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Abstract: In this paper we deal with the problem of designing a supervisory
controller that enforces certain specifications on the marking of a Colored Petri
net (CPN). In particular, we consider colored Generalized Mutual Exclusion
Constraints (GMEC) that represent in a compact way several linear constraints
that limit the weighted sum of colored tokens in subsets of places. In a previous
work we have shown that, when all transitions are controllable and observable
with respect to all colors, these constraints can be enforced by a colored monitor
place that can be added to the net to obtain the closed-loop system. The novel
contribution of this paper is that of showing how these results can be extended to
the case of transitions that are uncontrollable and/or unobservable with respect
to certain colors. In particular, we show that the parametrization and the tabular
procedure proposed by Moody and Antsaklis for uncolored Petri nets can still be
used to compute – when it does exist – a less permissive GMEC that can be forced
by an admissible colored monitor place.

Keywords: Petri nets, colored Petri nets, generalized mutual exclusion
constraints, monitor places.

1. INTRODUCTION

In (Fanti et al., 2003) we showed how the con-
trol approach based on the construction of mon-
itor places presented in (Giua et al., 1992) for
place/transition nets can be extended to the more
general case of CPN (Jensen, 1992). A colored
GMEC may represent in a compact way several
constraints, and can be unfolded into a set of
uncolored GMEC. In (Fanti et al., 2003) it was
shown that, when all transitions are controllable
and observable, a GMEC can still be enforced by
adding a monitor place pc, and it was provided
a systematic procedure to compute the incidence
matrix defining such a monitor place, as well as
its initial marking. When all transitions are con-
trollable and observable with respect to (wrt) all
colors, the monitor place minimally restricts the
behavior of the closed-loop system, in the sense
that it prevents only those transition firings that
yield forbidden markings.
In the presence of transitions that are uncontrol-
lable and/or unobservable wrt certain colors, it
may well be the case that the monitor designed for
a given GMEC is not admissible. In other words,
it may occur that the monitor either disables a
transition wrt an uncontrollable color, or observes
the firing of a transition wrt an unobservable color.
We show that in such a case it may be possi-
ble to construct a less permissive, but admissible
monitor, extending to the case of colored nets the
parametrization and the tabular procedure pro-

posed by Moody and Antsaklis (1998) for uncol-
ored Petri nets (PN).
It is important to observe that the computational
complexity of the proposed approach is the same
as that of computing the equivalent admissible
GMEC and the corresponding monitor places for
the unfolded net. There is still some advantages
in using our approach with CPN rather than un-
folding the net and use the standard approach in
(Moody and Antsaklis, 1998).
— In many application cases it is much more
convenient to deal with a CPN model rather than a
PN model, so as to keep all the advantages deriving
from the greater expressive power of CPN and
the possibility of using other techniques developed
to analyze and simulate CPN. In such a case an
alternative to our procedure would be that of
unfolding the net, converting the colored GMEC
into a set of uncolored GMEC, then compute
the admissible monitor places, and finally convert
them into a single colored monitor place.
Our approach provides a systematic procedure to
do this within the framework of CPN.
— Moreover, when computing an admissible GMEC
using the proposed tabular procedure, we do not
need to compute the unfolding of the whole CPN,
but we only consider the incidence matrix of the
unfolded subnet containing those transitions and
those colors wrt whom transitions are either un-
controllable or unobservable.
— Finally, the proposed approach is a first step
towards the formulation of a symbolic procedure



for the computation of admissible monitor places
for arbitrary high-level PN.

2. MULTISETS

Definition 2.1. Let D be a set. A multiset (resp.,
non negative multiset) α over D is defined by a
mapping α : D → Z (α : D → N) and may be
represented as α =

∑
d∈D α(d)⊗ d where the sum

is limited to the elements such that α(d) 6= 0.
Let Z(D) (resp., N (D)) denote the set of all
multisets (resp., non negative multisets) over D.
The multiset ε is the empty multiset such that for
all d ∈ D, ε(d) = 0. ¥
Now, given two sets D and D′, let F : D → Z(D′)
be a function that associates to each element d ∈ D
a multiset on D′:

F (d) =
∑

d′∈D′
F (d, d′)⊗ d′ ∈ Z(D′).

Definition 2.2. Given two sets D and D′, a
function F : D → Z(D′), and a multiset α ∈
Z(D),

F (α) , F ◦α ,
∑

d∈D

α(d)F (d) =
∑

d∈D

∑

d′∈D′
α(d)F (d, d′)⊗ d′ ∈ Z(D′)

.

¥
We finally observe that it is possible to give a
matrix representation of multisets and of functions
over multisets.
Given two sets D and D′, let us arbitrary order
their elements as follows: D = {d1, . . . , dk} and
D′ = {d′1, . . . , d′k′}.
A multiset α ∈ Z(D) can be represented by a
vector:

α =




α(d1)
α(d2)

...
α(dk)


 ∈ Zk.

Thus, given a function F : D → Z(D′) for all
d ∈ D we can write

F (d) =




F (d, d′1)
F (d, d′2)

...
F (d, d′k′)


 ∈ Zk′ .

while its extension F : Z(D) → Z(D′) can be
represented by the matrix

F = [ F (d1) F (d2) . . . F (dk) ] ∈ Zk′×k

and finally the multiset F (α) = F ◦ α can be
computed with the usual matrix-vector product
denoted by ·, i.e.,

F (α) = F ◦α = F ·α =




k∑

i=1

α(di)F (di, d
′
1)

k∑

i=1

α(di)F (di, d
′
2)

...
k∑

i=1

α(di)F (di, d
′
k′)




∈ Zk′ .

Finally, given a multiset α ∈ Z(D′), where D′ ∈
{d′1, . . . , d′k′}, with the notation α′ we denote a
multiset represented by a row vector, i.e.,

α′ =
[
α(d′1) . . . α(d′k′)

] ∈ Z1×k′ .

The multiset α′ ◦ F represented by a row vector,
can be computed with the usual matrix-vector
product, i.e.,

α′ ◦ F = α′ · F =[
k′∑

i=1

α(d′i)F (d′i, d1) . . .

k′∑

i=1

α(d′i)F (d′i, dk)

]
∈ Z1×k′ .

3. COLORED PETRI NETS
A Colored Petri Net (CPN) is a bipartite directed
graph represented by a quintuple N = (P, T,
Co, Pre, Post) where P is the set of places, T
is the set of transitions, Co : P ∪ T → Cl is a
color function that associates to each element in
P ∪ T a non empty ordered set of colors in the set
of possible colors Cl.
Therefore, for all pi ∈ P , Co(pi) = {ai,1, . . . ,
ai,ui} ⊆ Cl is the ordered set of possible colors
of tokens in pi, and ui is the number of possible
colors of tokens in pi. Analogously, for all tj ∈ T ,
Co(tj) = {bj,1, . . . , bj,vj} ⊆ Cl is the ordered set
of possible occurrence colors of tj , and vj is the
number of possible occurrence colors in tj .
We assume that m = |P | and n = |T|.
Matrices Pre and Post are the pre-incidence and
the post-incidence m × n dimensional matrices
respectively. Each element Pre(pi, tj) (the same
reasoning applies to Post) is a mapping from
the set of occurrence colors of tj to a non neg-
ative multiset over the set of colors of pi, namely,
Pre(pi, tj) : Co(tj) → N (Co(pi)), for i = 1, . . . ,m
and j = 1, . . . , n. We denote Pre(pi, tj) as a ma-
trix of ui× vj non negative integers, whose generic
element Pre(pi, tj)(h, k) is equal to the weight of
the arc from place pi wrt color ai,h to transition tj
wrt color bj,k.
The incidence matrix C is an m×n matrix, whose
generic element C(pi, tj) : Co(tj) → Z(Co(pi)),
for i = 1, . . . , m and j = 1, . . . n. In particular
C(pi, tj) = Post(pi, tj)− Pre(pi, tj).
For each place pi ∈ P , we define the marking
mi of pi as a non negative multiset over Co(pi).
The mapping mi : Co(pi) → N associates to
each possible token color in pi a non negative
integer representing the number of tokens of that
color that is contained in place pi, and mi =∑

d∈Co(pi)
mi(d)⊗ d.

Here we denote mi as a column vector of ui non
negative integers, whose h-th component mi(h) is
equal to the number of tokens of color ai,h that are
contained in pi.
Finally, the marking M of a CPN is an m-
dimensional column vector of multisets whose i-th
entry is equal to mi.
A colored Petri net system 〈N, M0〉 is a colored
Petri net N with initial marking M0.
A transition tj ∈ T is enabled wrt color bj,k at
a marking M if and only if for each place pi ∈
P and for all h = 1, . . . , ui, we have mi(h) ≥
Pre(pi, tj)(h, k).
The firing of transition ti wrt color bij follows the
standard rules of CPN (Giua and Seatzu, 2004).



p1 t2

{c1,c2} {c2,c3} {c1,c2,c3}

t1






21
12







211
121

p2 t3

{c1,c2,c3} {c1,c2}













101
120
101













10
12
21

{z1,z2,z3}pc













96
42
31













63
66
12













000
462
020













112
000
101

p3t4

{c2, c3}{c2,c3}







12
31





20
12

Fig. 1. The closed-loop colored Petri net of Example 1.

Example 3.1. Let us consider the CPN in Fig-
ure 1.a apart from place pc and all connected arcs.
The set of colors is Cl = {c1, c2, c3}. Places p1 and
p3 may only contain tokens of colors c2 and c3,
while place p2 may contain tokens of any color in
Cl. Finally, transitions t1 and t3 may only fire wrt
to colors c1 and c2, while transition t2 may fire
wrt any color in Cl, and transition t4 may fire wrt
colors c2 and c3. Given the structure of the net, the
only non null matrices Pre and Post are those
reported Figure 1.a using the matrix notation. ¥
Finally, let us introduce the following definitions.
Definition 3.2. Given a CPN Np = (P, T, Co,
Prep, Postp), a transition tj ∈ T is uncontrollable
wrt color bj,k ∈ Co(tj) if its firing wrt bj,k cannot
be inhibited by an external action. Thus, the set
Co(tj) may be partitioned as Co(tj) = Couc(tj) ∪
Coc(tj) where Coc(tj) (Couc(tj)) is the set of colors
wrt whom transition tj is controllable (uncontrol-
lable).
If Couc(tj) = ∅ we say that tj is controllable; if
Coc(tj) = ∅ we say that tj is uncontrollable. ¥
Definition 3.3. Given a CPN Np = (P, T, Co,
Prep, Postp), a transition tj ∈ T is unobservable
wrt color bj,k ∈ Co(tj) if its firing wrt bj,k cannot
be measured by an external action. Thus, the set
Co(tj) may be partitioned as Co(tj) = Couo(tj) ∪
Coo(tj) where Coo(tj) (Couo(tj)) is the set of
colors wrt whom transition tj is observable (un-
observable).
If Couo(tj) = ∅ we say that tj is observable; if
Coo(tj) = ∅ we say that tj is unobservable. ¥

4. GMEC IN COLORED PETRI NETS

Now, we recall the notion of colored GMEC (Fanti
et al., 2003).
Definition 4.1. A GMEC is a couple (W , k)
where W = [w1 . . . wm], k ∈ Z(D) and for all
i, wi : Co(pi) → Z(D), while D is a set of colors
different from Co(pi), i = 1, . . . ,m. Thus W can
also be represented by a matrix with |D| rows and∑m

i=1 |Co(pi)| columns, and

M(W , k) =



M =




m1
...

mm




∣∣∣∣∣∣
mi ∈ N (Co(pi)),

W ◦M ,
m∑

i=1

wi ◦mi ≤ k

}
.

is the set of legal markings. ¥
Note that here we are extending the ◦ operator to
the case of scalar product of vectors of multisets.
Example 4.2. Let us consider again the CPN in
Figure 1.a apart from place pc and all connected
arcs. Assume D = {z1, z2, z3}. Moreover, let w1 =
[w1(c2) w1(c3)], w1(c1) = 1⊗z1+2⊗z2, w1(c3) =
2 ⊗ z2 + 3 ⊗ z3, w2 = [w2(c1) w2(c2) w2(c3)],
w2(c1) = 1⊗ z1 + 2⊗ z2 + 2⊗ z3, w2(c2) = 2⊗ z3,
w2(c3) = 1⊗ z1 +3⊗ z3, w3(c2) = w3(c3) = ε and
k = 3⊗ z1 + 5⊗ z2 + 6⊗ z3. Therefore,

W ◦M ,
m∑

i=1

wi ◦mi =

[
1 0
2 2
0 3

]
·
[

m1(c2)
m1(c3)

]
+

+

[
1 0 1
2 0 0
2 2 3

]
·
[

m2(c1)
m2(c2)
m2(c3)

]
≤

[
3
5
6

]
=⇒

M(W , k) = { M =

[
m1

m2

m3

]
| mi ∈ N (Co(pi)),

m1(c2) + m2(c1) + m2(c3) ≤ 3,
2m1(c2) + 2m1(c3) + 2m2(c1) ≤ 5
3m1(c3) + 2m2(c1) + 2m2(c2) + 3m2(c3) ≤ 6} .

¥

5. MONITORS FOR COLORED PETRI NETS
Definition 5.1. Given a CPN system 〈Np,Mp,0〉,
with Np = (P, T,Co, Prep,Postp), and a GMEC
(W ,k) with k ∈ Z(D), the monitor that enforces
this constraint is a new place pc with Co(pc) = D,
to be added to Np. The resulting system is denoted
〈N, M0〉, with N = (P ∪ {pc}, T, Co, Pre, Post).
Then N will have incidence matrix

C =
[

Cp

Cc

]
, Cc = −W ◦Cp. (1)

We are assuming that there are no selfloops con-
taining pc in N , hence Pre and Post may be
uniquely determined by C. The initial marking of
〈N, M0〉 is

M0 =
[

Mp,0

mc,0

]
, mc,0 = k −W ◦Mp,0. (2)

We assume that the initial marking Mp,0 of the
system satisfies the constraint (W , k). ¥
In the case of controllable and observable tran-
sitions we proved the following result (Fanti et
al., 2003).
Theorem 5.2. Let 〈Np, Mp,0〉 be a CPN system,
and (W , k) a colored GMEC. Let 〈N, M0〉 be the
system with the addition of the monitor place pc.
(1) The monitor place pc enforces the GMEC
(W ,k) when included in the closed-loop system
〈N, M0〉.
(2) The monitor place pc minimally restricts the
behavior of the closed-loop system 〈N, M0〉, in the
sense that it prevents only transition firings that
yield forbidden markings.



6. UNCONTROLLABLE AND
UNOBSERVABLE GMEC

In this section we first introduce the definition
of controllable and observable GMEC. Then we
provide necessary and sufficient conditions for its
controllability and observability.
Definition 6.1. Given a CPN system 〈Np, Mp,0〉,
with Np = (P, T, Co, Prep, Postp), and a GMEC
(W , k) with k ∈ Z(D), let pc with Co(pc) = D
be the corresponding monitor place with (pre-
)incidence matrix (Prec) Cc.
— The monitor place pc is said structurally con-
trollable (or simply, controllable) if for all transi-
tions tj ∈ T and for all colors bj,k ∈ Couc(tj),
Prec(·, bj,k) = ε, i.e., the monitor place is control-
lable if the weights of the input arcs to transitions
that are uncontrollable wrt certain colors, are null
wrt those colors.
— The monitor place pc is said structurally ob-
servable (or simply, observable) if for all transi-
tions tj ∈ T and for all colors bj,k ∈ Couo(tj),
Cc(·, bj,k) = ε, i.e., the monitor place is observable
if the weights of the input and the output arcs
to transitions that are uncontrollable wrt certain
colors, are null wrt those colors. ¥
A monitor place that is controllable and observable
is said admissible.
Analogously, we say that a GMEC is controllable
and observable (admissible) if the corresponding
monitor place is controllable and observable (ad-
missible).
Proposition 6.2. Given a CPN system 〈Np, Mp,0〉
with incidence matrix Cp, let (W ,k) with k ∈
Z(D) be a GMEC that we want to force, and pc

be the corresponding monitor place with incidence
matrix Cc. Let Cuc

p be the matrix that we obtain
selecting from Cp the only columns relative to
those transitions and those colours such that the
considered transitions are uncontrollable wrt the
considered colors.
(i) The GMEC and the monitor place are con-

trollable if and only if

Cuc
c = − W ◦Cuc

p ≥ [ ε . . . ε ].︸ ︷︷ ︸∑

j: tj∈T

|Couc(tj)|

(ii) The GMEC and the monitor place are observ-
able if and only if

Cuo
c = − W ◦Cuo

p = [ ε . . . ε ].︸ ︷︷ ︸∑

j: tj∈T

|Couo(tj)|

Proof. See (Giua and Seatzu, 2004).

Example 6.3. Let us consider again the CPN
system in Figure 1.a apart from place pc and
all connected arcs. Assume that transition t2 is
uncontrollable wrt colors c2 and c3. In such a
case the GMEC (W , k) defined in the previous
Example 4.2 is not controllable being

Cuc
c = − W ◦Cuc

p =

c2 c3[
2 −1
6 4

−1 −1

]
z1

z2

z3

� [ ε ε ]

Now, assume that transition t2 is unobservable wrt
color c1, and transition t3 is unobservable wrt color
c2. Being

Cuo
c = − W ◦Cuo

p =

c1 c2[−1 3
2 4

−2 9

]
z1

z2

z3

6= [ ε ε ]

the GMEC (W ,k) is not observable ¥

7. MONITORS FOR UNCONTROLLABLE
AND UNOBSERVABLE GMEC

As well known from the uncolored PN theory,
given an uncontrollable or unobservable GMEC,
the maximal permissive supervisor may not be a
monitor place (Giua et al., 1992). An important
contribution in this area is due to Moody and
Antsaklis (1998) who proposed a very simple and
efficient procedure to compute a family of more
restrictive controllable and observable GMEC that
force the original GMEC. Clearly, these GMEC are
not in general maximally permissive. Here we show
how the procedure by Moody and Antsaklis can be
easily extended to the case of CPN.
Proposition 7.1. Given a GMEC (W , k) with

W =
[

w1 . . . wm

]
, wi : Co(pi) → Z(D),

i = 1, . . . , m,

k ∈ Z(D), D = {z1, . . . , zq},

let us consider the modified GMEC (W̃ , k̃) where

W̃ =




s′1 ◦W
...

s′q ◦W


 + R,

si ∈ N (D), si(zj) ∈ N+ if i = j,

si(zj) = 0 if i 6= j,

R =
[

r1 . . . rm

]
, ri : Co(pi) → N (D),

i = 1, . . . , m,

k̃ =




s′1 ◦ (k + 1)
...

s′q ◦ (k + 1)


− 1

where 1 ∈ N (D) is the multiset of ones over D.
It holds M(W̃ , k̃) ⊆M(W ,k).

Proof. If M ∈ M(W̃ , k̃), then W̃ ◦ M ≤ k̃, or
equivalently, by definition,



s′1 ◦W
...

s′q ◦W


 ◦M + R ◦M ≤




s′1 ◦ (k + 1)
...

s′q ◦ (k + 1)


− 1.

(3)
Therefore,






s′1 ◦W
...

s′q ◦W


 ◦M ≤




s′1 ◦ (k + 1)
...

s′q ◦ (k + 1)


− 1−R ◦M

≤




s′1 ◦ (k + 1)
...

s′q ◦ (k + 1)


− 1

(4)
being R◦M ≥ ε. Now, let us rewrite the weighting
matrix W as

W =




w̄′
1

...
w̄′

q


 .

Because each multiset si has only one non-zero
(positive) element in correspondence to the i-th
position, the inequality (4) can be rewritten as

si(zi) w̄′
i ◦M ≤ si(zi) (k(zi) + 1)− 1,

i = 1, . . . , q.

Now, because si(zi) ∈ N+, it holds

w̄′
i ◦M ≤ k(zi) + 1− 1

si(zi)
< k(zi) + 1,

i = 1, . . . , q.

Being w̄′
i◦M ∈ Z for all i = 1, . . . , q, it holds that

w̄′
i ◦M ≤ k(zi), for i = 1, . . . , q, or equivalently

W ◦ M ≤ k, i.e., M ∈ M(W , k), thus proving
the statement.

A modified GMEC can be easily determined using
the Algorithm 7.2 that is an extension of the
algorithm presented by Moody and Antsaklis in
(1998).
Note that with no ambiguity in the notation we
often refer to the matrix representation of multisets
and of matrices of multisets. Moreover, we denote
as 0k×q the zero matrix of dimension k × q and
with 0k the zero column vector of dimension k.
If the algorithm stops with k = q + 1 and flag =
0, then consider the transformed GMEC (W̃ , k̃)
defined as follows

W̃ =




s′1 ◦W
...

s′q ◦W


 + R, k̃ =




s′1 ◦ (k + 1)
...

s′q ◦ (k + 1)


− 1

that is controllable and observable being

−W̃ ◦Cuc
p ≥ [ ε . . . ε ]︸ ︷︷ ︸

nuc

−W̃ ◦Cuo
p = [ ε . . . ε ]︸ ︷︷ ︸

nuo

Moreover, by Proposition 7.1, the controllable and
observable monitor p̃c corresponding to the GMEC
(W̃ , k̃), if physically implementable, is sub-optimal
(or even optimal) for the GMEC (W , k).
Example 7.3. Let us consider the CPN system in
Figure 1.a. apart from place pc and all connected
arcs. Assume that transition t2 is uncontrollable
wrt colors c2 and c3 and unobservable wrt color
c1, while transition t3 is unobservable wrt color c2.
Let us apply Algorithm 7.2 to compute an admis-
sible GMEC (W̃ , k̃). In such a case nuc = nuo = 2,

and M = 7. Moreover, at step 1 of Algorithm 7.2
we define

V =

[−2 1
−6 −4

1 1

]
, U =

[
1 −3

−2 −4
2 −9

]
,

R = [ ε ε ε ε ε ε ε ] , si = ε,

i = 1, . . . , 3. Thus, for k = 1 we consider the table

A =

−2 −1
−1 −2

0 1
2 1
0 1
0 0
0 0

−1 0
−1 0

1 −2
0 −1
1 −1
0 3
0 1

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

0
0
0
0
0
0
0

−2 1 1 −3 0 0 0 0 0 0 0 1
To make null the element v(2) = 1 we update the
last row of A as: A(8, ·) = A(8, ·) + A(1, ·). To
make null the element u(2) = −3 we update the
last row of A as: A(8, ·) = A(8, ·) + A(6, ·).
Now, v ≤ [0 0]′ and u = [0 0]′, thus we update
s1(1) = 1, R(1, ·) = [1 0 0 0 0 1 0], and repeat the
procedure for k = 2.
An admissible GMEC is (W̃ , k̃) where

w̃1 =

[
2 0
2 2
1 4

]
w̃2 =

[
1 0 1
2 0 2
2 2 3

]

w̃3 =

[
1 0
0 6
3 0

]
k̃ =

[
3
5
6

]

Thus, the resulting monitor place is defined by

C̃c =

c1 c2 c1 c2 c3 c1 c2 c2 c3[−4 −2 0 4 0 0 0 2 0
−6 −6 0 6 2 −10 0 6 12
−6 −9 0 2 2 3 0 6 0

]
z1

z2

z3

Let Mp,0 = [ε 1 ⊗ c1 + 1 ⊗ c3 ε]′ that satisfies
the modified GMEC (W̃ , k̃). The initial marking
of p̃c should be taken equal to m̃c,0 = k̃ − W̃ ◦
Mp,0 = k̃−∑3

i=1 w̃i◦mp,0,i = 1⊗z1+1⊗z2+1⊗z3.
¥

8. CONCLUSIONS

In this paper we first recalled some results in (Fanti
et al., 2003) where we shown that the classic PN
control approach based on GMEC and monitor
places can be extended to the case of CPN. Then,
we focused our attention to the case in which not
all transitions are controllable and observable thus
a colored monitor designed for a given colored
GMEC may not be admissible (it either disables
a transition wrt an uncontrollable color, or ob-
serves the firing of a transition wrt an unobservable
color). We shown how it may be possible to con-
struct a less permissive, but admissible monitor,
extending to the case of CPN the parametrization
and the tabular procedure proposed by Moody and
Antsaklis (1998) for uncolored PN.
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Algorithm 7.2 (Design of a suboptimal monitor place for CPN).
Let us consider a CPN system 〈Np,Mp,0〉 with incidence matrixCp. LetCuc

p (Cuo
p ) be the matrices obtained selecting from

Cp the only columns relative to those transitions and those colors such that the considered transitions are uncontrollable
(unobservable) wrt those colors.
Let (W ,k) with k ∈ Z(D), D = {z1, . . . , zq}, be the GMEC that we want to force.
Finally, let nuc =

∑
j:tj∈T

|Couc(tj)|, nuo =
∑

j:tj∈T
|Couo(tj)|, and M =

∑m

i=1
|Co(pi)|.

1. Let V := W ◦Cuc
p , U := W ◦Cuo

p ,
R := [ " . . . " ]︸ ︷︷ ︸ si := ", i = 1, . . . , q, " ∈ Z(D), k := 1, flag := 0.

M
2. While k ≤ q and flag = 0, do

if V (k, ·) ≤ 0′nuc
and U(k, ·) = 0′nuo

, then let k := k + 1, else
begin

2.1. let A :=
Cuc

p Cuo
p IM 0M

v u r̄1 r2
where v := V (k, ·), u := U(k, ·), r̄1 := 0′M , r2 := 1.

2.2. Let Juc := {j | v(j) > 0} be the set of indices of columns of A corresponding to positive elements of v.
Let J+

uo := {j + nuc | u(j) > 0} be the set of indices of columns of A corresponding to
positive elements of u.

Let J−uo := {j + nuc | u(j) < 0} be the set of indices of columns of A corresponding to
negative elements of u.

Let J := Juc ∪ J+
uo ∪ J−uo. If J = ∅, then goto 2.4.

2.3 If J 6= ∅, then choose a value ̄ ∈ J .
If ̄ ∈ Juc then try to reduce v(̄) to zero using the following procedure.

(a) Let I := {i | Cuc
p (i, ̄) < 0} be the set of row indices of the elements of Cuc

p (·, ̄) that are negative.
If I = ∅ it is not possible to get null the positive element v(̄),

then let flag := 1 and goto 2.4.
(b) Choose an index ı̄ ∈ I and compute d := l.c.m.{−Cuc

p (ı̄, ̄), v(̄)}
the least common multiple among the two elements −Cuc

p (ı̄, ̄) and v(̄).
(c) Update the (M + 1)–th row of A as follows:

A(M + 1, ·) :=
d

v(̄)
A(M + 1, ·) +

d

Cuc
p (ı̄, ̄)

A(ı̄, ·).
By construction v(̄) is null.

If ̄ ∈ J+
uo then try to reduce u(̄− nuc) to zero using the following procedure.

(a) Let I− := {i | Cuo
p (i, ̄− nuc) < 0} be the set of row indices of the elements

of Cuo
p (·, ̄− nuc) that are negative.

If I− = ∅ it is not possible to get null the positive element of u(̄− nuc),
then let flag := 1 and goto 2.4.

(b) Choose an index ı̄ ∈ I− and compute d+ := l.c.m.{−Cuo
p (ı̄, ̄− nuc), u(̄− nuc)}.

(c) Update the (M + 1)–th row of A as follows:

A(M + 1, ·) :=
d+

u(̄− nuc)
A(M + 1, ·) +

d+

Cuo
p (ı̄, ̄− nuc)

A(ı̄, ·).
By construction u(̄− nuc) is null.

If ̄ ∈ J−uo then try to reduce u(̄− nuc) to zero using the following procedure.
(a) Let I+ := {i | Cuo

p (i, ̄− nuc) > 0} be the set of row indices of the elements of
Cuo

p (·, ̄− nuc) that are positive.
If I+ = ∅ it is not possible to get null the negative element u(̄− nuc),

then let flag := 1 and goto 2.4.
(b) Choose an index ı̄ ∈ I+ and compute d− := l.c.m.{Cuo

p (ı̄, ̄− nuc),−u(̄− nuc)}.
(c) Update the (M + 1)–th row of A as follows:

A(M + 1, ·) :=
d−

u(̄− nuc)
A(M + 1, ·) +

d−

Cuo
p (ı̄, ̄− nuc)

A(ı̄, ·).
By construction u(̄− nuc) is null.

2.4. If flag = 1 then the algorithm stops without providing a solution,
else

the last row of the table is in the form v u r̄1 r2

where v ≤ 0nuc , u = 0nuo , r1 ∈ Nm and r2 ∈ N.
Let sk(k) := r2, R(k, ·) := r̄1,
If k < q, then let k := k + 1 and goto 2.2.

endif
end �
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