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Abstract

In this paper we present an original approach to estimate the marking of a labeled Petri
net based on the observation of transition labels. In particular, we consider the case of
nondeterministic transitions, i.e., transitions that share the same label and that can be
simultaneously enabled. We also show how the estimate generated by the observer may
be used to design a state feedback controller for forbidden marking specifications. More
precisely, we discuss two different cases: the label-based feedback and the transition-based
feedback, depending on the possibility of the controller to distinguish among transitions with
the same label.

1 Introduction

This paper deals with the problem of estimating the marking of a nondeterministic λ-free labeled Petri
net based on the observation of transition labels. We also show how an observer constructed following
the proposed approach can be used in a state-feedback control loop.

The problem of estimating the state of a dynamic system is a fundamental issue in system theory. A similar
problem has also been addressed in theoretical computer science within the framework of nondeterministic
language generators. Nevertheless, the problem statement is quite different depending on the considered
framework.

In system theory, a state observer reconstructs the plant states that cannot be measured on the basis
of the observation of some physical variables. The initial state of the system is completely unknown,
while a perfect knowledge of the system dynamics is usually assumed, i.e., the behaviour of the system
is deterministic.

Analogous problems in the case of discrete event systems (DES) have been discussed in the literature for
systems represented as finite automata [1, 2, 7, 10, 12] or Petri nets [5].

In the context of computer science, on the contrary, the system may be nondeterministic, i.e., partially
known, and the observed word of events does not contain all information of the sequence of transitions
that have been executed. Thus, the problem of observation consists in reconstructing the system state
on the basis of the observation of the words of events.

In this paper we explore the possibility of using Petri nets as discrete event models and address the
observer design from a computer science point of view. We consider nondeterministic λ-free Petri nets
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where the only cause of nondeterminism arises because two or more transitions with the same label may
be simultaneously enabled from a reachable marking.

We propose an approach to build a state observer that does not require the construction of the reachability
graph, and thus works for both bounded and unbounded PN. Under some assumptions, we show that
the set of markings that are consistent with the observation w — denoted C(w) — can be written as the
solution of a linear system with a fixed structure that depends on some parameters that can be recursively
computed. The main advantage of the proposed approach is that we need not exhaustively enumerate
all consistent markings.

Other authors [8] have also discussed the problem of estimating the marking of a Petri net using a mix of
transition firings and place observations. Finally, Zhang and Holloway [13] used a Controlled Petri Net
model for forbidden state avoidance under partial event observation with the assumption that the initial
marking be known.

The characterization used to define the set of consistent markings — as well as the algorithm that is
used to implement it — has been firstly proposed by the authors in [3] as a conjecture. In this paper we
present a slightly modified version of this algorithm (see Algorithm 6) for which a formal proof has been
obtained: the complete proof is not reported here for lack of space but can be found in [6].

In this paper we also show how the proposed linear algebraic characterization of the set of consistent
markings can be used to design a feedback controller for forbidden marking specifications. In particular,
we assume that specifications are given in the form of Generalized Mutual Exclusion Constraints (GMEC)
that limit the weighted sum of tokens in subsets of places.

We discuss two different control laws.

Label-based feedback. In this case the controller cannot distinguish among transitions that are undis-
tinguishable by the observer (namely, transitions with the same label). Hence, if a transition labeled by
the event e is disabled, then the control pattern must simultaneously disable all other transitions labeled
by e.

Transition-based feedback. In this case we assume that the controller is not constrained by the
observer observation mask, and may assign a different control pattern to different transitions even if they
share the same label e.

It is important to observe that in the case of label-based feedback, Algorithm 6 can still be used to
compute the set of markings in which the closed-loop system may be, given the actual observation.

On the contrary, in the case of transition-based feedback the control pattern may reduce the nondeter-
minism of the net: when the nondeterministic event e is observed, only a subset of transitions labeled e

may have fired, namely those transitions that are control enabled. This implies that Algorithm 6 needs
to be slightly modified when used to compute the set of markings in which the closed-loop system may
be, given the actual observation. This point is formalized in Algorithm 10.

An original example of state estimation and control, taken from the manufacturing domain, that motivates
the interest for the particular considered model, is finally presented in Section 6.

2 Background on Petri nets

In this section we recall the formalism used in the paper. For more details on Petri nets we address to
[9].

A Place/Transition net (P/T net) is a structure N = (P, T, Pre, Post), where P is a set of m places; T

is a set of n transitions; Pre : P × T → N and Post : P × T → N are the pre– and post– incidence
functions that specify the arcs; C = Post−Pre is the incidence matrix. The preset and postset of a node
X ∈ P ∪ T are denoted •X and X• while •X• =• X ∪X•.

A marking is a vector M : P → N that assigns to each place of a P/T net a non–negative integer number
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of tokens, represented by black dots. We denote M(p) the marking of place p. A P/T system or net
system 〈N, M0〉 is a net N with an initial marking M0.

We write M [ς〉 M ′ to denote that the firing of ς yields M ′. We also denote ~σ : T → N the firing vector
associated to a sequence ς.

The set of all markings reachable from M0 defines the reachability set of 〈N,M0〉 and is denoted R(N,M0).

A labeling function L : T → E assigns to each transition t ∈ T a symbol from a given alphabet E. Note
that the same label e ∈ E may be associated to more than one transition while no transition may be
labeled with the empty string ε. Using the notation of [11] and [4] we say that this labeling function is
λ-free.
Definition 1. A Petri net system 〈N, M0〉 with λ-free labeling function L : T → E is deterministic if
for all markings M ∈ R(N, M0) and for any two transitions t, t′ ∈ T :

t 6= t′, L(t) = L(t′), M [t〉 =⇒ ¬M [t′〉,

i.e., if two transitions are labeled with the same symbol they cannot simultaneously be enabled at M . ¥
Determinism is a behavioral property but it is also possible to introduce a structural definition of deter-
minism.
Definition 2. A Petri net N with λ-free labeling function L : T → E is structurally deterministic if for
any two transitions t, t′ ∈ T :

t 6= t′ =⇒ L(t) 6= L(t′),

i.e., two different transitions cannot be labeled with the same symbol. ¥
Note that if a Petri net N is structurally deterministic, then the net system 〈N, M0〉 is deterministic for
all initial marking M0.

In this paper we consider Petri nets that are not structurally deterministic. We say that a transition t is
nondeterministic if its label is also associated to other transitions, otherwise a transition t is said to be
deterministic. We also denote T d the set of deterministic transitions and Tn the set of nondeterministic
transitions. Clearly, T = T d ∪ Tn.

Analogously, we say that an event e is nondeterministic if there exists more than one transition t such
that L(t) = e, otherwise we say that the event e is deterministic. Therefore, with no ambiguity on the
notation, we may write E = Ed ∪ En.

Note that the labeling function restricted to T d is an isomorphism and thus, with no loss of generality
we can assume Ed = T d.

We denote as Te the set of transitions labeled e, i.e,

Te = {t ∈ T | L(t) = e}.

The restriction of the incidence matrix C to Te (Tn) is denoted Ce (Cn) and the restriction of the firing
vector ~σ to Te is denoted ~σe.

Finally, to each set of nondeterministic transitions Te we associate the set Te containing all possible
subsets of transitions, apart from itself and the empty set, i.e.,

Te = {τ ⊆ Te | τ 6= ∅, τ 6= Te} = 2Te \ {∅, Te}.

Clearly, |Te| = 2ne − 2 where ne denotes the number of nondeterministic transitions labeled e.

We denote as w the word of events associated to the sequence ς, i.e., w = L(ς).
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3 A linear algebraic characterization of the set of consistent

markings

In this paper we deal with the problem of estimating the marking of a net system 〈N, M0〉 whose marking
cannot be directly observed.

After the word w has been observed, we define the set C(w) of w-consistent markings as the set of all
markings in which the system may be given the observed behavior.
Definition 3. Given an observed word w, the set of w-consistent markings is C(w) = {M ∈ Nm | ∃
a sequence of transitions ς : M0[ς〉M and L(ς) = w}. ¥
In [6] we provided a systematic and efficient procedure to estimate the set of markings that are consistent
with an observed word under the following assumptions:

(A1) The structure of the net N is known.

(A2) The initial marking M0 is known.

(A3) The label function is λ-free and labels associated to transition firings can be observed.

(A4) Nondeterministic transitions are contact free, i.e., for any two nondeterministic transitions ti and
tj , it holds that •t•i ∩ •t•j = ∅.

Clearly, C(ε) = M0 and C(w) is a singleton if for all e in w, Te is a singleton. On the contrary, the degree
of nondeterminism may increase as the cardinality of Te increases.

In [6] we have shown that, under the assumptions (A1) to (A4), a fixed number of constraints, not
depending on the length of the observed word w, may be used to describe the set of w-consistent markings.

Let us first introduce the following notation.
Definition 4. Given a marking M and a transition t ∈ T , we define

z(M, t) = min
p∈•t

{⌊
M(p)

Pre(p, t)

⌋}

the enabling degree of transition t at M .

Given a set of transitions τ ⊆ T , we also define

z(M, τ) =
∑
t∈τ

z(M, t).

Finally, given a vector ~σ ∈ Nn, we denote as

σ(τ) =
∑
t∈τ

σ(t).

¥
Note that if all transitions in τ are conflict free, then z(τ) represents the number of times transitions in
τ may simultaneously fire at M .
Theorem 5 ([6]). Let us consider a labeled Petri net system 〈N, M0〉 and let L : T → E be its labeling
function. Let assumptions (A1) to (A4) be verified. Then, for all words w ∈ E∗ the set of w-consistent
markings C(w) is equal to

C(w) = M(w)def= {M ∈ Nm |
M = Mb,w +

∑

e∈En

Ce~σe; ~σe ∈ Se(w)} (1)

where
Se(w)def= {~σ ∈ Nne | (∀τ ∈ Te) σ(τ) ≤ uw(τ),

σ(Te) = uw(Te)},
(2)
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and the upper bounds uw(τ) and uw(Te), as well as the marking Mb,w, are computed using the recursive
Algorithm 6.

Therefore, the number of constraints used to describe the set Se(w) is equal to 2ne − 1, regardless of the
length of the observed word w.

Algorithm 6 (Upper bounds and basis marking computation).
1. Let w = ε and Mb,w = M0.
2. Let uw(τ) = 0 for all e ∈ En and for all τ ∈ Te.
3. Let uw(Te) = 0 for all e ∈ En.
4. Wait until an event e is observed.
5. Let flag = 0.
6. If e ∈ Ed, then

let t = L−1(e),
if •t ∩ (•Tn•) = ∅, then (Case A)

Mb,we = Mb,w + C(·, t)
endif

if Pt
def=
•
t ∩ (Tn•) 6= ∅, then (Case B)

~σα = ~0 (a vector of dimension |Tn| × 1)
flag = 1

Tup
def=Tn ∩• Pt

for all t̂ ∈ Tup, then

let σα(t̂) = max
p∈Pt

{
0,

⌈
Pre(p, t)−Mb,w(p)

Post(p, t̂)

⌉}

endfor
for all τ : τ ∩ Tup 6= ∅, then

uwe(τ) = uw(τ)−
∑
t∈τ

σα(t)

endfor
Mb,we = Mb,w + C(·, t) + Cn~σα

endif
if •t ∩ (•Tn) 6= ∅, then (Case C)

if flag = 0, then
Mb,we = Mb,w + C(·, t)

endif
let Tr(t) = {t̂ ∈ Tn | •t ∩• t̂ 6= ∅}
for all t̂ ∈ Tr(t), then

uwe({t̂}) = min{uw({t̂}), z(Mb,we, t̂)}
for all τ ∈ TL(t̂) : t̂ ∈ τ with τ 6= {t̂}, then

uwe(τ) = min{uw(τ), uwe({t̂}) + uw(τ \ {t̂})}
endfor

endfor
endif

else (Case D)
for all τ ∈ Te, then

uwe(τ) = min{uw(τ) + 1, z(Mb,w, τ)}
endfor
uwe(Te) = uw(Te) + 1
Mb,we = Mb,w

endif
7. w = we
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Figure 1: The generic substructure of a more complex Petri net that satisfies the contact-free
assumption.

8. Goto 4. ¥

Now, before examining in detail the steps of the algorithm, let us discuss the physical meaning of all the
parameters characterizing the above set (1).

Let us preliminary observe that the firing of a nondeterministic transition t may be detected (or recon-
structed) when a deterministic transition td is observed and the firing of t is strictly necessary to enable
td. Therefore, using Algorithm 6, we define Mb,w as the marking that we reach from the initial one by
firing all the observed deterministic transitions, and all those nondeterministic transitions that have been
detected. In the following we say that Mb,w is the basis marking given the actual observation w.

Moreover, for each nondeterministic event e, the upper bound uw(Te) denotes how many times the event
e has been observed in w without being detected.

Finally, the upper bound uw(τ) relative to a given subset τ ⊂ Te, imposes a limit on the maximum
number of times all transitions in τ may have fired, given the actual observation w, and taking into
account that a certain number of nondeterministic transitions labeled e may have been detected.

Now, let us discuss in detail all cases in Algorithm 6. Consider the labeled Petri net in Figure 1 that
represents the generic substructure of a more complex Petri net that satisfies the contact-free assumption
(A4). Let us assume that in this subnet the only nondeterministic transitions are those labeled a. Let w

be the actual observed word of events and let Mb,w be the marking shown in Figure 1. Finally assume
|w|a ≥ 1.

(Case A): A deterministic transition t such that •t∩(•Tn•) = ∅ fires. If t4 fires we only update the basis
marking taking into account that the deterministic transition t4 has fired, but we deduce no information
on the number of times the nondeterministic transitions have eventually fired.

(Case B): A deterministic transition t such that •t∩ (Tn•) = Pt 6= ∅ fires. If t7 fires, we know for sure
that each place p ∈• t7 (namely, p2 and p8) contains a number of tokens that is greater or equal than
Pre(p, t7). Now, given the basis marking Mb,w, if for some place p ∈• t7, Mb,w(p) < Pre(p, t7), we know
for sure that the nondeterministic transition •p has fired and we can also evaluate (see Algorithm 6) how
many times it has fired. We consequently update the basis marking and the upper bounds relative to all
subsets containing •p. In the case at hand, we can conclude that one of the previous observations of a was
due to the firing of t1. Therefore, the basis marking Mb,w is updated to Mb,we = Mb,w +C(·, t1)+C(·, t7).
(Case C): A deterministic transition t such that •t ∩ (•Tn) 6= ∅ fires. If t8 fires the upper bounds
associated to subsets of nondeterministic transitions may decrease. In fact, if t8 fires, we know for sure
that if p is an input place of t8, then it should contain a number of tokens that is greater or equal to
Pre(p, t8). Therefore, if there is some nondeterministic transition exiting p, we know for sure that the
maximum number of times it may have fired must ensure that in p there are at least Pre(p, t8) tokens.
As an example, if in the actual case the upper bound associated to τ = {t2} were 1, we reduce it to zero.
Then, we update all the other uw(τ)’s relative to subsets τ containing t2, as well as uw(Ta).
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(Case D): A nondeterministic event is observed. If the nondeterministic event a is observed, we update
the upper bounds uwa(τ) relative to those subsets τ ∈ Ta whose enabling degree at the current basis
marking Mb,w is greater than the bound uw(τ). Furthermore, we always increment of one unity the value
of the bound of Ta, i.e., uwa(Ta) = uw(Ta) + 1, that takes into account how many times the event a has
been observed without being detected.

4 Control using C(w)

The above linear algebraic characterization of the set of consistent markings can be efficiently used by
a control agent to enforce a given specification on the plant behaviour. In particular, assume that the
following hypothesis are verified.

(H1) The specification is given as a set of legal states of the form L = {M ∈ Nm | ST ·M ≤ ~k} where
S = [~s1 · · ·~sq] with ~sj ∈ Zn and ~k = [k1 · · · kq] with kj ∈ Z. This kind of specifications, called
generalized mutual exclusion constraints (GMEC) are denoted (S,~k).

(H2) The controller may disable transitions to prevent the plant from entering a forbidden marking,
computing a marking dependent control pattern f(t,M) : T × Nm → {0, 1}. If f(t,M) = 0 then t

is disabled by the controller at M , while if f(t,M) = 1 it is enabled.

(H3) All transitions are controllable, i.e., can be disabled by the controller.

It is well known that under the assumption that: the initial marking M0 is legal, all transitions are
controllable and the actual marking is known, an optimal (i.e., maximally permissive) control policy that
enforces a given state specification is as follows.
Definition 7 (Optimal state feedback for GMEC). Given a GMEC (S,~k) and a marking M , the firing
of transition t should be prevented from M if and only if leads from a legal to a forbidden marking, i.e.,

f(t,M) =
{

0 if ST ·M ≤ ~k, M [t〉M ′, (∃j) ~sj ·M ′ > kj

1 otherwise.

¥
When an observer is used in the control loop the actual marking M is not known and only a set of
consistent markings C ⊆ Nm is available to the controller. In this paper we discuss two different control
laws, depending on the possibility of the controller to distinguish among transitions with the same label.

Label-based feedback (LBF). In this case the controller cannot distinguish among transitions that are
undistinguishable by the observer (namely, transitions with the same label). Hence, if a transition
labeled by event e is disabled, then the control pattern must simultaneously disable all other
transitions labeled by e.

Transition-based feedback (TBF). In this case we assume that the controller is not constrained by
the observer observation mask, and may assign a different control pattern to different transitions
even if they share the same label e.

4.1 Label-based feedback

In this case the control law becomes a function f(e, C) : L× 2N
m → {0, 1} and can be given as follows.

Definition 8 (Optimal LBF for GMEC with observer). Given a GMEC (S,~k), a set of consistent
markings C ⊆ Nm, and a λ-free labeling function L : T → E, the firing of each transition labeled e should
be prevented if and only if there exists a legal consistent marking M and a transition t labeled e, such
that the firing of t from M leads to a forbidden marking, i.e.,

f(e, C) =





0 if (∃M, ∃t : L(t) = e) M ∈ C, ST ·M ≤ ~k,
M [t〉M ′, (∃j) ~sj ·M ′ > kj

1 otherwise.

¥
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The computation of the control law f(e, C) may be carried out solving a number of linear integer pro-
gramming problems (LIPP) of the form





max ~l T
j ·M ′

s.t.
M ∈ C (a)
LT ·M ≤ ~k (b)
M ≥ Pre(·, t) (c)
M ′ = M + C(·, t) (d)
M ′ ∈ Nm (e)

(3)

Equation (3) implies that all transitions labeled e are disabled if there exists at least one transition t

labeled e that may fire – constraint (c) – and there exists a consistent marking M – constraint(a) – that
is legal – constraint (b) – and from which the firing of t leads to a marking M ′ – constraint (d) – that is
not legal because for at least one j it holds hj = ~s T

j ·M ′ > kj . Note that, as a consequence of Equations
(1) and (2), constraint (a) is linear with respect to M .

Let us finally observe that in the case of label-based feedback, Algorithm 6 can still be used to compute
the set of markings in which the closed-loop system may be, given the actual observation. In fact, if
a nondeterministic event e is observed, this implies that a transition labeled e has fired (thus it was
enabled by the controller). By assumption of LBF, this implies that all the other transitions labeled
e were control enabled as well. Therefore, we may conclude that the controller does not influence the
estimation procedure.

4.2 Transition-based feedback

When the controller may assign a different control pattern to nondeterminstic transitions with the same
label the control pattern is a function f(t, C) : T × 2N

m → {0, 1} and can be given as follows.
Definition 9 (Optimal TBF for GMEC with observer). Given a GMEC (S,~k), a set of consistent
markings C ⊆ Nm, and a λ-free labeling function L : T → E, the firing of transition t should be prevented
if and only if there exists a legal consistent marking M such that the firing of t from M leads to a forbidden
marking, i.e.,

f(t, C) =





0 if (∃M) M ∈ C, ST ·M ≤ ~k,
M [t〉M ′, (∃j) ~sj ·M ′ > kj

1 otherwise.

¥
The algorithm for the computation of the control law f(t, C) is not given here for sake of brevity. It
requires the solution of a certain number of LIPP analogous to that given by Equation (3).

It is important to observe that the possibility of assigning a different control pattern to nondeterministic
transitions with the same label may reduce the nondeterminism of the net. In fact, if a nondeterministic
event e is observed and only a subset of transitions T ′e ⊂ Te was enabled by the controller, we know for
sure that none of the transitions in Te \ T ′e has fired. This implies that Algorithm 6 needs to be slightly
modified when used to compute the set of markings in which the closed-loop system may be, given the
actual observation. This point is formalized in the following algorithm.
Algorithm 10 (Upper b. and basis m. comp. under TBF). When the controller implements a transition-
based feedback, Case D of Algorithm 6 becomes:

let T ′e = {t ∈ Te | f(t, C) = 1}
if T ′e = {t}

then Mb,we = Mb,w + C(·, t)
else

for all τ ∈ Te

if τ ∩ T ′e 6= ∅
then uwe(τ) = min{uw(τ) + 1, z(Mb,w, τ)
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else uwe(τ) = uw(τ)
endif

endfor
uwe(Te) = uw(Te) + 1
Mb,we = Mb,w

endif ¥
Therefore, in the case that there is only one transition t labeled e that is enabled by the controller, we
update the basis marking and we do not increase the value of uwe (the event e is now deterministic).
On the contrary, if there is more than one transition t labeled e that is enabled by the controller (i.e.,
|T ′e| > 1), we only update the upper bounds relative to the subsets of Te containing transitions enabled
by the controller, as well as the upper bound relative to Te.

5 A final example

Let us consider a job-shop system consisting of 13 machines M1, M2, . . ., M13, and 3 jobs J1, J2,
J3. Each job requires three different operations: the first operation provides semi-finished products (we
assume an infinite availability of raw materials); the second operation provides finished products; finally,
the third operation removes the finite product from the buffer. More precisely, the jobs must visit the
machines in the following order:

J1 = {M1 ∨M4,M2,M3 ∨M8},
J2 = {M5 ∨M11,M7,M9},
J3 = {M10 ∨M13,M12,M6},

where ∨ denotes the logical or.

The operational state of each machine is detected by an appropriate symbol according to the following
tables

M1 M2 M3 M4,M5,M6 M7

a b c d e

M8,M9,M10 M11 M12 M13

f g h i

Thus, we are not able to distinguish among the operations of machines M4, M5 and M6 (labeled by the
same symbol d), and the operations of machines M8, M9 and M10 (labeled by the same symbol f).

The Petri net model of the job-shop system is sketched in Figure 2. The firing of transition ti model
the operational process of machine Mi, while its label is the symbol associated to machine Mi, for
i = 1, . . . , 13. Finally, the marking of places p1, p3 and p5 represents the semi-finished product; the
marking of places p2, p4 and p6 represents the finished product.

Assume that the initial marking is that one reported in Figure 2, namely M0 = [0 0 0 0 0 1]T .

Let us first assume that no controller is added to the system.

Initially, when no event is observed the basis marking is the initial marking and all the upper bounds are
set to zero. As a new event is observed, the algorithm updates the basis marking and the upper bounds
as listed in Table 1. Note that for simplicity of notation in Table 1 we omitted the dependence of the
bounds on w and denoted as ui, ui,j , ui,j,k the upper bounds relative to the subsets of transitions {ti},
{ti, tj} and {ti, tj , tk}, respectively.

Data in the table are then used to construct the set of admissible markings as described in Theorem 5.

Let us show for instance how to use the table to compute the set C(d). It holds that Sd(d) = {~σ =
[σ4 σ5 σ6]T ∈ N3 | σ4 ≤ 1, σ5 ≤ 1, σ6 ≤ 1, σ4 + σ5 ≤ 1, σ4 + σ6 ≤ 1, σ5 + σ6 ≤ 1, σ4 + σ5 + σ6 = 1}.
The solutions of this integer inequality system are: ~σ1 = [0 0 1]T , ~σ2 = [0 1 0]T , ~σ3 = [1 0 0]T ,
which substituted in M = Mb,d + Cd~σ

i, i = 1, 2, 3 provide the set of admissible markings: C(d) =
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Figure 2: The labeled Petri net system considered in Section 5.

w Case Mb,w
T u4 u5 u6 u45 u4,6 u5,6 u4,5,6 u8 u9 u10 u8,9 u8,10 u9,10 u8,9,10

ε [0 0 0 0 0 1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d D [0 0 0 0 0 1] 1 1 1 1 1 1 1 0 0 0 0 0 0 0
dd D [0 0 0 0 0 1] 2 2 1 2 2 2 2 0 0 0 0 0 0 0
ddi A [0 0 0 0 1 1] 2 2 1 2 2 2 2 0 0 0 0 0 0 0
ddie B [0 0 0 1 1 1] 2 1 1 1 2 1 1 0 0 0 0 0 0 0
ddieg A [0 0 1 1 1 1] 2 1 1 1 2 1 1 0 0 0 0 0 0 0
ddiegb B [0 1 1 1 1 1] 1 1 1 0 1 1 0 0 0 0 0 0 0 0
ddiegbd D [0 1 1 1 1 1] 2 2 1 1 2 2 1 0 0 0 0 0 0 0
ddiegbdf D [0 1 1 1 1 1] 2 2 1 1 2 2 1 1 1 1 1 1 1 1
ddiegbdfa A [1 1 1 1 1 1] 2 2 1 1 2 2 1 1 1 1 1 1 1 1
ddiegbdfab B [0 2 1 1 1 1] 2 2 1 1 2 2 1 1 1 1 1 1 1 1
ddiegbdfabc C [0 1 1 1 1 1] 2 2 1 1 2 2 1 1 1 1 1 1 1 1

Table 1: The evolution of the net in Figure 2 when no control law is acting on the system.

{[0 0 0 0 0 0]T , [1 0 0 0 0 1]T , [0 0 1 0 0 1]T }. If we repeat the procedure for all the other events we obtain:

C(dd) = {[1 0 0 0 0 0]T , [0 0 1 0 0 0]T , [2 0 0 0 0 1]T , [1 0 1 0 0 1]T , [0 0 2 0 0 1]T }, C(ddi) =
{[1 0 0 0 1 0]T , [0 0 1 0 1 0]T , [2 0 0 0 1 1]T , [1 0 1 0 1 1]T , [0 0 2 0 1 1]T }, and so on.

Now, assume that a controller is used to enforce a given specification. Let assumptions (H1) to (H3) be
verified.

Let us first assume that all finite products are stored in a finite capacity buffer, and let 3 be its capacity.
The set of legal markings is

L = {M ∈ Nm | M(p2) + M(p4) + M(p6) ≤ 3}.

The closed-loop behaviour of the system is obviously the same in the case of LBF and in the case of TBF
because the set of transitions that may potentially violate the constraint is Jt = {t2, t7, t12} ⊂ T d, i.e., it
only contains deterministic transitions. Thus the nondeterministic transitions are always enabled by the
controller, because regardless of the actual observation, their firing may never lead to a violation of the
constraint.

It is easy to verify that the previously considered word w = ddiegbdfabc cannot be observed. More
precisely, for all prefixes w′ ¹ ddiegb all transitions are enabled by the controller. On the contrary, after
a further event d occurs all transitions in Jt are disabled by the controller, and the control patterns keep
unaltered until the word w = ddiegbdfa is observed, thus transition t2 cannot fire (the event b cannot be
observed).

Now, assume that all finite products are stored in an infinite capacity buffer, while semi-finished products
relative to jobs J1 and J3 are stored in a finite capacity buffer, and let 2 be its capacity. The set of legal
markings is

L = {M ∈ Nm | M(p1) + M(p5) ≤ 2}.
In such a case the closed-loop behaviour of the system is no longer the same in the case of LBF and
in the case of TBF because the set of transitions that may potentially violate the constraint is Jt =
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{t1, t4, t10, t13}, i.e., it also contains nondeterministic transitions.

A very simple example of this fact is given by the word w = ddd. In the case of TBF this sequence of
events may occur, while in the case of LBF it cannot occur. In fact, when the first event d is observed
all transitions are enabled (both in the case of TBF and LBF), thus a second event d may occur. At this
point, the set C(dd) contains the marking M = [2 0 0 0 0 1]T that enables a transition labeled d, namely
t4, whose firing would lead to a violation of the constraint. In the case of the LBF this implies that all
transitions labeled d are disabled by the controller, thus a further event d cannot occur. On the contrary,
in the case of the TBF, transition t4 is disabled by the controller, but both transitions t5 and t6 may fire,
thus a further event d may occur.

6 Conclusions and future work

The contribution of this paper is twofold.

We first presented a marking estimation procedure that can be applied to λ-free labeled Petri nets (the
formal proof of the correctness of this procedure can be found in [6]). In particular, under the assumption
that all nondeterministic transitions are contact-free, the set of markings consistent with an observed word
can be described by a constraint set of linear inequalities that has a fixed structure that does not change
as the length of the observed sequence increases.

Then, we shown how this marking estimation can be used by a control agent to enforce some specifications.
In particular we discussed two different cases, depending on the possibility of the controller to assign a
different control pattern to transitions that share the same label.

We plan to extend our results in several ways.

Firstly, we plan to remove the contact-free assumption, allowing the subnet composed of the nondeter-
ministic transitions to have a more general structure.

Secondly, we believe it may be possible to modify the structure of the constraint set to also take into
account the case that the initial marking is not known.

Finally, we plan to extend this approach to arbitrary labeling functions, i.e., functions L : T → E ∪ {ε}
that may assign to one or more transitions the empty string ε.
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