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ABSTRACT : In this paper we deal with the problem of controlling a timed Petri net when the marking is not known,

but an estimate is computed using an observer. We show that the use of marking estimates may significantly reduce the
performance of the closed-loop system and may also lead to a deadlock. We propose a solution to this problem that
is based on a linear algebraic characterization of deadlock markings based on siphons analysis. More precisely, two
different approaches are suggested depending on the knowledge of the timing structure of the net.
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1. INTRODUCTION teger vector calledharking(this explains the notatiof/
used for the plant state in the figure) and linear algebraic
In this paper we deal with the problem of controlling a techniques may be used to solve the control problem.
timed Petri net whose marking cannot be measured but isA slightly different scheme is shown in Figure 1.c. Here
estimated using an observer. the controller observes the word of events generated and,
The paper summarizes in an informal manner the main by means of an observer, it reconstructs the actual plant
results obtained by the authors, and shows via a numeri-stateM. The observer simply duplicates the plant model,
cal example the applicability of these results to a manu- and is driven by the observed events. If the structure (as-
facturing system. For a more detailed description of the sumed deterministic) and the initial stat#, of the plant
proposed approach and a comprehensive survey of the litare known, the knowledge of the word generated is suf-

erature on this topic we refer to [6, 7]. ficient to reconstruct the new state that each new firing
yields.
1.1. Motivation When the initial state is not completely specified a dif-

. ferent control scheme may be used. In particular, we use
In the classical approach of Ramadge and Wonham [12] Petri net models and assume that the initial markifigis

to the supervisory control of discrete event systems, theknown to belong to a “macromarking’, i.e., we know the
event-feedbacicontrol scheme shown in Figure 1.a is token contents of subsets of places but not the exact token
adopted. Here the plan_t spontaneously generates a Wor%Iistribution. In this case we can use the control scheme
of eventsw. The supervisor observes the word of events ¢ /0 in Figure 1.d wher&(w) denotes the set of mark-
generated and, given a set of legal wokdlscomputes at o in which the system may be given the observed word
gach step a suitable control pattéifw) to ensure thatno 34 the partial information on the initial marking. In
illegal word be generated. the following we callC(w) the set of markingsonsistent
Other authors have used a differestate-feedbackon- with an observed word.

trol scheme, shown in Figure 1.b. Here the supervisor
observes the actual plant staté and, given a set of le-
gal statesC computes at each step a control pattgti/ )

to ensure that no illegal state be reached. This scheme idn this paper we first recall the main results in [6] where
particularly appealing when dealing with Petri net models we have shown how it is possible to design a marking ob-
of the plant [8], since the state of a net is given by an in- server, i.e., a system that estimates the actual marking of

1.2. Proposed approach



Firstly, our approach only aims to give a characterization
of deadlock markings. On the contrary, the referenced ap-
proaches aim to solve a more complex problem, namely
that of deriving a deadlock avoidance policy: to do this it
necessary to also characterisgpending deadlock mark-
ings i.e., markings that are not dead but that will lead to
a deadlock in a finite number of steps. Secondly, since
control we solve a less complex problem we are able to derive a
f(cw) simpler (in terms of number of constraints and number of
unknowns) characterization that applies to a large class of
nets (ordinary and structurally bounded), while the refer-
Ccw) enced approaches are only valid for restricted classes of
nets.

(d) Then, we focus our attention to timed Petri nets, i.e., Petri
nets where a delay is associated to each transition. The
delay represents the time that must elapse from the en-
abling of the transition until it fires. In particular, in [7]
‘we considered two different cases.

Figure 1:Different control schemes. (a) Event—feedback.
(b) State—feedback. (c) State—feedback with event ob
server and initial marking. (d) State—feedback with event

observer and initial macromarking. We initially assume that a very loose information on the

timing structure is available. More precisely, we as-

. sume that if no transition firing occurs within a reasonable
the net based on the observation of a word of events amount of time in a controlled system — we say that the
particular, the special structure of Petri nets allows Us t0 et has timed out— one can conclude that a deadlock has
use a simple linear algebraic formalism for estimate com- ¢y rred and a recovery procedure should be invoked. The
putation. Moreover, the s€{(w) can easily be described  paracterization based on siphon analysis may be used to
in terms of the observer estimate and can be characterizegie ive a recovery procedure from deadlocks induced by
as the integer solutions of a linear constraint set. the observer and to improve the marking estimate, thus
In [6] we have also shown how the estimate generated byproviding a better characterization of the set of consistent
the observer may be used to design a state feedback conmarkings.
troller, that ensures that the controlled system never entersrnan e consider the case in which the timing structure
a set of forbidden states. We considered a special class ofg known and propose a control algorithm that uses the
safety specifications that limit the weighted sum of mark- previous marking estimate and control approach, but that
ings in subsets of places called generalized mutual exclu-5150 takes into account the knowledge of the delays and
sion constraints (GMEC). of the enabling status of each transition. This algorithm
Clearly, the use of marking estimates, as opposed to theshould be invoked whenever a transition has not fired for
exact knowledge of the actual marking of the plant, leads a time larger than its expected delay, i.e., whenaasi-
to a worse performance of the closed-loop system. In fact, tion has timed outThus it not only allows the supervisor
in a safety problem the aim of the controller is that of pre- to recover from total deadlocks (as in the previous case)
venting all those transition firings that lead to a forbidden but it allows one to detect partial deadlocks as well, and
marking. If the actual marking is not exactly known, butis in general it improves and accelerates the convergence of
only known to belong to a given consistent §ethe con- the marking estimation procedure. We also show how the
troller must forbid all transitions firing that from "any” observer can use this information to restrict the set of con-
marking inC may lead to a forbidden marking and the sistent markings.

controller becomes usually more restrictive as the cardi- 5o gqrawback of the proposed approach is that it requires
nality of this set increases. Because of this it may be the |5oking at each step for admissible solutions of a certain
case that the controlled system reaches a deadlock, i-e., umber of constraint sets whose variables are integer: in
blocking condition, even if it is deadlock free when per- gome cases this may hinder the implementation of the ap-
fect information about the marking is available. proach on on-line controllers. We show that this prob-

In [7] we shown that, using siphon analysis, the set of lem may be partially solved by simply relaxing the integer

deadlock markings\1, of a structurally bounded net can constraints we consider into linear ones.

be characterized as the integer solution of a linear con-

straint set. Siphon analysis has been already used by SeVs BACKGROUND ON PETRI NETS

eral authors to derive deadlock avoidance policies: see

[1, 2, 3, 11]. The approach we propose in [7] is differ- In this section we recall the formalism used in the paper.

ent from the above mentioned approaches in two ways.For more details on Petri nets we address to [10].



A Place/Transition net(P/T net) is a structureV
(P, T, Pre, Post), whereP is a set ofn places,T is a set
of n transitions;Pre : PxT — NandPost: PxT —

N are thepre— andpost— incidence functions that specify
the arcs,C = Post — Pre is the incidence matrix. The
presetandpostsef a nodeX € P UT are denoted X
andX*® while*X* =* X U X°.

A markingis a vectorM : P — N that assigns to each
place of aP/T net a non—negative integer number of to-

kens, represented by black dots. In the following we de-

note M (p) the marking of place. A net systemdV, M)
is a netV with an initial markingM,.

A transitiont is marking enableét M if M > Pre(-,t).
In this paper we also assume thas@apervisor i.e., an

is minimalif it is not the superset of any other siphon. In
the following we denote a8 € {0, 1} the characteristic
vector of S, wheres, = 1 if placep;, € S ands; = 0
otherwise.

Definition 1. Given a netN (P, T, Pre, Post),
and a subsefl” C T of its transitions, we define
the T'—induced subnet ofV as the new netV’
(P, T, Pre’, Post') wherePre’, Post’ are the restriction
of Pre, PosttoT’. The netN’ can also be thought as ob-
tained fromN by removing all transitions ii" \ 7. We
also write N’ <7 N. [ |

A deterministictimed P/T net is a pair(V, ), where
N = (P, T, Pre, Post) is a standard P/T net, addt) :
T — R{, called release delay, assigns a non-negative

external control agent, may forbid the occurrence of a fixed firing duration to each transition. A transition with a
transition specifying a marking dependent control pattern re|ease delay equal tois said to be immediate. The value

f,M): T x N™ — {0,1} such thatf (¢, M) = 1if tis
control enabledf (¢, M) = 0 if ¢ is control disabled

A transitiont is enabledat M if it is marking enabled and
control enabled. A transition enabled at\/ may fire,
yielding the marking\/’ = M + C(-,t).

of 4(t) represents the time that must elapse, starting from
the time at which the transitionis enabled, until it fires.
We use single server-semantics, i.e., no concurrent firings
of the same transition are possible.

Finally, we conclude this section recalling a linear alge-

We write M [w) M’ to denote that the enabled sequence braic characterization of deadlock markings derived by

of transitionsw may fire atM vyielding M’, or equiv-
alently we use the notatiod!’ = w(M) and M =
w~t(M’). Moreover, we denote/(My) = M,,. Finally,

the authors in [7] that will be used in the paper. Such
a characterization is valid for ordinary and structurally
bounded Petri nets. Note that, as discussed in the Intro-

we denote the sequence of null length. The set of all se- duction, similar linear characterizations have been inde-

quences firable iV, My) is denotedL (N, M) (this is

pendently proposed in [1, 2, 11].

also called the prefix-closed free language of the net). If Theorem 2 ([7]). Given a structurally bounded neé¥

the firing sequence is enabled ab/,, we also say thab
is aword inL(N, My).

A marking M is reachablein (N, M) iff there exists a
firing sequenceav such thatM, [w) M. The set of all
markings reachable from/, defines theeachability set
of (N, My) and is denoted® (N, Mp).

A nonnegative integer vectat + 0,, such thatt 7 - C =
0, T is called aP—invariant(here(,, denotes & x 1 vector
of zeros). A P-invariant isninimalif there does not exist
a P-invariant/ such thaty < 7.

A transitiont is said to bdive if for any M € R(N, M),
there exists a sequence of transitions firable frém
which containg. A Petri net is said to be live if all transi-
tions ardlive.

A marking M is adeadlock(or dead marking if no tran-
sition ¢t € T may fire atM. A Petri net is said to be
deadlock—fredf at least one transition is enabled at every
reachable marking.

A placep is said to béboundedf there exists a constaht
suchthatV/ (p) < kforall M € R(N, My). A net system
is bounded if all places are bounded. A nestisicturally
boundedf it is bounded for all initial markings.

A PIT net is calledordinary when all of its arc weights
are 1's. Asiphonof an ordinary net is aon—emptyet of
placesS C P such that:Upes *p C UpES p®. A siphon

with m places, a marking/ € N™ is a deadlock marking
if and only if there exists a vectaf € {0,1}™ such that
the following set of linear equations is satisfied:

Ky -Pre’ . 5> PostT -5 (a)

Ky - §4+M<Ky-1,, (b)

F+M>T1, ()
D(N) = > 1
() PreT - 5> 1 (d) @)

M eN™ (e)

gef{o, 1™ (f)

whereK| = max,cr Post” (-, t)-1 andK, is any positive
integer greater or equal to the maximum structural bound
of p, foranyp € P. [ |

By virtue of the linear characterization above, we define
the set of blocking markings of a nat as:

My(N) = {M |35 € {0,1}" : (M,5) € D(N)}. (2)
3. MARKING ESTIMATION WITH MACRO-
MARKINGS

In [6] we dealt with the problem of reconstructing the
marking of a P/T net assuming that partial information
about the initial marking is available in the form of a
macromarking

Definition 3 (Macromarking). Assume that the set of
placesP can be written as the union ef+ 1 subsets:



P =P,UP U---UP, such thatPy N P; = {, for all —F —5 e
J > 0. The number of tokens contained i) (5 > 0) is ]
known to beb;, while the number of tokens i, is un- A p1
known. For eacltP;, letv; be its characteristic vector, i.e., /A 32
vi(p) =1if p € P}, elsev;(p) = 0. f i E f 1"1 M2 M4
We call the set of markings N ils his
5 - o v
V(V, b) = {M eN | VIM = b} M3 A& AGViagv1 | | AGV2
the macromarking defined by = [y, -+, 7] andb = f
AGV2
[b1,- -+, br]. u | OO 00 |
The notion of macromarking occurs frequently when de- « o T o

scribing systems containing a known set of resources (e.g.,
parts, machines) whose actual conditions (e.g., exact lo-
cation of parts within the plant, state of a machine) is un- Figure 2:Layout of the automated manufacturing system.

known.
We make the following assumptions.

(A1) The structure of the neN = (P, T, Pre, Post) is
known, while the initial marking\/, is not.

(A2) The event occurrences (i.e., the transition firings) can
be observed.

(A3) The igitial markingM belongs to the macrornarking
V(V,b), i.e., it satisfies the equatidn” M, = b.

We also introduce the following notation.

Definition 4 (Set of w-consistent markings). After
the word w has been observed we define the set of
w—consistent markings as the set of all markings in which

the system may be given the observed behavior and the

initial marking, i.e., the sef(w) = {M € N™ | 3M, €
V(V,b), Mo[w)M}. ]

In [6] we provided a simple algorithm to compute the esti-
matey and the bound of each actual marking/ based

on the observation of a word of events and on the knowl-
edge of the initial macromarking(V, b).

Algorithm 5. (Marking Estimation with Event Obser-
vation and Initial Macromarking).

1. Let the current observed word be
w=¢ (the empty string).

2. Let the initial estimate be e,
with  p.(p) = min{M (p) | VT - M = b}.

3. Let the initial bound be B.=b—-VT
He-

4. Wait until a new transition, say t,
fires.

5. Update the estimate ty tO pl,, with
Mot (p) = max{p, (p), Pre(p,t)}.

6. Let i = pl, +C(1).

7. Let Byt =B, — VT (1, — pw)-

8. Goto 4. [ |

In simple words, if the currently observed wordusand
transitiont fires, the algorithm firstly updates the current
estimate fromu,, to u!,, adding the minimal number of
tokens required to enabte Secondly, the algorithm com-
putesy,,: as the marking obtained fropd,,, firing ¢.

Definition 6. Given an estimate and a bound3 com-
puted using Algorithm 5, the set dfu, B)-consistent
markingsis
def
)E{ MeN'|M>y,
V.M =VT.u+ B}

M, B 3)

The following important result provides a linear algebraic
characterization of (w).

Theorem 7 ([6]). Let us consider a net with initial macro-
markingV(V, b). Letw be an observed word, and, and

B,, be the corresponding estimate and bound computed
using the estimation Algorithm 5.

The set ofw-consistent markings coincides with the set of
(1w, Bw)-consistent markings, i.e.,

C(w) = M(H:w, Bw)~

3.1. A manufacturing example

We now apply the above methodology to a classical au-
tomated manufacturing system whose layout is shown in
Figure 2 and whose Petri net model is shown in Figure 3
(placesC1, C2, C3 and all connected arcs should be ig-
nored at first). This system is similar to the one described
in [4].



1 a1, — 20

S22 M =20
Ms + Masz =1
Me+ Moy =1
M+ Mys =1
Moz + M3zs =1

M3+ My + Mys + Mag =1
Mg + M + Mag =1
Mg + Mg + M3z =8

We assume that the above set of P-invariants coincides
with the macromarking, thus

b=[2014111111111118".

Note that if the number of P—invariants is too high to be
taken into account, we can only "keep a subset of it".

Now, assume that the initial marking is that shown in Fig-
ure 3, namely,

Mo(p1) =19

Mo (p14) = 14

My(ps2) =8
Figure 3: Petri net model of the manufacturing system in  Mo(pi) =0 i =2,...,10,12,13,15,...,22,25
Figure 2. Mo(p:) =1 1 =11,23,24,26,...,31,33,34

In accordance to Step 2 of Algorithm 5, the initial value
of the estimate is

pe(pra) =6
pe(pi) =0 714

while the initial bound is

. . _ B.=[2014111111111118]T.
The plant consists of five machines (M1 to M5), four

robots (R1 to R4), a finite capacity buffer B, two inputs of Assume that transitiot» fires, i.e., the observed word is
raw parts (11 and 12) of typel and type2 respectively, two = ¢,,.
AGV systems (AGV1 and AGV2), and finally two outputs In accordance to Step 5 of Algorithm 5 the previous mark-

(01 qnd 02) for the processed parts. The plant producegng estimate is firstly updated {g where
two different types of products from two types of raw ma-

terials. An unlimited source of raw parts is assumed. It is pL(p1a) =6
supposed that there are 20 pallets for each type of product. pt(pi)=1 4=11,29
The Petri net model is shown in Figure 3. This net has pe(pi) =0 17 11,14,29

m = 34 places anch = 23 transitions. The marking | simple words this means that if transitiop has fired,

of placepss, the co-buffer, represents the number of free hen at least one token should be contained in its input
buffer slots, while the marking of places andps rep- placesp,; andps before its firing.

resent respectively the number of typel and type2 parts

present in the buffer. There exist 14 circuits, each corre-
sponding to a P-invariant. If we assume that the initial
marking of the net is that in Figure 3, we have (here to oo (p1a) = 6

avoid a heavy notation we denote &§ the marking of po(p) =1  i=12,25
placep;) p(pi) =0 i #12,14,25

Then, (see Steps 7 and 8 of Algorithm 5) the marking es-
timateu,, and boundB,, are computed, where



B,=[191411011111011 8. Definition 8 ([7]). Given a GMEQ(L, k) and a set of con-
sistent markingg C N™, the firing of transitiort should

be prevented if and only if there exists a legal consistent
marking M such that the firing of from M leads to a
forbidden marking, i.e.,

Now, assume that transitions fires. In accordance to
Step 5 of Algorithm 5 the previous marking estimate is
updated tou.,. The only difference among,, and p!,

is in placepss: we know for sure that if transitiom, s

has fired, at least one token was containeg;inandpss 0 ifEAM)MecC, LT -M <k,
before its firing, but the presence of the tokerpin has f(t,0) = MM, (35) .M >_k:
already been detected after the firing of. 1 otherwise. ’ ’
Finally, (see Steps 7 and 8 of Algorithm 5) the marking es-
timatey,, and boundB,, are computed, withv = ¢15t;3, n
[ (pra) = 6 The computation of the control pattern for a givemay
fo(p) =1 i=13,29 be carried out looking for the existence of & {1,...,q}
fw(pi) =0 i #13,14,29 such that the following constraint set admits a solution:
B,=[1914110111110118]T. MeC (a)
LT M <k (b)
M > Pre(-,t) (¢)
4. CONTROL USING OBSERVERS M = MA4C(t) (d) (4)
[T M > k; (e)
In this section we show how the marking estimate con- M’ e N™ ()

structed with the formalism discussed in the previous sec-

tion can be used by a control agent to enforce a given spec!f system (4) admits a solution, there exists a consistent
ification on the plant behavior. marking M — constraint (a) — that is legal — constraint (b)

. . . — from which transitiort may fire — constraint (c) — yield-
We make several assumptions that are briefly discussed : , . :
here ing a marking)!’ — constraint (d) — that is not legal — con-

' straint (e) — because it hold]sT - M' > k;. Note that, as

a consequence of Theorem 7, constraint (a) is linear with

respect ta\/.

_ ) ~Note that the control pattern computed using an observer

e We consider a special type of state specifica- may he more restrictive than the optimal state feedback
tions calledgeneralized mutual exclusion constraints computed when the actual marking is known [7]. More-
(GMEC) that have been considered by various au- gyer, as shown in the following example, this may also

e We assume that the specification on the desired be-
havior is given as a set of legal markings

thors [5, 9, 13]. lead to a block.

Given an integer matriX, = [l; - - - [, with [; € Z™

and a vectok = [k1,--- , kg With k; € Z,aGMEC 4 1 A manufacturing example (continued)

(L, k) defines the set of legal markings= {M ¢

N™ | LT M < E}. Let us consider again the manufacturing example dis-

. . cussed in Subsection 3.1.
e The controller may disable transitions to prevent the To show h hi | o d "
plant from entering a forbidden marking, computing 1© ShoW now this net evolves in time under control let us

an appropriate control pattern. If the actual mark- assume the following timing structure is givei(t) = 5

ing M is known, the control pattern is a function of forallt & T'\ {ti2, t1a, tia, to1, 22, ts}, 0(1) = 1 for

M. However, when an observer is used in the control * € {t13,t1a, t22, t2s}, @ndd(t) = 2fort € {t1z, t1 }.

loop, only the set of consistent markingsC N™ is In this example the controller must enforce three specifi-
available to the controller and the control pattern be- cations:
comes a functiorf (¢,C) : T x 28" — {0,1}. If 9
f(t,C) = 0 thent is disabled by the controller, while ZZ@? M; <8 ()

if £(t,C) = 1itis enabled. D15 Mi <8 (b) (5)

Z?:Q + Z}iw M; <9 ()
o All transitions are controllable, i.e., can be disabled
by the controller. Note that if the initial marking is completely known, the
) . ___addition of the monitor placeS1, C2 andC3 ensures the
Thus the considered control scheme is that shown in Fig-gatisfaction of the linear inequality constraints (5) and the
ure 1.d. closed loop net s live (this may be easily proved following
The control lawf (¢, C) is defined as follows. the procedure in [3]).



19 0000000001002000000000110111111811
0 000000000000 600000000000000000000
201411111111111 8

t2 now=2

19 00000000001020000000001111211101811
0 000000000010 600000000001000000000
191411011111011 8

i tis now=3
19 0 000000000012000000000111111111801

0000000000001 600000000001000100000
191411011011011 8

i tia now=4
20 0000000000002000000000111111111811

1 000000000000 600000000001000100010
191411011011011 8

Figure 4:Reachability graph of the net in Figure 3 under
control when no deadlock recovery procedure is applied.

To= {ty,t1s}

To= {ty,ts}

To= {tyts}

To= {tyls}

f(t,C) = 1} as the subset of’ containing the tran-
sitions enabled by the controller, and IBY <7+ N
be theT’—induced subnet ofV. Then the actual (un-
known) markingM of the controlled netV is a dead-
lock marking for the uncontrolled nét’, i.e., it belongs
toC’ =C N My(N'). [ |

In [7] we proposed an automatic approach that tries to ex-
ploit the information that the net has timed out to recover
from this blocking condition and improve the estimate. Of
course this procedure may be effective only if the dead-
lock has been caused by the incomplete information about
the actual marking originated by the presence of the ob-
server in the closed loop.

5.1. Deadlock recovery

The deadlock recovery procedure we proposed in [7] con-
sists in recomputing the control pattern using appropriate

On the contrary, if the marking of the plant is not mea- constraints to capture the fact that the actual (unknown)

surable, an observer must be used in the control loop andmarking A/ belongs taM, (N') for the netN’ defined in
this leads to a deadlock. The closed loop behaviour is thatproposition 9.

shown in Figure 4 where the first line of each node con-

Algorithm 10. (Control Pattern Updating After Net

tains the real marking of the net, the second line ComamSTime-Out)

the actual estimate and the third line contains the actual

bound. Note that in the same figure the variatbdey de-

notes the actual value of time and, for each marking, the

setT,, = {t € T | f(t,C) = 0} is the set of transitions

disabled by the controller.

After the sequence = t15t13t14 has fired, only two tran-

sitionst¢; andt;s are enabled in the net. The controller
prevents the firing of both transitions even if their firing
is perfectly legal and the net reaches a deadlock. This is
due to the fact that there exists at least one marking in
C(t12t13t14) that would produce the violation of one of

the controller specifications if either transition or 15
fires. In particular, the firing of; may (potentially) vio-
late specifications (a-c), while the firing @ may violate

specifications (b-c).

5. RECOVERY AND ESTIMATE UPDATE AFTER

NET TIME-OUT

Given a netN = (P, T, Pre, Post) controlled using an
observer, le: and B be the current value of estimate and
bound, and defin€ = M(u, B). Assume that the com-
puted control patterif(-, C) has led the net to a time-out.
We can update the control pattern using the following pro-
cedure.

Let ¢ = 0 and define fo(-)=f(-,C) as
the initial control pattern.

2. Let T, ={teT] fi(t) =1} be the set of
transitions enabled by the
current control pattern, and let
N; <7, N be the net obtained by N
removing all transitions not in T;.

3. Update the control pattern to fir1 =
9(fi), where

9(f) (0N My(N)). (6)

Let us suppose that, although we have no exact informa- 4- If ~ fix1 = fi THEN exit:  the deadlock

tion on the timing structure of the net, we can be sure
that the net is blocked if a sufficiently long time has

recovery procedure has failed.

Wait until

elapsed without observing any event occurrence. Such is

the case if we know that all transition delays are such that

0(t) < Amax, Vt € T. If atime greater thar .. elapses
without observing any firing, we say thiie net has timed

out

Proposition 9 ([7]). Assume that the netN =

(P, T, Pre, Post) controlled with the control pattern

f(-,C) has timed out. Let us defin® = {t € T |

(& EITHER a transition fires and
THEN exit: the net has recov-
ered
from the deadlock

() OR a new net time-out occurs
and THEN let i = ¢+ 1 and go to
2. |



Note that the operatay : {0,1}" — {0,1}™ defined by
(6) is a function off; becauseV; is defined using;.

In this algorithm the knowledge that a time-out has oc-
curred is used to restrict the set of consistent markings

and construct a new control pattern (step 3) that is at least

as permissive as the previous one [7]. If the new con-
trol pattern is still blocking and a new time-out occurs the
procedure is repeated until either the net recovers from
deadlock, or until we cannot update the control pattern
any more and the procedure fails.

Note that in [7] we proved that Algorithm 10 always ter-
minates in a finite number of steps.

In [7] we also provided an important characterization of

CT+1 = M(,ulm Bw) n Mb(NT)

M(p*, B*)

Figure 5: Generic inclusion relationship among sets
M (o, Bw), M(p*, B*) and My (N3).

those cases in which the proposed procedure is able to

recover from a net time-out. More precisely, when the
macromarking is such that the vecteisare P-invariants,
we give a sufficient condition to ensure that the controlled
net will never time out. Moreover, we give a sufficient
condition to ensure that, even if a time-out may occur, Al-
gorithm 10 will always successfully recover the net from
a deadlock.

5.2. Improving the marking estimate

In this subsection, we discuss the possibility of using the
linear algebraic characterization above not only to recover
from a block, but to improve the marking estimate as well.

Assume that given an observed warda current estimate
1, and boundB,,, a blocking condition occurs, and that
afterz iterations of Algorithm 10 a newly enabled transi-
tion ¢ fires. At this point, before the firing df the set of
consistent markings 84 (i, Byw) N My(N;). This set
corresponds to the dark area in Figure 5.

We should keep this information when computing the new
set of consistent marking¥ wt) after the firing oft. Nev-
ertheless, this would destroy the framework that inspired
the algorithm for the marking estimate computation [6], in

the sense that the set of consistent markings would 100S&;,ns enabled by the control patterrifis, {t,

the structure given in Equation (3). Thus, we propose the
following alternative solution. For each plagge P we
solve an integer programming problem (IPP) of the form:

min M (p;)

s.t.

M e M(pw, Buw)
M € My(N,)

()

Now, we defineu* = [u} -+ uf,])T wherep} is the so-
lution of thei—th IPP and leB* = B, — VT (u* — p)
be the corresponding bound. We yseand B* as new
current values of the estimatg, and boundB,,. This is
equivalent to approximate the setwf-consistent mark-
ings after recovery, with the set

M, B*)={ MeN™|[M=pu,

vioM =vT o+ gy ©

This set is also shown in Figure 5: beind (11, By,) N
My(N) € M(u*, B*) € M(p, B.y) we may be los-
ing information, but nevertheless we can keep on with a
linear algebraic characterization of the set of consistent
markings in the simple form specified by Equation (3).

5.3. Numerical example

Let us consider again the manufacturing system in Sub-
section 4.1, where the use of an observer in the closed
loop may lead to a blocking condition.

In this subsection we show how the above deadlock pro-
cedure may be efficiently applied to the considered net. If
we assume that the initial marking is that in Figure 3 a
blocking condition occurs after the firing of the sequence
w = t1ot13t14. The corresponding value of the marking
M,, as well as that of the estimate, and boundB,,,
may be seen in Figure 4.

At this point, when a timeA,.. Striclty greater than
the maximum timing delay has elapsed\,(.x >
max;er 6(t)), we apply Algorithm 10 to update the con-
trol pattern. In particular, we have that the set of transi-
t15}, while

after only one iteration, we find out thit= f; = 1, i.e.,

all transitions become control enabled and the net has re-
covered from the observer induced deadlock. Finally, by
solvingm = 34 IPP, we may also improve the marking es-
timate. In particular, as shown in Figure 6, we reconstruct
the marking of placeg,r, ps4 and we detect the presence
of 9 tokens inpy4. Note that in Figure 6 the large grey
arrow has been used to highlight that no transition firing
has occurred, but the net has timed-out and the deadlock
recovery procedure has been applied.

6. USING TIMING INFORMATION FOR STATE
ESTIMATION



19 0000000001002000000000110111111811 — i i
0 000000000000 600000000000000000000  Tn= {t1,tis} The first type of events occurs when the flrlng ofa

201411111111111 8 transitiont is detected. In this case the marking esti-
i ti now=2 matey and boundB are updated following the esti-

19 0000000000102000000000111111101811 ) maﬂonalg_onthmm[e]. In this step the set of timed

0 000000000010 600000000001000000000  Tn= {ta,tis} out transitionsT;, may eventually be updated, re-

191411011111011 8 moving from this set all those transitionsuch that

*tnt* # (), i.e., those transitions that may have been

190 0000000000120000000001 11111111801 ¢ _ vy 4 4 enabled by the firing of.
0000000000001 600000000001000100000 n— 1HLHS,
191411011011011 8

tis now=3

— The second type of events occurs when a new transi-

i iy~ Now=4 tion times out. In this case the set of timed out transi-
20 0000000000002000000000111111111811 T _ 1y ¢ 4 tions is increased and we know that the actual mark-
1 000000000000 600000000001000100010 n~ 1S

ing must be such that the naf, <, N is dead-

191411011011011 8 locked, whereV,, is the subnet ofV induced by the

ﬂ NOW=4+ Ana set of the timed out transitions. We use this infor-
20 0000000000002000000000111111111811 mation to compute a new control pattern at least as
9090000000 900000000001010100011 Tn= U permissive as the current one. We also upgased
B solving for each place an IPP of the form given by
(7).

Figure 6:Reachability graph of the net in Figure 3 under
control when the deadlock recovery procedure proposed

in Section 5 is applied. Thus, at each instant of time, it is possible to partition the

set of transitiond” into three subsets:

o T, ={teT]| f(t,C) = 0} is the set of transitions
that arenot control enabledyiven the current set of

consistent markings.
In [7] we shown how the above procedure can be mod-

ified to incorporate available information on the timing  ® 7% is the set otontrol enabledransitions that have
structure of the net into the state estimation process. The  timed out A transitiont belongs to this set if during
approach is essentially based on the linear algebraic char-  the time interva[now — 6(¢), now] has continuously
acterization of deadlock markings given by the system of been control enabled and the marking of all its input
inequalities (1) that is used to restrict the setofonsis- placest has not increased during this same intetval
tent markings. In the following this procedure is called

) e T, is the set of those contrenabledtransitions that
time-outprocedure.

do not belong td;,.

To avoid repeating the formal steps of the algorithm, that

are given in [7], we limit here to present the main idea 1o jjystrate this procedure we apply it to the manufactur-
that Iegd to its formulation. Then, we illustrate it via a ing example already considered in the previous sections.
numerical example.

Assume that we start observing the net at timend that
transition ¢ is control enabled during the time interval
[7,7 + 4(t)]. Moreover, assume that the marking of the
input places of does not increase during the time interval
[7,7 + (t)]. If attimenow = 7 + 4(¢) transitiont does
not fire, we can be sure that the actual markidgs such
that—-M[t), or equivalentlyt is notmarkingenabled: we

6.1. Manufacturing example (continued)

The evolution of the net under control when the deadlock
recovery procedure using timing information is applied, is
reported in Figure 7. Note that in the same figure we have
also reported the sefs, andT,.

say that hastimed outat timenow. The initial node of the grqph is the same as in the previous
: . case and the set of transitions disabled by the controller is
We denote ag}, the set of timed out transitions. Ty = {t1,t15)
n — 9 .

At this point, if no transition fires we can invoke the time-
out procedure. The only difference with respect to Algo-
rithm 10 is that herd’; (see step 2 of Algorithm 10) is the
set of transitions that are control enablead that have
timed out.

Then, as in the previous case, this information can be I‘\Iote.that if the marking of some places®n has increased dur_lrjg
the time intervalr, 7 4+ §(¢)], we can only conclude that the transition

used to improve the marking _eStima.te- Thus, two types \yas not marking enabled at time but no conclusion can be drawn on
of events that modify the marking estimate may occur.  the marking enabling condition efat timer 4 &(¢).

Given the actual delays, the time to wait before either
applying the observer update procedure or the deadlock
recovery procedure, i§ = 1. In this case, after one

time unit has elapsed, no transition fires. In fact, none




among the transitions, s, t14, t22 andt,3, whose tim- 19 0000000001002000000000110111111811

. ; : bl T.= {tyt
ing delay is equal to 1, may actually fire, even if their ,3,005055055999 500000000000000000000  In {tutus}

firing is allowed by the controller. Thus, the deadlock ﬂ now=1 T~ {tistialton,to}
recovery procedure is applied. We define the negj

. . ... . 19 0000000000102000000000111111101811
obtained from/N' removing all transitions not iff;, = 0 000000000000 800000000000000100011  Tn= {l1,l15}
{t13, t14, t22,to3 }. Forallt € T we compute the new con- 201211011001111 8
trol patternf (t,C N M,(N,)) and we update the transi- i tp NOW=2  To= {tistalea e}
tion partitioning. In particular, we find out that bathand

S 190000000000012000000000111111111801 T.= {tutis)
t15 are still disabled bythe controller, thifs = {tl,tls}, 0 000000000010 800000000001000000011 n— 1HLHS,

whileT, = T'\ (T,,UT;,). Now, by solving 34 IPP we up- 201211011001011 8

date the previous marking estimate and bounds. Numeri- i tg  Now=3 T {tabala}
cal values are reported in Figure 7 where Iarge grey arrowSo 0000000000002000000000111111111811
have been used to highlight that the deadlock procedurgg 999299000001 800000000001000100001
has been applied because some transitions have timed-out,

but no transition has fired.

To= {tatus}h
i t, now=4  Tw= {tiztistteteo o}

i i i 20 0000000000002000000000111111111811
Now, when one more time unit has elapseql, trans_m@n 1 000000000000 800000000001000100011  Tn= {tntis}
fires and the observer update procedure is applied. Was1211011001011 8
uante the estimate and the bound as shown in FigL!re 7, 1 now=5 To= T\ {tytis}
while the control pattern keeps the same for all transitions

H 20 0000000000002000000000111111111811

t € T. Note that now, beindti3 N3, # 0, the set 1 000000000000 900000000001010100011  Tn= U
T;, is updated tdly, = {t14,t21,%22,t23}. Moreover, 191111010001011 8
T. = T\ (T, UT,), whereT, is the same as in the

previous step. Figure 7: Reachability graph of the net in Figure 3 un-
Then, after one more time urtit; fires, and after another der control when the deadlock recovery procedure using

time unitt,4 fires as well. The resulting marking estimate timing information is applied.
and bound are those reported in Figure 7, respectively in

the .fourth and fifth nodes._ o timal, in the sense that it is less permissive than or at most
Attime now = 5 no transition fires and the deadlock re- a5 permissive as the one computed using the observer [7].

covery procedure is invoked. The new control pattern is Note, however, that the control pattern computed using the
computed and all transitions become control enabled. Ther-gbserver is certainly safe, i.e., it ensures that the control

marking estimate is also updated. Detailed results are re-specifications are never violated.

ported in Figure 7. Similarly, if in (2) the constraints € N™ and § ¢

To conclude we may observe now the closed loop netre-(( 1}™ are relaxed inta\/ ¢ (R{)™ ands € [0,1]™,
covers from the deadlock after 5 time units. On the con- thjs yields a larger set of deadlock markings. In this case

trary, when we apply the procedure based on the net time-the proposed recovery procedures can still be applied but
out, the net recovers from the deadlock after more than 9the Computed control patterns are, again, possib|y Subop_

units of time. timal.

Thus, whenever necessary the control designer may take
8. LINEAR RELAXATION OF INTEGER PRO- advantage of the linear relaxation trade-off that allows one
GRAMMING to obtain a possibly suboptimal but computationally effi-

cient solution technique.

A drawback of the proposed procedures is that they re-As a final remark, it may also be possible to combine
quire to solve at each step a certain number of integerthese techniques using linear programming for the on-line
programming problems to compute the control pattern: in computation of the control patterns, and using integer pro-
some cases this may hinder the implementation of the ap-gramming only when applying the net time-out procedure.

proach on on-line controllers. This problem may be par- as an example, in the case of the Petri net system al-
tially solved by simply relaxing the integer programming yeady considered in this paper, one may verify that the
problems we consider into linear ones. on-line computation of the control patterns using the lin-
Assume that in constraint set (4) the constravftsM’ € ear relaxation of (4) always yield optimal solutions. How-
N™ are relaxed intd/, M’ € (Rj)™. Thisyields alarger  ever, when a net time-out occurs, the linear relaxation is
set of consistent markingsz (w) 2 C(w), i.e., we have  not optimal: the maximal permissive control pattern com-
arelaxed observe(R-observer) that is possibly less ac- puted using the linear relaxation of (2) disables, ¢15}
curate than the previously defined observer. The controland because of this the deadlock recovery procedure may
pattern computed using the R-observer is possibly subop-not work.



9. CONCLUSIONS

In this paper we have dealt with the problem of enforc-
ing a set of GMEC on a timed Petri net by a state feed-
back control under the assumption that the system state i
not measurable but can only be estimated. The use of th
marking estimate instead of the actual marking may lead
to a deadlock even if the controlled system is live. We

[9] Y. Li, W.M. Wonham, “Control of vector discrete-

event systems — part Il: controller synthesilEfEE
Trans. on Automatic ContrpMol. 39, No. 3, pp. 512—
531, 1994.

le] T. Murata, “Petri nets: properties, analysis and appli-

cations,”Proc. IEEE Vol. Proc. 77, N. 4, pp. 541-580,
1989.

propose two different solutions to this problem based on [11] J. Park, S.A. Reveliotis, “Deadlock avoidance in se-

a linear algebraic characterization of the deadlock mark-
ings. The first one is applicable when no information on

the timing structure of the net is available, the second one

can only be used when the timing structure of the net is
perfectly known.
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