t), BT := ~0nu

2. while not A ≥ 0

3. Choose an element A(i∗, j∗) < 0

4. Let I+ = {i | CT
u (i, j

∗) > 0}

5. if I+ 6= ∅ then

6. for i ∈ I+
do

7. add to [A | B] a new row [A(i∗, ·) | B(i∗, ·)] + Γ(i, ·)

end for

end if

8. Delete row [A(i∗, ·) | B(i∗, ·)] from the table

end while

9. Delete from B any dupliate row or any row that overs other rows

Eah row in B is a vetor in Ymin(M, t). �

Note that at step 7. it may be possible that the new row [A(i∗, ·) + CT
u (i, ·) | B(i∗, ·) + ~e T

i ] is

idential to a row already in the table: if suh is the ase it is not neessary to add it.

Example 3.6 Let us onsider again the net in Fig. 1.
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Let M = [0 1 1 0 1 0 0]T and t = t4. Being

Cu =

ε2 ε3 ε5 ε6
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,

we �rst assume

Γ :=

0 −1 0 1 0 0 0

0 0 −1 0 1 0 0

0 0 0 0 −1 0 1

0 0 0 1 −1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 −1 1 0 0 0 0 0 0

thus there is only one element of A, namely A(1, 4), that is negative. Moreover, I+ = {1, 4}.

Using Algorithm 3.5 we add the following two new rows to Γ:

0 0 1 0 1 0 0 1 0 0 0 and

0 1 1 0 0 0 0 0 0 0 1

obtained from the �rst row of A by adding the �rst and the fourth row of Γ, respetively. Finally,

we remove the row Γ(5, ·) from the table and we stop beause all elements of A are non negative.

Beause no line overs the other, we onlude that both rows ofB, namely

∣

∣

∣ 1 0 0 0
∣

∣

∣
and

∣

∣

∣ 0 0 0 1
∣

∣

∣

are elements of Ymin(M, t). This result is in aordane with the previous Example 3.3, being

Σmin(M, t) = {ε2, ε6}. ⋄

4 Basis marking

In [5℄ we introdued the notion of basis marking.

De�nition 4.1 [5℄ Let 〈N,M0〉 be a net system whose unobservable subnet is bakward on�it-

free. Given an observation w, the basis marking Mb,w is the marking reahed from M0 by �ring

w and all those unobservable transitions that are stritly neessary to enable w. �

The bakward on�it-free assumption ensures the uniqueness of Mb,w, for any initial marking

M0 and any observation w [5℄.

7



If the bakward on�it-free assumption is relaxed, the basis marking may be not unique. This

trivially follows from the simple observation that, given a markingM and an observable transition

t, the set of minimal explanations of t at M is generally not a singleton.

Now, in order to generalize the notion of basis marking, we introdue the following reursive

de�nition.

De�nition 4.2 Let 〈N,M0〉 be a net system where N = (P, T, Pre, Post) and T = To ∪ Tu.

Let M(ε) = {(M0,~0)} and ∀ w ∈ T ∗

o , ∀ t ∈ To, let

M̃(wt) = {(M,y) ∈ Nm × Nnu |

∃ (M ′, y′) ∈ M(w),

∃ y′′ ∈ Ymin(M
′, t) :

y = y′ + y′′, M = M0 + C(·, t) + Cuy}.

Finally, ∀ w ∈ T ∗

o , let M(w) ⊆ M̃(w) suh that

M(w) = {(M,y) ∈ M̃(w) |

∄ (M ′, y′) ∈ M̃(w) : y′ � y}.

All markings M suh that (M,y) ∈ M(w) are alled basis marking and the vetors y are the

orresponding justi�ations. �

Therefore, for any observation w, (M,y) ∈ M(w) is a ouple (marking, �ring vetor) suh that

M an be reahed from M0 �ring a sequene σ suh that L(σ) = w and π(σ) = π(w)+y. Clearly,

when no observation has ourred (i.e., w = ε), M(w) is a singleton and M = M0, y = ~0.

Note that eah set M(w) only ontains ouples (M,y) whose justi�ations are minimal beause

M(w) is obtained by M̃(w) removing all ouples whose justi�ations are not minimal.

Example 4.3 Let us onsider the net in Fig. 1. Assume that the initial marking is that shown

in �gure.

Let w = t1. Being Ymin(t1,M0) = {~0}, if we denote as

M1 = M0 +Coπ(t1)

=
[

0 1 1 0 0 0 0
]T

,

then M(t1) = M̃(t1) = {(M1,~0)}, and the null vetor is the only justi�ation of w = t1 at the

initial marking.

Now, assume that t4 is observed, thus w = t1t4. In suh a ase Ymin(M1, t4) = {y1, y2} where

y1 = π(ε2) and y2 = π(ε3ε6). Now, if we denote

M2 = M1 +Coπ(t4) + Cuy1 = M0 + Coπ(w) +Cuy1

=
[

0 0 1 0 0 1 0
]T

,

8



M3 = M1 +Coπ(t4) + Cuy2 = M0 + Coπ(w) +Cuy2

=
[

0 1 0 0 0 1 0
]T

,

then

M(t1t4) = M̃(t1t4) = {(M2, y1), (M3, y2)}.

Finally, assume that t7 �res, thus w = t1t4t7. It holds that Ymin(M2, t7) = {π(ε3ε5)} and

Ymin(M3, t7) = ∅. In fat, the �ring of ε3ε5 enables t7 at M2, while t7 is not enabled at M3 and

no sequene of unobservable transitions may enable it. Therefore,

M(t1t4t7) = M̃(t1t4t7) = {(M4, y1 + y3)},

where

M4 = M2 + Coπ(t7) + Cuy3

= M0 + Coπ(w) + Cu(y1 + y3)

=
[

1 0 0 0 0 0 0
]T

= M0.

⋄

The following theorem proves that our approah based on basis markings is able to haraterize

ompletely the reahability set under partial observation.

Theorem 4.4 Let us onsider a net system 〈N,M0〉 whose unobservable subnet is ayli. The

following two assertions are equivalent.

1. There exists σ̃ ∈ T ∗
suh that M0[σ̃〉M̃ with L(σ̃) = w and π(σ̃) = ỹ.

2. There exists (M,y) ∈ M(w) and σ′′ ∈ T ∗

u suh that M [σ′′〉M̃ with ỹ = π(w) + y + π(σ′′).

Proof: We prove this result by indution on the length of the observed string w.

(Basis step) For w = ε the results obviously holds.

(Indutive step) Assume the result holds for w. We prove it holds for w = vt.

Firstly, we prove 1) ⇒ 2). In fat, if 1) holds then there exist sequenes σ′
and σ′′

suh that

M0[σ
′〉M ′[t〉M ′′[σ′′〉M̃

where L(σ′) = v, and σ′′ ∈ T ∗

u . By indution, there exists (M,y) ∈ M(v) suh that

M0[σ
′

a〉M [σ′

b〉M
′[t〉M ′′[σ′′〉M̃

where L(σ′

a) = v, π(σ′

a) = π(v) + y and σ′

b ∈ T ∗

u . Now there exists a minimal explanation

σ′

c ∈ Σ(M, t) suh that π(σ′

c) ≤ π(σ′

b) and, being the Tu-indued subnet ayli,

M0[σ
′

a〉M [σ′

c〉M
′

c[t〉M
′

d[σ
′

d〉M
′′[σ′′〉M̃

where π(σ′

c) + π(σ′

d) = π(σ′

b) and (M ′

c, π(σ
′

c)) ∈ M(vt) = M(w). This proves the result.

Seondly, we prove 2) ⇒ 1). In fat if 2) holds then there exists σ′ ∈ T ∗
suh thatM0[σ

′〉M [σ′′〉M̃

with L(σ′) = vt = w and hene M0[σ〉M̃ with σ = σ′σ′′
.

Note that this impliation still holds even if the unobservable subnet is not ayli. �
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5 Observer design based on the basis reahability tree

In this setion we fous our attention on bounded Petri nets and propose an original tehnique

to design an observer to be used in the ontext of failure diagnosis.

The proposed approah onsists in the design of a deterministi graph, that we all basis reah-

ability tree (BRT).

Let us �rst introdue the following de�nitions. Let

Mb(w) = {M ∈ Nm | ∃y ∈ Nnu : (M,y) ∈ M(w)}

be the set of basis markings at w. Then, let

O(N,M0) = {w ∈ T ∗

o | ∃σ ∈ T ∗, M0[σ〉, L(σ) = w}

be the set of observable words of 〈N,M0〉.

We denote

Omin(N,M0) = {w ∈ O(N,M0) | ∄ w′ ∈ O(N,M0) :

w′ ≺ w, Mb(w) = Mb(w
′)}

the set of observable words of minimal length to whih it orrespond a di�erent set of basis

markings.

The BRT has as many nodes as the ardinality of Omin(N,M0). Eah node oinides with a

di�erent set M(w) and eah ar is labeled with an observable transition. More preisely, the

BRT is an automaton on the alphabet To whose initial state is M0 = M(ε), and if δ is its

transition funtion, it holds δ(M0, w) = M(w) for any word w ∈ Omin(N,M0). In other words,

if w ∈ Omin(N,M0), then there exists an oriented path labeled w from the root node M0 to the

node M(w).

The BRT of a bounded net system 〈N,M0〉 an be onstruted using the following algorithm

where we denote as Mb (resp., M
′

b, M̃b, M̄b) the set of basis markings relative to the set M

(resp., M′
, M̃, M̄).

Algorithm 5.1 [Basis reahability tree℄

1. Label the initial node M0 = M(ε) as

the root and assign no tag to it.

2. If nodes with no tag exist,

selet a node M with no tag and:

2.1 if ∀ M ∈ Mb and ∀ t ∈ To, Ymin(M, t) = ∅,

tag M �dead� and go to step 2.

2.2 ∀ t ∈ To : {M ∈ Mb | Ymin(M, t) 6= ∅} 6= ∅

2.2.1 let M̃ = ∅

2.2.2 for all (M,y) ∈ M

2.2.2.1 for all ỹ ∈ Ymin(M, t)

10



t1
[10 0 0 0 0 0],0[0 1 1 0 0 0 0],0

t4 [0 0 1 0 0 1 0],y1

t4

t7

dup

dead

[0 1 0 0 0 1 0],y2

[0 0 0 0 0 2 0],y1+ y2

[1 0 0 0 0 0 0],y1+ y3

 y1 = π (ε2)
 y2 = π (ε3ε6)
 y3 = π (ε3ε5)

Figure 2: The basis reahability tree of the net in Fig. 1.

2.2.2.2 ompute M ′ = M +Coπ(t) +Cuỹ,

y′ = y + ỹ

2.2.2.3 let M̃ = M̃ ∪ {(M ′, y′)}

2.3 let M′ = {(M,y) ∈ M̃ |

∄(M ′, y′) ∈ M̃ : y′ � y}

2.4 add a new node M′
to the graph and

an ar t from M to M′

2.5 if already ∃ a node M̄ in the graph suh that

M̄b = M′

b, tag the new node �dup�. �

Example 5.2 The BRT of the net in Fig. 1 is reported in Fig. 2. By looking at this graph we

�nd out all the results already disussed in the Example 4.3. ⋄

One �nal remark about the BRT. In the standard onstrution of a PN reahability/overability

graph, after a tree has been onstruted, by merging idential nodes one obtains a graph that may

also ontain yles. In the ase of the BRT the onstrution of a graph is not meaningful beause

two nodes may orrespond to the same set of basis marking but have di�erent justi�ations.

Consider as an example, the net in Fig. 1 and its BRT in Fig. 2. The words ε, t1t4t7, (t1t4t7)
2
,

. . ., all orrespond to the same basis marking M0 = [ 1 0 0 0 0 0 ]T but they have di�erent

justi�ations

~0, y1 + y3, 2y1 +2y3, . . . In fat, eah time the yle M0[t1t4t7〉M0 the justi�ation

inreases of the quantity y1 + y3.

Thus we keep the tree as it is, but to ompute the set M(w) for a word w of arbitrary length we

need to keep in mind that whenever a leaf is reahed, we need to ontinue the prodution from

the anestor node orresponding to the same set of basis marking while adding, eah time the

yle is repeated, the orresponding justi�ation.

11



6 Diagnosis

The formalism desribed in the previous setions for marking estimation an be used to design

a diagnoser. Let us �rst de�ne

L(w) = {σ ∈ T ∗ | M0[σ〉, L(σ) = w},

the set of �ring sequenes onsistent with w ∈ T ∗

o .

De�nition 6.1 A diagnoser is a funtion ∆ : T ∗

o × Tf → {0, 1, 2, 3} that assoiates to eah

observation w and to eah fault transition tf ∈ Tf a diagnosis state.

∆(w, tf ) = 0 if for all σ ∈ L(w) it holds that tf 6∈ σ. In suh a ase the fault annot

have ourred beause there exist no �rable sequene ontaining tf and onsistent with the

observation.

∆(w, tf ) = 1 if there exists a σ ∈ L(w) suh that tf ∈ σ but for all pairs (M,y) ∈ M(w)

it holds that the justi�ation y of the basis marking M is suh that y(tf ) = 0. In suh a

ase the fault may have ourred but not while reahing a basis marking.

∆(w, tf ) = 2 if there exists a pair (M,y) ∈ M(w) suh that y(tf ) > 0. In suh a ase the

fault may have ourred while reahing a basis marking.

∆(w, tf ) = 3 if for all σ ∈ L(w) it holds that tf ∈ σ. In suh a ase the fault must have

ourred beause all �rable sequene onsistent with the observation ontain tf . �

The diagnosis states 1 and 2 orrespond both to ases in whih the fault may have ourred but

has not neessarily ourred. The main reason to distinguish between them is the following. In

the state 1 the observed behavior does not suggest a fault has ourred, while in the state 2 at

least one of the justiations for the observed behavior implies that the fault has ourred.

The diagnosis state assoiated to an observation w an be easily omputed using the BRT. We

present a series of results whose proofs are rather elementary and are not given here for sake of

brevity.

Let us reall that the BRT is an automaton on the alphabet To. The initial state is M0 =

{(M0,~0)}, and if δ is its transition funtion, it holds δ(M0, w) = M(w).

Proposition 6.2 Consider an observed word w ∈ T ∗

o .

∆(w, tf ) ∈ {0, 1} i� ∀ (M,y) ∈ M(w) it holds y(tf ) = 0.

∆(w, tf ) = 2 i� ∃ (M,y) ∈ M(w) and (M ′, y′) ∈ M(w) suh that y(tf ) = 0 and y′(tf ) >

0.

∆(w, tf ) = 3 i� ∀ (M,y) ∈ M(w) it holds y(tf ) > 0.

12
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The BRT ontains all the information required to assign to an observed sequene a diagnosis

state 2 or 3. However, it does not allow one to distinguish immediately between state 0 and 1.

Further analysis is neessary, as explained in the following proposition.

Proposition 6.3 Consider an observed word w ∈ T ∗

o suh that for all (M,y) ∈ M(w) it holds

y(tf ) = 0.

∆(w, tf ) = 0 if ∀ (M,y) ∈ M(w) there does not exists a sequene σ ∈ T ∗

u suh that M [σ〉

and tf ∈ σ.

∆(w, tf ) = 1 if ∃ at least one (M,y) ∈ M(w) and a sequene σ ∈ T ∗

u suh that M [σ〉 and

tf ∈ σ. �

If the unontrollable subnet is ayli the reahability of the unontrollable subnet an be har-

aterized by the state equation and there exists a sequene ontaining transition tf �rable from

M on the unontrollable subnet if and only if the following integer onstraint set (ICS) admits

a solution:

M + Cuz ≥ ~0, z(tf ) > 0, z ∈ Nnu . (1)

Thus we have the following result.

Proposition 6.4 For a Petri net whose unontrollable subnet is ayli, let w ∈ T ∗

o be an

observed word suh that for all (M,y) ∈ M(w) it holds y(tf ) = 0.

∆(w, tf ) = 0 if ∀ (M,y) ∈ M(w) ICS (1) does not admit a solution:

∆(w, tf ) = 1 if ∃ a (M,y) ∈ M(w) suh that (1) admits a solution. �

7 Conlusions

In this paper we dealt with the problem of fault detetion for disrete event systems. An original

approah is presented using Petri nets with unobservable transitions. In partiular, faults are

modeled as unobservable transitions, and legal behaviours as well may be modeled as unobserv-

able transitions. We �rst provide a haraterization of the �ring sequenes orresponding to a

given observation based on the notion of basis markings and justi�ations. For the omputation

of the set of basis markings we propose a simple tabular algorithm and use it to determine a

deterministi automaton, that we all basis reahability tree, that an be used as a diagnoser.
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