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Abstract: In this paper we deal with the problem of controlling a safe
place/transition nets so as to avoid a set of forbidden markings F . We say that a
given set of markings has property REACH if it is closed under the reachability
operator. We assume that all transitions of the net are controllable and that the
set of forbidden markings F has the property REACH. Under these assumptions
we show that using the technique of unfolding is possible to efficiently design a
maximally permissive supervisor to solve this control problem. The supervisor
takes the form of a set of control places to be added to the unfolding.
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1. INTRODUCTION

The use of partial order methods for the efficient
verification of concurrent systems is a technique
that has been used by several authors in the last
10-15 years. In particular, a Petri net is a natural
model for this approach because it has primitives
to explicitly capture the notion of precedence and
independence between events.
The interleaving of concurrent sequences often
leads to the well-known problem of state space
explosion that hinders the applicability of all those
Petri net analysis techniques, e.g. the reachability
graph, that are based on the exhaustive search
over the set of reachable markings. However, the
sets of states introduced by concurrency are for
the most part intermediate markings that are ir-
relevant to determine the properties of the system:
what matters is the unique marking reached by the
firing of all these concurrent sequences.
As Valmari (1994) has lucidly explained, this fact
has motivated research along at least two different
lines.
(a) A first approach is to let one (or at least
as few as possible) interleaving represent all its
equivalent interleavings: the notion of stubborn
set (Valmari, 1991) and persistent set (Godefroid,
1996) is inspired by this idea.
(b) A second approach consists in replacing the
reachability graph by a net structure which cap-

tures the concurrent executions, and does not ex-
plicitly show individual interleavings. This tech-
nique is based on the unfolding of a (bounded)
Petri net into an occurrence net. A finite prefix
of the unfolding can be used to characterize the
set of all reachable markings without having to
enumerate them (McMillan, 1995; Esparza et al.,
2002). Recently, this approach has also been ex-
tended to unbounded nets (Neumair, 2002). Note
that the occurrence net is much simpler that the
original Petri net and can usually be validated
using structural analysis.
Although these two type of techniques have proved
to be a powerful instrument in the verification
of concurrent systems, the application of these
techniques to the control of discrete event systems
has not received a lot of attention. We recall here
some contributions in this area.
Hellgren et al. (1999) have used persistent sets to
design supervisors for deadlock avoidance.
Observability and diagnosis are closely related to
control: Aghasaryan et al., (1988) were the first to
use unfolding for fault detection and diagnosis in
distributed systems. This approach has also been
extended in two subsequent papers by Benveniste
et. al (2003a and 2003b).
Recently, in a series of papers He and Lemmon
(2000a, 2000b, 2002) have presented an original
approach based on unfolding for liveness verifica-



tion and enforcing. However we have shown (Xie
and Giua, 2004) that some key results of these
papers need to be refined. As a result, although
we still strongly believe that unfolding is an inter-
esting and potentially fruitful technique for Petri
net control, the applicability of unfolding for Petri
net supervision is still an open issue.
In the paper we consider discrete event systems
modeled by safe place/transition nets. The con-
trol problem we consider can be framed within
the theory of Supervisory Control (Ramadge and
Wonham, 1989). In particular, we consider a con-
trol specification that requires avoiding a set of
forbidden marking F . In the current state of in-
vestigation, we assume that all transitions are
controllable, i.e., they can be disabled by a con-
trolling agent called supervisor that must enforce
the specification.
We use a set of finite prefixes of the unfolding, that
we call order 1, to characterize the reachability set
of the original net.
We restrict our attention to a special class of
forbidden marking specification that have a prop-
erty we call REACH: once a forbidden marking is
reached, all markings reachable from it will also
be forbidden. This has a nice advantage over the
unfolding structure: if a configuration (i.e., a set of
transition firings) is forbidden, any larger configu-
ration should also be forbidden. We show that in
this case a simple control structure - that consists
in a set of places to be added to the order 1 prefix -
can be used to implement a maximally permissive
control policy that enforces the specification.
The approach we present in the paper requires
an exhaustive enumeration of the set of forbid-
den markings. It has however the advantage of
allowing one to construct a maximally permissive
supervisor in the form of a ”controlled” occurence
net (i.e., an occurence net with the addition of
control places) using a procedure where where
the set of markings of the plant needs not be
exhaustively enumerated. The closed loop system
in this approach can also be represented by this
controlled occurence net.

2. BACKGROUND ON PETRI NETS

In this section we recall the formalism used in the
paper. A more detailed introduction to Petri nets
can be found in (Murata, 1989).
The Petri net model considered in this paper is an
ordinary Place/Transition net (P/T net) denoted
N = (P, T, F ), where P is a set of m places; T is a
set of n transitions; F ⊆ (P × T ) ∪(T × P ) is the
flow function that specifies the arcs from places to
transitions and from transitions to places.
The preset and postset of a node x ∈ P ∪ T
are denoted •x , {x′ |(x′, x) ∈ F } and x• ,
{x′ |(x, x′) ∈ F } while •x• = •x ∪ x•. Node x is
a source (resp., sink) if •x = ∅ (resp.; x• = ∅).
Given two nodes x, x′ ∈ P ∪ T we define the
following relations.

• Node x precedes x′ (denoted x 4 x′) if there
exists a directed path from x to x′ . If we
require that the path has length greater than
zero we write x ≺ x′.

• Nodes x and x′ are in conflict (denoted x#x′)
if there exist two different transitions t, t′ ∈ T
such that: t 4 x, t′ 4 x′, •t ∩ •t′ 6= ∅. In
this case, in fact transitions t and t′ are in
conflict because they have a common input
place, and the conflict propagates to all nodes
following them. A node x is in self-conflict if
x#x holds.

• Nodes x and x′ are concurrent (denoted x ≈
x′) if neither x 4 x′, nor x′ 4 x, nor x#x′

hold.
Note that given two nodes x and x′ it may hold
that: (x ≺ x′ and x′ ≺ x and x#x′).
A marking M : P → N that assigns to each place
of a P/T net a non–negative integer number of
tokens, represented by black dots. A P/T system
or net system 〈N, M0〉 is a net N with an initial
marking M0.
A transition t is enabled at M iff M(p) > 0 for
all p ∈ •t. If t is enabled, it may fire yielding
the marking M ′ = M + C(· , t). We write M |σ〉
to denote that the sequence of transitions σ =
tj1 · · · tjk

is enabled at M , and we write M |σ〉 M ′

to denote that the firing of σ yields M ′. We can
associate to a sequence σ a firing vector X :
T → N such that X(t) = k if the transition t
is contained k times in σ.
A marking M is reachable in 〈N, M0〉 iff there
exists a firing sequence σ such that M0 |σ〉 M .
The set of all markings reachable from M0 defines
the reachability set of 〈N, M0〉 and is denoted
R(N, M0).
The incidence matrix of a net is an m× n matrix
C where; C(p, t) = 1 if (t, p) ∈ F and (p, t) /∈ F ,
C(p, t) = −1 if (p, t) ∈ F and (t, p) /∈ F , else
C(p, t) = 0.
We denote PR(N, M0) the potentially reachable
set, i.e., the set of all markings M ∈ Nm for which
there exists a vector X ∈ Nn that satisfies the
state equation M = M0+C ·X, i.e., PR(N, M0) ,
{M ∈ Nm | ∃X ∈ Nn : M = M0 + C ·X }. It holds
that R(N, M0) ⊆ PR(N,M0).
A place p is k-bounded if for all M ∈ R(N, M0) it
holds M(p) 6 k. A place 1-bounded is called safe.
A net system 〈N, M0〉 is said k-bounded (resp.,
safe) if all its places are k-bounded (resp., safe).
A marking M of a safe net system is a binary
vector and can also be seen as a set of places
M = {p ∈ P |M(p) = 1}.
In the rest of the paper for sake of simplicity we
will consider only safe net systems but the results
presented in this paper can easily be extended to
arbitrary bounded nets.

3. UNFOLDING

In this section we informally recall how it is pos-
sible, given a safe net system 〈N, M0〉, to unfold



it constructing a labelled occurrence net Ñ(M0).
This occurrence net, that is also commonly called
the unfolding of 〈N, M0〉, has a structure that de-
pends both on N and on M0. A formal description
of the unfolding procedure requires a long and te-
dious series of definitions: we prefer to present the
key concepts here. Any of the references (McMil-
lan, 1995; Esparza et al., 2002; He and Lemmon,
2002; Benveniste et al., 2003a) contains a more
comprehensive and accurate discussion.
An occurrence net is an ordinary P/T net with
a special structure: (a) starting from any node,
all backward paths are finite, i.e., eventually they
reach a source node; (b) each place has at most
one input arc; (c) no node is in self-conflict. It is
easy to show that in an occurrence net if x and
x′ are two distinct nodes, one and only one of the
following conditions holds: x ≺ x′, or x′ ≺ x, or
x#x′, or x ≈ x′.
To the unfolding Ñ(M0) = (P̃ , T̃ , F̃ ) a labelling
function ` : (P̃ → P )∪(T̃ → T ) is also associated:
it maps each node of the unfolding into a node of
the original net N . Note that usually a node p or
t of N may correspond to more than one node of
the unfolding, i.e., `−1(p) ⊂ P̃ and `−1(t) ⊂ T̃ .
The labelling function can also map set of nodes
into set of nodes. In particular, in the following
procedure given a set of places P ′ ⊆ P of the orig-
inal net, we write P ′ = ˆ̀(P̃ ′) to denote that the set
of places P̃ ′ of the unfolding has the same cardi-
nality of P ′ and P ′ =

{
p ∈ P

∣∣∣p̃ ∈ P̃ ′, p = `(p̃)
}

,

hence each place of P̃ ′ maps into a place of P ′ but
no two places in P̃ ′ map into the same place of P ′.

Procedure 1. (Unfolding of a safe net system
〈N, M0〉 into an occurrence net Ñ(M0))
(1) Add to the unfolding a set of source places

P̃0 with ˆ̀(P̃0) = {p ∈ P |M0(p) = 1}.
(2) Let i := 0.
(3) Let P̃exp := P̃i

(4) If P̃i = ∅ then STOP.
(5) Let i := i + 1.
(6) Let P̃i := ∅.
(7) For all transitions t ∈ T

For all sets of places P̃ ′ ⊆
(
P̃exp \ P̃i

)

such that all following 3 conditions are
verified:

- ˆ̀(P̃ ′) = •t,
- all places in P̃ ′ are concurrent,
- P̃ ′ ∩ P̃i−1 6= ∅,

(a) Add to the unfolding a new transi-
tion t̃ with ˆ̀(t̃) = t.

(b) Add to the unfolding a set of new
places P̃ ′′ with ˆ̀(P̃ ′′) = t•.

(c) Add an arc from each place in P̃ ′ to
t̃ and from t̃ to each place in P̃ ′′.

(d) Let P̃i := P̃i ∪ P̃ ′′.
(e) Let P̃exp := P̃exp ∪ P̃ ′′.

(8) Goto 4.

In the procedure at step 1 we add to the unfolding
a copy of each place of the original net marked
by the initial marking: all places in this set P̃0

are ranged on the tier 0 and represent the source
nodes of the occurrence net. The index i initialised
at step 2 denotes the tier on which the places of
each set P̃i are ranged.
The set P̃exp initialised at step 3 keeps track of the
places that can be used to expand the unfolding.
Strictly speaking, in this version of the procedure
this set needs not be defined because it always
coincides with the set of places in the unfolding.
However we will need it when the procedure is
modified to construct a finite prefix (that we call
order 1 unfolding) as explained in the following.
Each time a new tier is added we check for all
transitions t of the original net if there exists in the
unfolding a set P̃ ′ with the following properties:
• it is a copy of the set of input places of t,

hence a marking that marks in the unfolding
all places in P̃ ′ corresponds to a marking of
the original net that enables t;

• all places in P̃ ′ are concurrent, hence they
can simultaneously be marked (note that the
safeness of the original net ensures that two
places on the unfolding with the same label
cannot be concurrent);

• at least one place in P̃ ′ belongs to the lastly
added tier, so that the marking of the unfold-
ing that marks all these places has not been
considered in the previous steps.

For all such sets P̃ ′ we add to the net a new copy
of transition t, a new copy of all its output places
P̃ ′′ and the relative arcs.
The procedure given above is not an algorithm
because it is not guaranteed to halt in a finite
number the steps. In fact the unfolding of a net
that admits repetitive sequences is infinite.
Note that we can consider an unfolding both as a
net and as a marked net where the initial marking
assigns to each source place in P̃0 a token, so we
need not specify its initial marking and simply
write R(Ñ(M0)) to denote its reachability set.
The unfolding is a safe net so we can rep-
resent a marking with the set of non-empty
place: we write M̃0 = P̃0 and in general M̃ ={

p̃ ∈ P̃
∣∣∣M̃(p̃) = 1

}
. It is also possible to apply

the mapping ˆ̀ to markings.

Definition 2. To each marking M̃ of the unfolding
corresponds a marking of the original net M =
ˆ̀(M̃) ,

{
p ∈ P |p = `(p̃) , p̃ ∈ M̃

}
. This leads

to an equivalence relation among markings in
R(Ñ(M0)) and if ˆ̀(M̃) = ˆ̀(M̃ ′) we write M̃ =P

M̃ ′.

A firing vector X̃ of the unfolding is a binary
vector that can also be seen as a set of transitions
X̃ =

{
t̃ ∈ T̃

∣∣∣X̃(t̃) = 1
}

.
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Fig. 1. A safe Petri net.

Definition 3. Given a transition t̃ ∈ T̃ , the min-
imal firing vector of the unfolding that contains
it is called a local configuration; it can be show
that this vector is unique and we denote it [t̃]. The
marking reached firing configuration X̃ (resp., [t̃])
will be denoted M̃(X̃) (resp., M̃([t̃])).

It is also clear that each marking M̃ reachable
in Ñ(M0) corresponds to a unique configuration
in Ñ(M0) (the unfolding net is acyclic) that we
sometimes denote Conf(M̃).
Given a net system 〈N,M0〉, McMillan (1995)
presented a technique to construct a finite prefix of
its unfolding. Following Lemmon and He (2002),
we consider a slightly different construction of the
finite prefix.

Definition 4. (Order 1 unfolding). The order 1 un-
folding, denoted Ñ1(M0), is a finite prefix of the
unfolding obtained by Procedure 1 stopping the
construction of the unfolding when we reach a cut-
off transition t̃, i.e., a transition such that:
• EITHER the firing of the local configuration

of t̃ brings back to the initial marking, i.e.,
M̃([t̃]) =P M̃0;

• OR there exists another transition t̃′ with the
following properties:
(a) t̃′ has a smaller configuration than t̃: [t̃′]⊂
[t̃];
(b) the markings reached firing the two con-
figurations are equivalent, i.e., M̃([t̃′]) =P

M̃([t̃]).
In the following we call t̃′ the mirror transition of
t̃ in Ñ1(M0).

It should be noted that what we call order 1
unfolding is a net slightly larger than McMillan
finite prefix, because our condition (a) is stronger:
McMillan requires only that card([t̃′]) < card([t̃]).

Algorithm 5. The order 1 unfolding can be con-
structed using a modified version of Procedure 1
where the instruction 7.(e) is changed to
7.(e’) If t is not a cut-off transition, then let
P̃exp := P̃exp ∪ P̃ ′′.

In this case when a cut-off transitions is added
to the unfolding, a copy of its output places is
also added but they will not be used to expand
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Fig. 2. The order 1 unfolding of the net in Fig. 1
with control places.

the unfolding any further. With this small change,
Procedure 1 always stops in a finite number of
steps if the original system is safe.

Example 6. Consider the net shown in Fig. 1. Its
order 1 unfolding is shown in Fig. 2 (ignore the
cyan filled places denoted pci). Note that we have
also added to the unfolding the cut-off transitions
(transition t2 on tier 3 and transition t6 on tier 4,
marked in red) and their output places. Transition
t5 on tier 2 is not not a cut-off transition: after
its firing the unfolding cannot proceed because a
deadlock is reached. ¥

The following result follows from an original result
presented by McMillan (1995).

Lemma 7. The image through the labelling func-
tion of the reachability set of the order 1 unfolding
Ñ1(M0) is the reachability set of the original sys-
tem, i.e.,

R(N, M0) = `(R(Ñ1(M0)))
,

{
M ∈ Nm

∣∣∣M = `(M̃) , M̃ ∈ R(Ñ1(M0))
}

.

Proof. McMillan showed this result holds for the
total unfolding and also for the finite prefix. Since
Ñ1(M0) is larger than McMillan finite prefix, the
result follows immediately. ¤

4. A SPECIAL CLASS OF FORBIDDEN
MARKINGS PROBLEM

We consider a control problem where the set of
forbidden marking F has a special structure.

Definition 8. A set F ⊆ R(N,M0) has property
REACH wrt a net system (N, M0) if

M ∈ F and M ′ ∈ R(N,M) ⇒ M ′ ∈ F .

Thus property REACH implies that the set is
closed under the reachability operator.
Meaningful examples of sets that have property
REACH are the following: (a) the set of deadlock



markings; (b) the set of markings from which
there exists no firing sequence containing a given
transition; (c) the set of markings that are not
co-reachable, i.e., from which it is not possible
to reach a given final marking; (d) the set of
markings from which the initial marking is not
reachable, i.e., from which no control law can
ensure reversibility; (e) the set of markings from
which there exists no firing sequence containing
all transitions, i.e., from which no control law can
ensure liveness.
In the following we focus on the optimal control of
F . Property REACH will allow us to use unfolding
to design optimal controllers, as we show in the
following section.

Theorem 9. Given a set F with property REACH
and a marking M̃ such that ˆ̀(M̃) ∈ F , if M̃ is
reachable with configuration X̃, then any larger
configuration X̃ ′ > X̃ leads to a marking M̃ ′ such
that ˆ̀(M̃ ′) ∈ F .
Proof. If M̃ is reachable with configuration X̃, and
M̃ ′ is reachable with configuration X̃ ′ then:

M̃ = M̃0 + C̃X̃, and M̃ ′ = M̃0 + C̃X̃ ′.

This implies M̃ ′ = M̃ +C̃(X̃ ′ − X̃) with X̃ ′−X̃ ∈
Nñ hence M̃ ′ is reachable by M̃ (the unfolding is
an acyclic net). Thus ˆ̀(M̃ ′) is reachable from ˆ̀(M̃)
and (by REACH) it belongs to F . ¤

Based on this property, given a forbidden marking
set F with property REACH we now present a
maximally permissive control policy ensuring that
no marking in F is reached. This control policy
will be “implemented” in the unfolding net by
places with output arcs and no input arcs.

5. CONTROL POLICY FOR F
For marking M̃ ∈ R(Ñ(M0)) such that ˆ̀(M̃) ∈ F
let X̃ be the unique configuration that yields it.

Definition 10. The set of control transitions of M̃

is X̃c =
{

t̃ ∈ X̃
∣∣∣ 6 ∃t̃′ ∈ X̃, t̃ ∈ [

t̃′
]}

.

In plain words, these are all transitions inputting
into the places that belong to M̃ and that do not
precede any other such transition. It is easy to
prove that all these transitions are concurrent. In
fact, since X̃c ⊆ X̃ and X̃ is a firable sequence,
no two transitions can be in conflict. Furthermore,
all transitions preceding another one in the set X̃
are removed by construction, thus we are left with
only concurrent transitions in X̃c.
We will use the following control structure to
prevent reaching M̃ .

Definition 11. Given a marking M̃ with set of
control transitions X̃c, the control place p̃c for
M̃ is a new place initially marked with

∣∣∣X̃c

∣∣∣ − 1
tokens and with an arc going to each transition in

X̃c. The incidence matrix of the control place is
C̃(p̃c, t̃) = −1 if t̃ ∈ X̃c, else C̃(p̃c, t̃) = 0.

Theorem 12. The control strategy corresponding
to control places for all ˆ̀(M̃) ∈ F is maximally
permissive, i.e., it does not prevents the unfolding
to reach a marking M̃ ′ with ˆ̀(M̃ ′) /∈ F , if the set
F has property reach.
Proof. By construction, each control place for a
marking ˆ̀(M̃) ∈ F corresponding to configura-
tion X̃ forbids the configuration X̃ and all larger
configurations X̃ ′ > X̃. From Theorem 9, the
control place only prevents from reaching mark-
ings ˆ̀(M̃) ∈ F . As a result, the control strategy
corresponding to control places for all ˆ̀(M̃) ∈ F
is maximally permissive. ¤

We now show that such a controller can be con-
structed from order 1 unfolding Ñ1(M0) including
all its cut-off transitions and their output places.
We first construct the control places that prevent
reaching markings in F in Ñ1(M0).

Algorithm 13. Control places for F
(1) Determine a reachable marking M̃ such that

ˆ̀(M̃) ∈ F and such that no marking M̃ ′ with
ˆ̀(M̃ ′) ∈ F and conf(M̃ ′) ⊂conf(M̃) exists.

(2) If no such marking exists, then stop.
(3) Add to Ñ1(M0) the control place for M̃ .
(4) Goto 1.

The net obtained by adding these control places to
the order 1 unfolding is called Ñ1,c(M0). This net
is not necessarily an occurrence net because the
control places may contain more than one token.

Example 14. Given the net in Fig. 1, assume we
want to forbid the set of markings M ∈ R(N,M0)
such that M(p3) + M(p4) + M(p7) + M(p8) = 2.
Clearly F = {{p3, p7}, {p4, p7}, {p3, p8}, {p4, p8}} ,
and it is not difficult to show that this forbidden
set has property REACH for this net.
In the following table for each of the forbidden
markings M we have shown the corresponding
unfolding marking(s) M̃ , the corresponding set
of control transitions X̃c and finally the control
place p̃c. A symbol * (resp., **) in the last column
denotes a configuration already forbidden by place
p̃c1 (resp., p̃c2) hence no new place has to be added
to the net for preventing it.

M M̃ X̃c p̃c

{p3, p7} {p̃3, p̃
′
7} {t̃1, t̃′4} p̃c1

{p4, p7} {p̃4, p̃7} {t̃4} p̃c2

{p̃′4, p̃′7} {t̃2, t̃′4} *

{p3, p8} {p̃3, p̃
′
8} {t̃1, t̃′5} *

{p4, p8} {p̃4, p̃8} {t̃5} **

{p̃′4, p̃′8} {t̃2, t̃′5} *



Note that place p̃c2 contains no token because
its corresponding set of control transitions is a
singleton: this means that transition t̃4 on tier 1
should never fire. ¥

Definition 15. Let M̃ be a marking of an unfold-
ing net such that conf(M̃) = [t̃] ∪ E and [t̃] ∩
E = Φ, i.e. conf(M̃) is an extension of [t̃] denoted
as [t̃] ⊕ E (Ezparza et al., 2002). If t̃ is a cut-
off transition with t̃′ as its mirror transition in
Ñ1(M0), we define the mirror marking of M̃ as
the marking of the configuration [t̃′] ⊕ E′ where
E′ is the equivalent extension of E for [t̃′].

The concept of mirror marking can also be ex-
tended to a control places.

Definition 16. Let M̃ be a marking of Ñ1,c(M0)
such that conf(M̃) = [t̃] ∪ E and [t̃] ∩ E = Φ.
If t̃ is a cut-off transition with t̃′ as its mirror
transition, the mirror marking of a control place
pc is M̃(p̃c)− C̃(p̃c, ·)([t̃]− [t̃′]).

According to the previous definition, after a cut-
off transition fires, the control places should get
back all those tokens that have been taken by the
firing of [t̃]− [t̃′].

Algorithm 17. The control policy for F uses the
net Ñ1,c(M0) and can be defined as follows.
(1) The plant and the net Ñ1,c(M0)) are ini-

tialised with the respective initial marking.
(2) Compute a control pattern as follows: if T̃e

is the set of transitions enabled in Ñ1,c(M0),
the set of transitions that are enabled by the
controller on the plant is Te = `(T̃e).

(3) If a transition t fires in the plant, the unique
transition t̃ ∈ `−1(t) enabled in Ñ1,c(M0) is
fired. After the firing of t̃, the marking of the
unfolding is set to the related mirror marking
if t̃ is a cut-off transition.

(4) Goto 2.

Theorem 18. The control policy of Algorithm 17
is maximally permissive.
Proof. Similar to the proof of Theorem 12, a
marking M̃ of Ñ1(M0) is forbidden by control
places of Algorithm 13 if and only if ˆ̀(M̃) ∈ F .
Since a marking M̃ obtained by a cut-off transition
t̃ is replaced by its mirror marking M̃ ′, we need to
prove that M̃ ′ is also permitted by control places.
This is true since M̃ is accepted by control places
which implies ˆ̀(M̃) /∈ F and M̃ =P M̃ ′. ¤

6. CONCLUSIONS

In this paper we have used the technique of unfold-
ing to design maximally permissive supervisors for
safe Petri nets assuming that the specification is
given by a set of forbidden markings with property
REACH.

There are some lines for future research that are
still open. In many cases it may be possible to
find equivalent control structure to be added to
the original net rather than to the unfolding.
The approach may also be extended to nets with
uncontrollable transitions.
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