
5eConf́erence Francophone de MOdélisation et SIMulation
”Modélisation et simulation pour l’analyse et l’optimisation des systèmes industriels et logistiques”

MOSIM’04 – du1er au3 septembre2004 - Nantes (France)

CONTROL AND DEADLOCK RECOVERY OF TIMED PETRI NETS

USING OBSERVERS

A. Giua1, C. Seatzu1 et F. Basile2

1 Dip. Ingegneria Elettrica ed Elettronica

Piazza D’Armi, 09123 Cagliari, Italy

{giua,seatzu }@diee.unica.it

2 Dip. Ingegneria dell’Informazione e Ingegneria Elettrica

Via Ponte don Melillo 1, 84084 Fisciano (Salerno), Italy

fbasile@unisa.it

ABSTRACT : In this paper we deal with the problem of controlling a timed Petri net when the marking is not known,
but an estimate is computed using an observer. We show that the use of marking estimates may significantly reduce the
performance of the closed-loop system and may also lead to a deadlock. We propose a solution to this problem that
is based on a linear algebraic characterization of deadlock markings based on siphons analysis. More precisely, two
different approaches are suggested depending on the knowledge of the timing structure of the net.

KEY WORDS: Petri nets, timed Petri nets, marking estimation, control, deadlock recovery.

1. INTRODUCTION

In this paper we deal with the problem of controlling a
timed Petri net whose marking cannot be measured but is
estimated using an observer.

The paper summarizes in an informal manner the main
results obtained by the authors, and shows via a numeri-
cal example the applicability of these results to a manu-
facturing system. For a more detailed description of the
proposed approach and a comprehensive survey of the lit-
erature on this topic we refer to [6, 7].

1.1. Motivation

In the classical approach of Ramadge and Wonham [12]
to the supervisory control of discrete event systems, the
event-feedbackcontrol scheme shown in Figure 1.a is
adopted. Here the plant spontaneously generates a word
of eventsw. The supervisor observes the word of events
generated and, given a set of legal wordsK, computes at
each step a suitable control patternf(w) to ensure that no
illegal word be generated.

Other authors have used a differentstate-feedbackcon-
trol scheme, shown in Figure 1.b. Here the supervisor
observes the actual plant stateM and, given a set of le-
gal statesL computes at each step a control patternf(M)
to ensure that no illegal state be reached. This scheme is
particularly appealing when dealing with Petri net models
of the plant [8], since the state of a net is given by an in-

teger vector calledmarking(this explains the notationM
used for the plant state in the figure) and linear algebraic
techniques may be used to solve the control problem.

A slightly different scheme is shown in Figure 1.c. Here
the controller observes the word of events generated and,
by means of an observer, it reconstructs the actual plant
stateM . The observer simply duplicates the plant model,
and is driven by the observed events. If the structure (as-
sumed deterministic) and the initial stateM0 of the plant
are known, the knowledge of the word generated is suf-
ficient to reconstruct the new state that each new firing
yields.

When the initial state is not completely specified a dif-
ferent control scheme may be used. In particular, we use
Petri net models and assume that the initial markingM0 is
known to belong to a “macromarking”, i.e., we know the
token contents of subsets of places but not the exact token
distribution. In this case we can use the control scheme
shown in Figure 1.d whereC(w) denotes the set of mark-
ings in which the system may be given the observed word
w and the partial information on the initial marking. In
the following we callC(w) the set of markingsconsistent
with an observed wordw.

1.2. Proposed approach

In this paper we first recall the main results in [6] where
we have shown how it is possible to design a marking ob-
server, i.e., a system that estimates the actual marking of

 plant

w

word of events

controllerK
legal
words

control

(a)

 f(w)

M

 state

L

(b)

control

 f(M)
 plant

legal
states

controller

w

 model
M=Mw

M0

(c)

L controller

 plant
control

 f(M)

w

observer

(d)

L controller

 plant
control

 f(C(w))

 C(w)

Figure 1:Different control schemes. (a) Event–feedback.
(b) State–feedback. (c) State–feedback with event ob-
server and initial marking. (d) State–feedback with event
observer and initial macromarking.

the net based on the observation of a word of eventsw. In
particular, the special structure of Petri nets allows us to
use a simple linear algebraic formalism for estimate com-
putation. Moreover, the setC(w) can easily be described
in terms of the observer estimate and can be characterized
as the integer solutions of a linear constraint set.

In [6] we have also shown how the estimate generated by
the observer may be used to design a state feedback con-
troller, that ensures that the controlled system never enters
a set of forbidden states. We considered a special class of
safety specifications that limit the weighted sum of mark-
ings in subsets of places called generalized mutual exclu-
sion constraints (GMEC).

Clearly, the use of marking estimates, as opposed to the
exact knowledge of the actual marking of the plant, leads
to a worse performance of the closed-loop system. In fact,
in a safety problem the aim of the controller is that of pre-
venting all those transition firings that lead to a forbidden
marking. If the actual marking is not exactly known, but is
only known to belong to a given consistent setC, the con-
troller must forbid all transitions firing that from ”any”
marking in C may lead to a forbidden marking and the
controller becomes usually more restrictive as the cardi-
nality of this set increases. Because of this it may be the
case that the controlled system reaches a deadlock, i.e., a
blocking condition, even if it is deadlock free when per-
fect information about the marking is available.

In [7] we shown that, using siphon analysis, the set of
deadlock markingsMb of a structurally bounded net can
be characterized as the integer solution of a linear con-
straint set. Siphon analysis has been already used by sev-
eral authors to derive deadlock avoidance policies: see
[1, 2, 3, 11]. The approach we propose in [7] is differ-
ent from the above mentioned approaches in two ways.

Firstly, our approach only aims to give a characterization
of deadlock markings. On the contrary, the referenced ap-
proaches aim to solve a more complex problem, namely
that of deriving a deadlock avoidance policy: to do this it
necessary to also characterizeimpending deadlock mark-
ings, i.e., markings that are not dead but that will lead to
a deadlock in a finite number of steps. Secondly, since
we solve a less complex problem we are able to derive a
simpler (in terms of number of constraints and number of
unknowns) characterization that applies to a large class of
nets (ordinary and structurally bounded), while the refer-
enced approaches are only valid for restricted classes of
nets.

Then, we focus our attention to timed Petri nets, i.e., Petri
nets where a delay is associated to each transition. The
delay represents the time that must elapse from the en-
abling of the transition until it fires. In particular, in [7]
we considered two different cases.

We initially assume that a very loose information on the
timing structure is available. More precisely, we as-
sume that if no transition firing occurs within a reasonable
amount of time in a controlled system — we say that the
net has timed out— one can conclude that a deadlock has
occurred and a recovery procedure should be invoked. The
characterization based on siphon analysis may be used to
derive a recovery procedure from deadlocks induced by
the observer and to improve the marking estimate, thus
providing a better characterization of the set of consistent
markings.

Then, we consider the case in which the timing structure
is known and propose a control algorithm that uses the
previous marking estimate and control approach, but that
also takes into account the knowledge of the delays and
of the enabling status of each transition. This algorithm
should be invoked whenever a transition has not fired for
a time larger than its expected delay, i.e., when atransi-
tion has timed out. Thus it not only allows the supervisor
to recover from total deadlocks (as in the previous case)
but it allows one to detect partial deadlocks as well, and
in general it improves and accelerates the convergence of
the marking estimation procedure. We also show how the
observer can use this information to restrict the set of con-
sistent markings.

A drawback of the proposed approach is that it requires
looking at each step for admissible solutions of a certain
number of constraint sets whose variables are integer: in
some cases this may hinder the implementation of the ap-
proach on on-line controllers. We show that this prob-
lem may be partially solved by simply relaxing the integer
constraints we consider into linear ones.

2. BACKGROUND ON PETRI NETS

In this section we recall the formalism used in the paper.
For more details on Petri nets we address to [10].

A Place/Transition net(P/T net) is a structureN =
(P, T, Pre, Post), whereP is a set ofm places;T is a set
of n transitions;Pre : P×T → N andPost : P×T →
N are thepre– andpost– incidence functions that specify
the arcs;C = Post − Pre is the incidence matrix. The
presetandpostsetof a nodeX ∈ P ∪ T are denoted•X
andX• while •X• =• X ∪X•.

A marking is a vectorM : P → N that assigns to each
place of aP/T net a non–negative integer number of to-
kens, represented by black dots. In the following we de-
noteM(p) the marking of placep. A net system〈N, M0〉
is a netN with an initial markingM0.

A transitiont is marking enabledatM if M ≥ Pre(·, t).
In this paper we also assume that asupervisor, i.e., an
external control agent, may forbid the occurrence of a
transition specifying a marking dependent control pattern
f(t,M) : T ×Nm → {0, 1} such thatf(t,M) = 1 if t is
control enabled, f(t,M) = 0 if t is control disabled.

A transitiont is enabledatM if it is marking enabled and
control enabled. A transitiont enabled atM may fire,
yielding the markingM ′ = M + C(· , t).
We writeM [w〉 M ′ to denote that the enabled sequence
of transitionsw may fire atM yielding M ′, or equiv-
alently we use the notationM ′ = w(M) and M =
w−1(M ′). Moreover, we denotew(M0) = Mw. Finally,
we denoteε the sequence of null length. The set of all se-
quences firable in〈N,M0〉 is denotedL(N, M0) (this is
also called the prefix-closed free language of the net). If
the firing sequencew is enabled atM0, we also say thatw
is a word inL(N, M0).

A marking M is reachablein 〈N, M0〉 iff there exists a
firing sequencew such thatM0 [w〉 M . The set of all
markings reachable fromM0 defines thereachability set
of 〈N,M0〉 and is denotedR(N, M0).

A nonnegative integer vector~x 6= ~0m such that~x T · C =
~0n

T is called aP–invariant(here~0k denotes ak×1 vector
of zeros). A P-invariant isminimal if there does not exist
a P-invariant~y such that~y ≤ ~x.

A transitiont is said to belive if for any M ∈ R(N, M0),
there exists a sequence of transitions firable fromM
which containst. A Petri net is said to be live if all transi-
tions arelive.

A markingM is adeadlock(or dead) marking if no tran-
sition t ∈ T may fire atM . A Petri net is said to be
deadlock–freeif at least one transition is enabled at every
reachable marking.

A placep is said to beboundedif there exists a constantk
such thatM(p) ≤ k for all M ∈ R(N, M0). A net system
is bounded if all places are bounded. A net isstructurally
boundedif it is bounded for all initial markings.

A P/T net is calledordinary when all of its arc weights
are 1’s. Asiphonof an ordinary net is anon–emptyset of
placesS ⊆ P such that:

⋃
p∈S

•p ⊆ ⋃
p∈S p•. A siphon

is minimal if it is not the superset of any other siphon. In
the following we denote as~s ∈ {0, 1}m the characteristic
vector ofS, wheresi = 1 if place pi ∈ S andsi = 0
otherwise.

Definition 1. Given a netN = (P, T, Pre, Post),
and a subsetT ′ ⊆ T of its transitions, we define
the T ′−induced subnet ofN as the new netN ′ =
(P, T ′, P re′, Post′) wherePre′, Post′ are the restriction
of Pre, Post to T ′. The netN ′ can also be thought as ob-
tained fromN by removing all transitions inT \ T ′. We
also writeN ′ ≺T ′ N . ¥
A deterministic timed P/T net is a pair(N, δ), where
N = (P, T, Pre, Post) is a standard P/T net, andδ(t) :
T → R+

0 , called release delay, assigns a non-negative
fixed firing duration to each transition. A transition with a
release delay equal to0 is said to be immediate. The value
of δ(t) represents the time that must elapse, starting from
the time at which the transitiont is enabled, until it fires.
We use single server-semantics, i.e., no concurrent firings
of the same transition are possible.

Finally, we conclude this section recalling a linear alge-
braic characterization of deadlock markings derived by
the authors in [7] that will be used in the paper. Such
a characterization is valid for ordinary and structurally
bounded Petri nets. Note that, as discussed in the Intro-
duction, similar linear characterizations have been inde-
pendently proposed in [1, 2, 11].

Theorem 2 ([7]). Given a structurally bounded netN
with m places, a markingM ∈ Nm is a deadlock marking
if and only if there exists a vector~s ∈ {0, 1}m such that
the following set of linear equations is satisfied:

D(N) :=

K1 · PreT · ~s ≥ PostT · ~s (a)
K2 · ~s + M ≤ K2 ·~1m (b)
~s + M ≥ ~1m (c)
PreT · ~s ≥ ~1 (d)
M ∈ Nm (e)
~s ∈ {0, 1}m (f)

(1)

whereK1 = maxt∈T PostT (·, t)·~1 andK2 is any positive
integer greater or equal to the maximum structural bound
of p, for anyp ∈ P . ¥
By virtue of the linear characterization above, we define
the set of blocking markings of a netN as:

Mb(N) = {M | ∃ ~s ∈ {0, 1}m : (M,~s) ∈ D(N)}. (2)

3. MARKING ESTIMATION WITH MACRO-
MARKINGS

In [6] we dealt with the problem of reconstructing the
marking of a P/T net assuming that partial information
about the initial marking is available in the form of a
macromarking.

Definition 3 (Macromarking). Assume that the set of
placesP can be written as the union ofr + 1 subsets:

P = P0 ∪ P1 ∪ · · · ∪ Pr such thatP0 ∩ Pj = ∅, for all
j > 0. The number of tokens contained inPj (j > 0) is
known to bebj , while the number of tokens inP0 is un-
known. For eachPj , let~vj be its characteristic vector, i.e.,
vj(p) = 1 if p ∈ Pj , elsevj(p) = 0.

We call the set of markings

V(V,~b) = {M ∈ Nm | V T M = ~b}

the macromarking defined byV = [~v1, · · · , ~vr] and~b =
[b1, · · · , br]. ¥
The notion of macromarking occurs frequently when de-
scribing systems containing a known set of resources (e.g.,
parts, machines) whose actual conditions (e.g., exact lo-
cation of parts within the plant, state of a machine) is un-
known.

We make the following assumptions.

(A1) The structure of the netN = (P, T, Pre, Post) is
known, while the initial markingM0 is not.

(A2) The event occurrences (i.e., the transition firings) can
be observed.

(A3) The initial markingM0 belongs to the macromarking
V(V,~b), i.e., it satisfies the equationV T M0 = ~b.

We also introduce the following notation.

Definition 4 (Set of w-consistent markings). After
the word w has been observed we define the set of
w−consistent markings as the set of all markings in which
the system may be given the observed behavior and the
initial marking, i.e., the setC(w) = {M ∈ Nm | ∃M0 ∈
V(V,~b), M0[w〉M}. ¥
In [6] we provided a simple algorithm to compute the esti-
mateµ and the boundB of each actual markingM based
on the observation of a word of events and on the knowl-
edge of the initial macromarkingV(V,~b).
Algorithm 5. (Marking Estimation with Event Obser-
vation and Initial Macromarking).

1. Let the current observed word be
w = ε (the empty string).

2. Let the initial estimate be µε,
with µε(p) = min{M(p) | V T ·M = ~b}.

3. Let the initial bound be Bε = ~b− V T ·
µε.

4. Wait until a new transition, say t,
fires.

5. Update the estimate µw to µ′wt with
µ′wt(p) = max{µw(p), P re(p, t)}.

6. Let µwt = µ′wt + C(·, t).

P1

M1 M2

M3

AGV1

M3

AGV1

P2

AGV2

M5

M4

M1

M3 M5

M2

M4

B

AGV1 AGV2

R1

R2

R3 R4

I1 I2

O1 O2

Figure 2:Layout of the automated manufacturing system.

7. Let Bwt = Bw − V T · (µ′wt − µw).

8. Goto 4. ¥

In simple words, if the currently observed word isw and
transitiont fires, the algorithm firstly updates the current
estimate fromµw to µ′wt adding the minimal number of
tokens required to enablet. Secondly, the algorithm com-
putesµwt as the marking obtained fromµ′wt firing t.

Definition 6. Given an estimateµ and a boundB com-
puted using Algorithm 5, the set of(µ,B)-consistent
markingsis

M(µ, B) def= { M ∈ Nn | M ≥ µ,
V T ·M = V T · µ + B}. (3)

¥
The following important result provides a linear algebraic
characterization ofC(w).
Theorem 7 ([6]). Let us consider a net with initial macro-
markingV(V,~b). Let w be an observed word, andµw and
Bw be the corresponding estimate and bound computed
using the estimation Algorithm 5.

The set ofw-consistent markings coincides with the set of
(µw, Bw)-consistent markings, i.e.,

C(w) = M(µw, Bw).

¥

3.1. A manufacturing example

We now apply the above methodology to a classical au-
tomated manufacturing system whose layout is shown in
Figure 2 and whose Petri net model is shown in Figure 3
(placesC1, C2, C3 and all connected arcs should be ig-
nored at first). This system is similar to the one described
in [4].

R1

M2
M1 M4

R3
B R4

M3 M5

R2

AGV1 AGV2

C1

C2

C3

8

8

9

19

20

8

p1

p2

p3 p4

p5 p6

p7 p8

p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p22

p23 p24

p25

p26

p27

p28

p29

p30
p31p32

p33 p34

t1

t2 t3

t4
t5

t6 t7

t8
t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

t23

Figure 3:Petri net model of the manufacturing system in
Figure 2.

The plant consists of five machines (M1 to M5), four
robots (R1 to R4), a finite capacity buffer B, two inputs of
raw parts (I1 and I2) of type1 and type2 respectively, two
AGV systems (AGV1 and AGV2), and finally two outputs
(O1 and O2) for the processed parts. The plant produces
two different types of products from two types of raw ma-
terials. An unlimited source of raw parts is assumed. It is
supposed that there are 20 pallets for each type of product.

The Petri net model is shown in Figure 3. This net has
m = 34 places andn = 23 transitions. The marking
of placep32, the co-buffer, represents the number of free
buffer slots, while the marking of placesp9 andp18 rep-
resent respectively the number of type1 and type2 parts
present in the buffer. There exist 14 circuits, each corre-
sponding to a P-invariant. If we assume that the initial
marking of the net is that in Figure 3, we have (here to
avoid a heavy notation we denote asMi the marking of
placepi)

∑13
i=1 Mi = 20∑22
i=14 Mi = 20

M5 + M23 = 1
M6 + M24 = 1
M11 + M25 = 1
M16 + M26 = 1
M20 + M27 = 1
M13 + M33 = 1
M22 + M34 = 1
M3 + M4 + M15 + M28 = 1
M12 + M21 + M29 = 1
M7 + M8 + M10 + M30 = 1
M17 + M19 + M31 = 1
M9 + M18 + M32 = 8

We assume that the above set of P-invariants coincides
with the macromarking, thus

~b = [20 14 1 1 1 1 1 1 1 1 1 1 1 8]T .

Note that if the number of P–invariants is too high to be
taken into account, we can only ”keep a subset of it”.

Now, assume that the initial marking is that shown in Fig-
ure 3, namely,

M0(p1) = 19
M0(p14) = 14
M0(p32) = 8
M0(pi) = 0 i = 2, . . . , 10, 12, 13, 15, . . . , 22, 25
M0(pi) = 1 i = 11, 23, 24, 26, . . . , 31, 33, 34

In accordance to Step 2 of Algorithm 5, the initial value
of the estimate is

µε(p14) = 6
µε(pi) = 0 i 6= 14

while the initial bound is

Bε = [20 14 1 1 1 1 1 1 1 1 1 1 1 8]T .

Assume that transitiont12 fires, i.e., the observed word is
w = t12.

In accordance to Step 5 of Algorithm 5 the previous mark-
ing estimate is firstly updated toµ′ε where

µ′ε(p14) = 6
µ′ε(pi) = 1 i = 11, 29
µ′ε(pi) = 0 i 6= 11, 14, 29

In simple words this means that if transitiont12 has fired,
then at least one token should be contained in its input
placesp11 andp29 before its firing.

Then, (see Steps 7 and 8 of Algorithm 5) the marking es-
timateµw and boundBw are computed, where

µw(p14) = 6
µw(pi) = 1 i = 12, 25
µw(pi) = 0 i 6= 12, 14, 25

Bw = [19 14 1 1 0 1 1 1 1 1 0 1 1 8]T .

Now, assume that transitiont13 fires. In accordance to
Step 5 of Algorithm 5 the previous marking estimate is
updated toµ′w. The only difference amongµw andµ′w
is in placep33: we know for sure that if transitiont13
has fired, at least one token was contained inp12 andp33

before its firing, but the presence of the token inp12 has
already been detected after the firing oft12.

Finally, (see Steps 7 and 8 of Algorithm 5) the marking es-
timateµw and boundBw are computed, withw = t12t13,

µw(p14) = 6
µw(pi) = 1 i = 13, 29
µw(pi) = 0 i 6= 13, 14, 29

Bw = [19 14 1 1 0 1 1 1 1 1 0 1 1 8]T .

4. CONTROL USING OBSERVERS

In this section we show how the marking estimate con-
structed with the formalism discussed in the previous sec-
tion can be used by a control agent to enforce a given spec-
ification on the plant behavior.

We make several assumptions that are briefly discussed
here.

• We assume that the specification on the desired be-
havior is given as a set of legal markingsL.

• We consider a special type of state specifica-
tions calledgeneralized mutual exclusion constraints
(GMEC) that have been considered by various au-
thors [5, 9, 13].

Given an integer matrixL = [~l1 · · ·~lq] with ~lj ∈ Zm

and a vector~k = [k1, · · · , kq] with kj ∈ Z, a GMEC
(L,~k) defines the set of legal markingsL = {M ∈
Nm | LT ·M ≤ ~k}.

• The controller may disable transitions to prevent the
plant from entering a forbidden marking, computing
an appropriate control pattern. If the actual mark-
ing M is known, the control pattern is a function of
M . However, when an observer is used in the control
loop, only the set of consistent markingsC ⊆ Nm is
available to the controller and the control pattern be-
comes a functionf(t, C) : T × 2N

m → {0, 1}. If
f(t, C) = 0 thent is disabled by the controller, while
if f(t, C) = 1 it is enabled.

• All transitions are controllable, i.e., can be disabled
by the controller.

Thus the considered control scheme is that shown in Fig-
ure 1.d.

The control lawf(t, C) is defined as follows.

Definition 8 ([7]). Given a GMEC(L,~k) and a set of con-
sistent markingsC ⊆ Nm, the firing of transitiont should
be prevented if and only if there exists a legal consistent
markingM such that the firing oft from M leads to a
forbidden marking, i.e.,

f(t, C) =

0 if (∃M) M ∈ C, LT ·M ≤ ~k,

M [t〉M ′, (∃j) ~lj ·M ′ > kj

1 otherwise.

¥
The computation of the control pattern for a givent may
be carried out looking for the existence of aj ∈ {1, . . . , q}
such that the following constraint set admits a solution:

M ∈ C (a)
LT ·M ≤ ~k (b)
M ≥ Pre(·, t) (c)
M ′ = M + C(·, t) (d)
~l T
j ·M ′ > kj (e)
M ′ ∈ Nm (f)

(4)

If system (4) admits a solution, there exists a consistent
markingM – constraint (a) – that is legal – constraint (b)
– from which transitiont may fire – constraint (c) – yield-
ing a markingM ′ – constraint (d) – that is not legal – con-
straint (e) – because it holds~l T

j ·M ′ > kj . Note that, as
a consequence of Theorem 7, constraint (a) is linear with
respect toM .

Note that the control pattern computed using an observer
may be more restrictive than the optimal state feedback
computed when the actual marking is known [7]. More-
over, as shown in the following example, this may also
lead to a block.

4.1. A manufacturing example (continued)

Let us consider again the manufacturing example dis-
cussed in Subsection 3.1.

To show how this net evolves in time under control let us
assume the following timing structure is given:δ(t) = 5
for all t ∈ T \ {t12, t13, t14, t21, t22, t23}, δ(t) = 1 for
t ∈ {t13, t14, t22, t23}, andδ(t) = 2 for t ∈ {t12, t21}.
In this example the controller must enforce three specifi-
cations:

∑9
i=2 Mi ≤ 8 (a)∑18
i=15 Mi ≤ 8 (b)∑9
i=2 +

∑18
i=15 Mi ≤ 9 (c)

(5)

Note that if the initial marking is completely known, the
addition of the monitor placesC1, C2 andC3 ensures the
satisfaction of the linear inequality constraints (5) and the
closed loop net is live (this may be easily proved following
the procedure in [3]).

19 0 0 0 0 0 0 0 0 0 1 0 0 20 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 8 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0
20 14 1 1 1 1 1 1 1 1 1 1 1 8

19 0 0 0 0 0 0 0 0 0 0 1 0 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 8 1 1
 0 0 0 0 0 0 0 0 0 0 0 1 0 6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
19 14 1 1 0 1 1 1 1 1 0 1 1 8

 19 0 0 0 0 0 0 0 0 0 0 0 1 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 8 0 1
 0 0 0 0 0 0 0 0 0 0 0 0 1 6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
 19 14 1 1 0 1 1 0 1 1 0 1 1 8

20 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 8 1 1
 1 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
19 14 1 1 0 1 1 0 1 1 0 1 1 8

t12

t13

t14

now=2

now=3

now=4

Tn= {t1,t15}

Tn= {t1,t15}

Tn= {t1,t15}

Tn= {t1,t15}

Figure 4:Reachability graph of the net in Figure 3 under
control when no deadlock recovery procedure is applied.

On the contrary, if the marking of the plant is not mea-
surable, an observer must be used in the control loop and
this leads to a deadlock. The closed loop behaviour is that
shown in Figure 4 where the first line of each node con-
tains the real marking of the net, the second line contains
the actual estimate and the third line contains the actual
bound. Note that in the same figure the variablenow de-
notes the actual value of time and, for each marking, the
setTn = {t ∈ T | f(t, C) = 0} is the set of transitions
disabled by the controller.

After the sequencew = t12t13t14 has fired, only two tran-
sitions t1 and t15 are enabled in the net. The controller
prevents the firing of both transitions even if their firing
is perfectly legal and the net reaches a deadlock. This is
due to the fact that there exists at least one marking in
C(t12t13t14) that would produce the violation of one of
the controller specifications if either transitiont1 or t15
fires. In particular, the firing oft1 may (potentially) vio-
late specifications (a-c), while the firing oft15 may violate
specifications (b-c).

5. RECOVERY AND ESTIMATE UPDATE AFTER
NET TIME-OUT

Let us suppose that, although we have no exact informa-
tion on the timing structure of the net, we can be sure
that the net is blocked if a sufficiently long time has
elapsed without observing any event occurrence. Such is
the case if we know that all transition delays are such that
δ(t) ≤ ∆max, ∀t ∈ T . If a time greater than∆max elapses
without observing any firing, we say thatthe net has timed
out.

Proposition 9 ([7]). Assume that the netN =
(P, T, Pre, Post) controlled with the control pattern
f(·, C) has timed out. Let us defineT ′ = {t ∈ T |

f(t, C) = 1} as the subset ofT containing the tran-
sitions enabled by the controller, and letN ′ ≺T ′ N
be theT ′−induced subnet ofN . Then the actual (un-
known) markingM of the controlled netN is a dead-
lock marking for the uncontrolled netN ′, i.e., it belongs
to C′ = C ∩Mb(N ′). ¥
In [7] we proposed an automatic approach that tries to ex-
ploit the information that the net has timed out to recover
from this blocking condition and improve the estimate. Of
course this procedure may be effective only if the dead-
lock has been caused by the incomplete information about
the actual marking originated by the presence of the ob-
server in the closed loop.

5.1. Deadlock recovery

The deadlock recovery procedure we proposed in [7] con-
sists in recomputing the control pattern using appropriate
constraints to capture the fact that the actual (unknown)
markingM belongs toMb(N ′) for the netN ′ defined in
Proposition 9.

Algorithm 10. (Control Pattern Updating After Net
Time-Out)

Given a netN = (P , T, Pre, Post) controlled using an
observer, letµ andB be the current value of estimate and
bound, and defineC = M(µ,B). Assume that the com-
puted control patternf(·, C) has led the net to a time-out.
We can update the control pattern using the following pro-
cedure.

1. Let i = 0 and define f0(·)def= f(·, C) as
the initial control pattern.

2. Let Ti = {t ∈ T | fi(t) = 1} be the set of
transitions enabled by the
current control pattern, and let
Ni ≺Ti N be the net obtained by N
removing all transitions not in Ti.

3. Update the control pattern to fi+1 =
g(fi), where

g(fi)
def= f(·, C ∩Mb(Ni)). (6)

4. If fi+1 = fi THEN exit: the deadlock
recovery procedure has failed.

5. Wait until

(a) EITHER a transition fires and
THEN exit: the net has recov-
ered
from the deadlock

(b) OR a new net time-out occurs
and THEN let i = i + 1 and go to
2. ¥

Note that the operatorg : {0, 1}n → {0, 1}n defined by
(6) is a function offi becauseNi is defined usingfi.

In this algorithm the knowledge that a time-out has oc-
curred is used to restrict the set of consistent markings
and construct a new control pattern (step 3) that is at least
as permissive as the previous one [7]. If the new con-
trol pattern is still blocking and a new time-out occurs the
procedure is repeated until either the net recovers from
deadlock, or until we cannot update the control pattern
any more and the procedure fails.

Note that in [7] we proved that Algorithm 10 always ter-
minates in a finite number of steps.

In [7] we also provided an important characterization of
those cases in which the proposed procedure is able to
recover from a net time-out. More precisely, when the
macromarking is such that the vectors~vj are P-invariants,
we give a sufficient condition to ensure that the controlled
net will never time out. Moreover, we give a sufficient
condition to ensure that, even if a time-out may occur, Al-
gorithm 10 will always successfully recover the net from
a deadlock.

5.2. Improving the marking estimate

In this subsection, we discuss the possibility of using the
linear algebraic characterization above not only to recover
from a block, but to improve the marking estimate as well.

Assume that given an observed wordw, a current estimate
µw and boundBw, a blocking condition occurs, and that
after ı̄ iterations of Algorithm 10 a newly enabled transi-
tion t fires. At this point, before the firing oft, the set of
consistent markings isM(µw, Bw) ∩Mb(Nı̄). This set
corresponds to the dark area in Figure 5.

We should keep this information when computing the new
set of consistent markingsC(wt) after the firing oft. Nev-
ertheless, this would destroy the framework that inspired
the algorithm for the marking estimate computation [6], in
the sense that the set of consistent markings would loose
the structure given in Equation (3). Thus, we propose the
following alternative solution. For each placepi ∈ P we
solve an integer programming problem (IPP) of the form:

min M(pi)
s.t.
M ∈M(µw, Bw)
M ∈Mb(Nı̄)

(7)

Now, we defineµ∗ = [µ∗1 · · · µ∗m]T whereµ∗i is the so-
lution of thei–th IPP and letB∗ = Bw − V T (µ∗ − µw)
be the corresponding bound. We useµ∗ andB∗ as new
current values of the estimateµw and boundBw. This is
equivalent to approximate the set ofw−consistent mark-
ings after recovery, with the set

M(µ∗, B∗) = { M ∈ Nm | M ≥ µ∗,
V T ·M = V T · µ∗ + B∗}. (8)

��� �����	�
���

��� ��������� �����	������������� !�� �

����� !�� �

��� �����	�����

Figure 5: Generic inclusion relationship among sets
M(µw, Bw),M(µ∗, B∗) andMb(Nı̄).

This set is also shown in Figure 5: beingM(µw, Bw) ∩
Mb(Nı̄) ⊆ M(µ∗, B∗) ⊆ M(µw, Bw) we may be los-
ing information, but nevertheless we can keep on with a
linear algebraic characterization of the set of consistent
markings in the simple form specified by Equation (3).

5.3. Numerical example

Let us consider again the manufacturing system in Sub-
section 4.1, where the use of an observer in the closed
loop may lead to a blocking condition.

In this subsection we show how the above deadlock pro-
cedure may be efficiently applied to the considered net. If
we assume that the initial marking is that in Figure 3 a
blocking condition occurs after the firing of the sequence
w = t12t13t14. The corresponding value of the marking
Mw, as well as that of the estimateµw and boundBw,
may be seen in Figure 4.

At this point, when a time∆max striclty greater than
the maximum timing delay has elapsed (∆max ≥
maxt∈T δ(t)), we apply Algorithm 10 to update the con-
trol pattern. In particular, we have that the set of transi-
tions enabled by the control pattern isT \ {t1, t15}, while
after only one iteration, we find out thatf = f1 = ~1, i.e.,
all transitions become control enabled and the net has re-
covered from the observer induced deadlock. Finally, by
solvingm = 34 IPP, we may also improve the marking es-
timate. In particular, as shown in Figure 6, we reconstruct
the marking of placesp27, p34 and we detect the presence
of 9 tokens inp14. Note that in Figure 6 the large grey
arrow has been used to highlight that no transition firing
has occurred, but the net has timed-out and the deadlock
recovery procedure has been applied.

6. USING TIMING INFORMATION FOR STATE
ESTIMATION

19 0 0 0 0 0 0 0 0 0 1 0 0 20 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 8 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0
20 14 1 1 1 1 1 1 1 1 1 1 1 8

19 0 0 0 0 0 0 0 0 0 0 1 0 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 8 1 1
 0 0 0 0 0 0 0 0 0 0 0 1 0 6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
19 14 1 1 0 1 1 1 1 1 0 1 1 8

 19 0 0 0 0 0 0 0 0 0 0 0 1 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 8 0 1
 0 0 0 0 0 0 0 0 0 0 0 0 1 6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
 19 14 1 1 0 1 1 0 1 1 0 1 1 8

20 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 8 1 1
 1 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
19 14 1 1 0 1 1 0 1 1 0 1 1 8

t12

t13

t14

now=2

now=3

now=4

Tn= {t1,t15}

Tn= {t1,t15}

Tn= {t1,t15}

Tn= {t1,t15}

now=4 + ∆max

20 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 8 1 1
 1 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1
19 11 1 1 0 1 0 0 0 1 0 1 1 8

Tn= ∅

Figure 6:Reachability graph of the net in Figure 3 under
control when the deadlock recovery procedure proposed
in Section 5 is applied.

In [7] we shown how the above procedure can be mod-
ified to incorporate available information on the timing
structure of the net into the state estimation process. The
approach is essentially based on the linear algebraic char-
acterization of deadlock markings given by the system of
inequalities (1) that is used to restrict the set ofw consis-
tent markings. In the following this procedure is called
time-outprocedure.

To avoid repeating the formal steps of the algorithm, that
are given in [7], we limit here to present the main idea
that lead to its formulation. Then, we illustrate it via a
numerical example.

Assume that we start observing the net at timeτ and that
transition t is control enabled during the time interval
[τ, τ + δ(t)]. Moreover, assume that the marking of the
input places oft does not increase during the time interval
[τ, τ + δ(t)]. If at timenow = τ + δ(t) transitiont does
not fire, we can be sure that the actual markingM is such
that¬M [t〉, or equivalentlyt is notmarkingenabled: we
say thatt hastimed outat timenow.

We denote asTto the set of timed out transitions.

At this point, if no transition fires we can invoke the time-
out procedure. The only difference with respect to Algo-
rithm 10 is that hereTi (see step 2 of Algorithm 10) is the
set of transitions that are control enabledand that have
timed out.

Then, as in the previous case, this information can be
used to improve the marking estimate. Thus, two types
of events that modify the marking estimate may occur.

— The first type of events occurs when the firing of a
transitiont̂ is detected. In this case the marking esti-
mateµ and boundB are updated following the esti-
mation algorithm in [6]. In this step the set of timed
out transitionsTto may eventually be updated, re-
moving from this set all those transitionst such that
•t∩ t̂ • 6= ∅, i.e., those transitions that may have been
enabled by the firing of̂t.

— The second type of events occurs when a new transi-
tion times out. In this case the set of timed out transi-
tions is increased and we know that the actual mark-
ing must be such that the netNto ≺Tto N is dead-
locked, whereNto is the subnet ofN induced by the
set of the timed out transitions. We use this infor-
mation to compute a new control pattern at least as
permissive as the current one. We also updateµ and
B solving for each place an IPP of the form given by
(7).

Thus, at each instant of time, it is possible to partition the
set of transitionsT into three subsets:

• Tn = {t ∈ T | f(t, C) = 0} is the set of transitions
that arenot control enabledgiven the current set of
consistent markings.

• Tto is the set ofcontrol enabledtransitions that have
timed out. A transitiont belongs to this set if during
the time interval[now− δ(t), now] has continuously
been control enabled and the marking of all its input
places•t has not increased during this same interval1.

• Te is the set of those controlenabledtransitions that
do not belong toTto.

To illustrate this procedure we apply it to the manufactur-
ing example already considered in the previous sections.

6.1. Manufacturing example (continued)

The evolution of the net under control when the deadlock
recovery procedure using timing information is applied, is
reported in Figure 7. Note that in the same figure we have
also reported the setsTto andTn.

The initial node of the graph is the same as in the previous
case and the set of transitions disabled by the controller is
Tn = {t1, t15}.
Given the actual delays, the time to wait before either
applying the observer update procedure or the deadlock
recovery procedure, isδ = 1. In this case, after one
time unit has elapsed, no transition fires. In fact, none

1Note that if the marking of some places in•t has increased during
the time interval[τ, τ + δ(t)], we can only conclude that the transition
was not marking enabled at timeτ , but no conclusion can be drawn on
the marking enabling condition oft at timeτ + δ(t).

among the transitionst13, t14, t22 and t23, whose tim-
ing delay is equal to 1, may actually fire, even if their
firing is allowed by the controller. Thus, the deadlock
recovery procedure is applied. We define the netNto

obtained fromN removing all transitions not inTto =
{t13, t14, t22, t23}. For allt ∈ T we compute the new con-
trol patternf(t, C ∩Mb(Nto)) and we update the transi-
tion partitioning. In particular, we find out that botht1 and
t15 are still disabled by the controller, thusTn = {t1, t15},
while Te = T \(Tn∪Tto). Now, by solving 34 IPP we up-
date the previous marking estimate and bounds. Numeri-
cal values are reported in Figure 7 where large grey arrows
have been used to highlight that the deadlock procedure
has been applied because some transitions have timed-out,
but no transition has fired.

Now, when one more time unit has elapsed, transitiont12
fires and the observer update procedure is applied. We
update the estimate and the bound as shown in Figure 7,
while the control pattern keeps the same for all transitions
t ∈ T . Note that now, being•t13 ∩ t•12 6= ∅, the set
Tto is updated toTto = {t14, t21, t22, t23}. Moreover,
Te = T \ (Tn ∪ Tto), whereTn is the same as in the
previous step.

Then, after one more time unitt13 fires, and after another
time unitt14 fires as well. The resulting marking estimate
and bound are those reported in Figure 7, respectively in
the fourth and fifth nodes.

At time now = 5 no transition fires and the deadlock re-
covery procedure is invoked. The new control pattern is
computed and all transitions become control enabled. The
marking estimate is also updated. Detailed results are re-
ported in Figure 7.

To conclude we may observe now the closed loop net re-
covers from the deadlock after 5 time units. On the con-
trary, when we apply the procedure based on the net time-
out, the net recovers from the deadlock after more than 9
units of time.

8. LINEAR RELAXATION OF INTEGER PRO-
GRAMMING

A drawback of the proposed procedures is that they re-
quire to solve at each step a certain number of integer
programming problems to compute the control pattern: in
some cases this may hinder the implementation of the ap-
proach on on-line controllers. This problem may be par-
tially solved by simply relaxing the integer programming
problems we consider into linear ones.

Assume that in constraint set (4) the constraintsM, M ′ ∈
Nm are relaxed intoM, M ′ ∈ (R+

0)m. This yields a larger
set of consistent markingsCR(w) ⊇ C(w), i.e., we have
a relaxed observer(R-observer) that is possibly less ac-
curate than the previously defined observer. The control
pattern computed using the R-observer is possibly subop-

19 0 0 0 0 0 0 0 0 0 1 0 0 20 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 8 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0
20 14 1 1 1 1 1 1 1 1 1 1 1 8

19 0 0 0 0 0 0 0 0 0 0 1 0 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 8 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
20 12 1 1 0 1 1 0 0 1 1 1 1 8

 19 0 0 0 0 0 0 0 0 0 0 0 1 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 8 0 1
 0 0 0 0 0 0 0 0 0 0 0 1 0 8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
20 12 1 1 0 1 1 0 0 1 0 1 1 8

20 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 8 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
20 12 1 1 0 1 1 0 0 1 0 1 1 8

t12

t13

now=1

now=2

now=3

Tn= {t1,t15}

Tn= {t1,t15}

Tn= {t1,t15}

Tn= {t1,t15}

now=4

20 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 8 1 1
 1 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1
19 12 1 1 0 1 1 0 0 1 0 1 1 8

Tn= {t1,t15}

Tto= {t13,t14,t22,t23}

Tto= {t14,t21,t22,t23}

t14

now=5

20 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 8 1 1
 1 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1
19 11 1 1 0 1 0 0 0 1 0 1 1 8

Tn= ∅

Tto= {t21,t22,t23}

Tto= {t12,t13,t14,t21,t22,t23}

Tto= T \ {t1,t15}

Figure 7: Reachability graph of the net in Figure 3 un-
der control when the deadlock recovery procedure using
timing information is applied.

timal, in the sense that it is less permissive than or at most
as permissive as the one computed using the observer [7].
Note, however, that the control pattern computed using the
R-observer is certainly safe, i.e., it ensures that the control
specifications are never violated.

Similarly, if in (2) the constraintsM ∈ Nm and ~s ∈
{0, 1}m are relaxed intoM ∈ (R+

0)m and~s ∈ [0, 1]m,
this yields a larger set of deadlock markings. In this case
the proposed recovery procedures can still be applied but
the computed control patterns are, again, possibly subop-
timal.

Thus, whenever necessary the control designer may take
advantage of the linear relaxation trade-off that allows one
to obtain a possibly suboptimal but computationally effi-
cient solution technique.

As a final remark, it may also be possible to combine
these techniques using linear programming for the on-line
computation of the control patterns, and using integer pro-
gramming only when applying the net time-out procedure.

As an example, in the case of the Petri net system al-
ready considered in this paper, one may verify that the
on-line computation of the control patterns using the lin-
ear relaxation of (4) always yield optimal solutions. How-
ever, when a net time-out occurs, the linear relaxation is
not optimal: the maximal permissive control pattern com-
puted using the linear relaxation of (2) disables{t1, t15}
and because of this the deadlock recovery procedure may
not work.

9. CONCLUSIONS

In this paper we have dealt with the problem of enforc-
ing a set of GMEC on a timed Petri net by a state feed-
back control under the assumption that the system state is
not measurable but can only be estimated. The use of the
marking estimate instead of the actual marking may lead
to a deadlock even if the controlled system is live. We
propose two different solutions to this problem based on
a linear algebraic characterization of the deadlock mark-
ings. The first one is applicable when no information on
the timing structure of the net is available, the second one
can only be used when the timing structure of the net is
perfectly known.

References

[1] K. Barkaoui, A. Chaoui, B. Zouari, “Supervisory con-
trol of discrete event systems using structure theory of
Petri nets,”1997 IEEE Int. Conf. on Systems, Man and
Cybernetics(Orlando, Florida), pp. 3750-3755, Oct
1997.

[2] F. Chu, X. Xie, “Deadlock analysis of Petri nets using
siphons and mathematical programming,”IEEE Trans.
on Robotics and Automation, Vol. 13, No. 6, pp. 793–
804, 1997.

[3] J. Ezpeleta, J.M. Colom, J. Martinez, “A Petri net
based deadlock prevention policy for flexible manufac-
turing systems”,IEEE Trans. on Robotics & Automa-
tion, Vol. 11, No. 2, pp. 173–184, 1995.

[4] M.C. Zhou, F. DiCesare,Petri net synthesis for dis-
crete event control of manufacturing systems. Kluwer,
1993.

[5] A. Giua, F. DiCesare. M. Silva, “Generalized mutual
exclusion constraints on nets with uncontrollable tran-
sitions,” Proc. 1992 IEEE Int. Conf. on Systems, Man,
and Cybernetics(Chicago, Illinois), pp. 974–979, Oct
1992.

[6] A. Giua, C. Seatzu, “Observability of place/transition
nets,” IEEE Trans. on Automatic Control, Vol. 47, No.
9, pp. 1424-1437, 2002.

[7] A. Giua, C. Seatzu, F. Basile, “Observer-based state-
feedback control of timed Petri nets with deadlock re-
covery,” IEEE Trans. on Automatic Control, Vol. 49,
No. 1, pp. 17-29, 2004.

[8] L. E. Holloway, B. H. Krogh, A. Giua, “A survey
of Petri net methods for controlled discrete event sys-
tems”, Discrete Event Systems, Vol. 7, pp. 151-190,
1997.

[9] Y. Li, W.M. Wonham, “Control of vector discrete-
event systems — part II: controller synthesis,”IEEE
Trans. on Automatic Control, Vol. 39, No. 3, pp. 512–
531, 1994.

[10] T. Murata, “Petri nets: properties, analysis and appli-
cations,”Proc. IEEE, Vol. Proc. 77, N. 4, pp. 541–580,
1989.

[11] J. Park, S.A. Reveliotis, “Deadlock avoidance in se-
quential resource allocation systems with multiple re-
source acquisitions and flexible routings,”IEEE Trans.
on Automatic Control, Vol. 46, No. 10, pp. 1572–1583,
2001.

[12] P.J. Ramadge, W.M. Wonham, “The Control of Dis-
crete Event Systems,”Proceedings IEEE, Vol. 77, No.
1, pp. 81–98, 1989.

[13] K. Yamalidou, J.O. Moody, M.D. Lemmon, P.J.
Antsaklis, “Feedback control of Petri nets based on
place invariants,”Automatica, Vol. 32, No. 1, 1996.

