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Abstract
In this paper we present a design procedure for semiactive sus-
pensions of road vehicles, where the shock absorber (damper)
uses magneto-rheological fluid instead of oil. We first derive
a target active control law that minimizes a quadratic perfor-
mance index and takes the form of a feedback control law.
Then, we approximate the target law by controlling the damper
coefficientf of the semiactive suspension. The nonlinear char-
acteristics force-velocity of the damper are used to approximate
the target law. To improve the efficiency of the proposed sys-
tem, we take into account the updating frequency of the coeffi-
cientf and compute the expected value off using a predictive
procedure.

1 Introduction
In this paper we apply a procedure for the design of a semi-
active suspension to the case of a suspension for road vehicles
with a magneto-rheological damper.
In a fully active suspension there are no passive elements,
such as dampers and springs. The interaction between vehicle
body and wheel is regulated by an actuator of variable length.
The actuator is usually hydraulically controlled and applies be-
tween body and wheel a force that represents the control action
generally determined with an optimization procedure.
Active suspensions [3, 8, 14] have better performance than pas-
sive suspensions with regard to comfort, road holding, and ride-
ability. However, active suspension systems are rather com-
plex, since they require several components such as actuators,
servovalves, high-pressure tanks for the control fluid, either
sensors for detecting the system state or appropriate system
state observers, etc. Moreover, the associated power, that must
be provided by the vehicle engine, may reach the order of sev-
eral 10 KW depending on the required performance. Thus,
these suspension systems have a very high cost.
As a viable alternative to a purely active suspension system, the
use of semiactive suspensions has been considered [1, 7, 9, 13].
A semiactive suspension consists of a spring and a damper but,
unlike a passive suspension, the value of the damper coefficient
f can be controlled and updated. In some type of suspensions,
but this case is not considered here, it may also be possible to
control the elastic constant of the spring.
A semiactive suspension is a valid engineering solution when
it can reasonably approximate the performance of the active
control. In fact, a semiactive suspension requires a low power
controller that can be easily realized at a lower cost than that of
a fully active one. In general, a semiactive suspension design
consists of two phases: (a) design a good active law,ut(·) to be
considered as a “target”; (b) choose at timet a suitable value

of the damper coefficientf(t) so that the control forceus(·)
generated by the suspension system approximates as close as
possible the target lawut(·).
In this paper the semiactive suspension system is designed us-
ing a shock absorber that uses magneto-rheological (MR) fluid
instead of oil. The magneto-rheological response of MR fluids
results from the polarization induced in suspended particles by
the application of an external field. This system presents sev-
eral advantages with respect to more conventional systems: it
has no moving parts other than the piston and rod itself; the
required power is very low, and the reaction time is very fast.
A real damper, as well as the magneto-rheological one, exhibits
a nonlinear behavior that can be described through a family of
nonlinear characteristics force-velocity, parameterized by con-
stant current values. These characteristics are used to approxi-
mate the target active law.
In the following we discuss in detail the two main phases in-
volved in the design of the semiactive suspension system.

Target active law

Thompson [14] was the first to explore the use of optimal con-
trol techniques to design an active law so as to minimize a per-
formance index of the formJ =

∫∞
0

(xT (t)Qx(t)+ru2(t))dt,
wherex(t) is the system state andu(t) the control force pro-
vided by the actuator at the time instantt. This design tech-
nique is called LQR [12] and has been used by many authors.
Its two main advantages are: a) the optimal solution can be
easily computed solving an algebraic Riccati equation; b) it
takes the form of a state feedback law with constant gains, i.e.,
u(t) = −Kx(t). Note, however, that in most cases the system
state is not directly accessible or measuring it is too expensive.
Thus, an asymptotic state observer needs to be used. This im-
plies that the real control law takes the formut(t) = −Kx̂(t)
wherex̂(t) denotes the system state estimate at the generic time
instantt.
In this paper we consider an original procedure for the design
of an asymptotic state observer firstly proposed by the authors
in [5]. Such a procedure well fits within the present application
whose main requirement is that of reconstructing the system
state when external disturbances are acting on it, while the ini-
tial state may always be assumed known.

Semiactive approximation

On the base of the previous analysis, we propose to choose as
target for the semiactive control lawus(·) the lawut(·). Every
∆t time units the controller should select on the base of the
current value of the suspension velocity, the new damper co-
efficientf using the nonlinear characteristics force-velocity of
the damper. The new value off is chosen so as to minimize the
quadratic difference among the semiactive and the target active
control force. The value of∆t cannot be chosen arbitrarily,
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Figure 1: Scheme of two degree-of-freedom suspension: (a)
active suspension; (b) semiactive suspension.

but its lower bound is imposed by the physical limits on the
updating frequency of the damper coefficientf . In the case of
the MR damper the updating frequency may take values of the
order of500 Hz.
In this paper we improve the efficiency of the resulting sus-
pension system taking into account the time∆t required to
updatef . More precisely, the new value off at the generic
time instantt is selected so as to minimize the quadratic dif-
ference(ut(t + ∆t)− us(t + ∆t))2. In such a way, as proved
via various numerical simulations, we are able to compensate
the delay on the updating off , thus producing a significant im-
provement on the system behavior, that is evaluated in terms of
the performance indexJ [11].
Note that this approach has been possible thanks to the effi-
ciency of the proposed state observer [5] that also provides a
good estimate of the system state derivatives.
Different simulations have been carried out, considering the ef-
fect of input disturbances caused by the road profile and the
effect of non–null initial conditions on the state. The results
of these simulations show that the semiactive suspension per-
forms reasonably well, and is a good approximation of the tar-
get active suspension, while it introduces significant improve-
ments with respect to a completely passive suspension [4].
Note that in all numerical simulations we considered a real
existing damper, theCARRERATM MagnetoShockTM , whose
physical characteristics are reported in the CARRERA web site
[2]. The main drawback of this damper, according to the sim-
ulation results shown in section 5, is not due to the updating
frequency (that does not pose in practice any limitation) but
lies in the fact that even with a null magnetic field the damper
coefficient is often too high.

2 Dynamical model of the suspension system
Let us now consider the completely active suspension system
with two degrees of freedom schematized in Figure 1.a. We
used the following notation:M1 is the equivalent unsprung
mass consisting of the wheel and its moving parts;M2 is the
sprung mass, i.e., the part of the whole body mass and the load
mass pertaining to only one wheel;λt is the elastic constant
of the tire, whose damping characteristics have been neglected.
The state componentx1(t) is the deformation of the suspension
with respect to (wrt) the static equilibrium configuration, taken
as positive when elongating;x2(t) is the vertical absolute ve-
locity of the sprung massM2; x3(t) is the deformation of the
tire wrt the static equilibrium configuration, taken as positive
when elongating (under the assumption of flat road surface, this
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Figure 2: TheCARRERATM MagnetoShockTM (a) and a
scheme of its internal structure (b).

is also the deformation of the tire);x4(t) is the vertical abso-
lute velocity of the unsprung massM1; u(t) is the control force
produced by the actuator;w(t) is the function representing the
disturbance. It coincides with the absolute vertical velocity of
the point of contact of the tire with the road.
It is readily shown that the state variable mathematical model
of the system under study is given by [3]

ẋ(t) = Ax(t) + Bu(t) + Lw(t) (1)

where x(t) = [x1(t), x2(t), x3(t), x4(t)]T is the state,
whereas the constant matricesA, B andL have the follow-
ing structure:

A =




0 1 0 −1
0 0 0 0
0 0 0 1
0 0 −λt/M1 0


 , B =




0
1/M2

0
−1/M1


 ,

L = [ 0 0 −1 0 ]T .

Now, let us consider Figure 1.b that represents a conventional
semiactive suspension composed of a spring, whose character-
istics force-deformation is nonlinear, and a damper with adap-
tive characteristic coefficientf = f(t).
The effect of this suspension is equivalent to that of a control
forceus(t) = −[λs f(t) 0 − f(t)]x(t).
Note that, asf may vary so as to best approximate the active
control force,us(t) is both a function off and ofx(t). It is
immediate to verify that the state variable mathematical model
of the semiactive suspension is still given by equation (1) where
u(t) is replaced byus(t).

3 The magneto-rheological damper
In this paper we consider a shock absorber (damper) that uses
Magneto-Rheological (MR) fluid instead of oil. In particular,
we refer to a real existing damper shown in Figure 2.a, the
CARRERATM MagnetoShockTM , whose physical characteris-
tics are given in [2].
The MR fluid is basically composed of micron sized parti-
cles of iron suspended in an oil base. The magnetorheologi-
cal response of MR fluids results from the polarization induced
in suspended particles by the application of an external field.
The interaction between the resulting induced bipoles causes
the particles to form columnar structures, parallel to the ap-
plied field. These chain-like structures restrict the motion of
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Figure 3: The nonlinear characteristics of the MR damper.

the fluid, thereby increasing the viscous characteristics of the
suspension. The mechanical energy needed to yield the mi-
crostructure increases as the applied field increases resulting
in a field dependent yield stress. In the absence of an applied
field, MR fluids exhibit Newtonian-like behavior [10].
The internal structure of the damper is sketched in Figure 2.b.
The piston contains an annular orifice, through which the MR
fluid passes, and an electromagnet. The controller varies the
magnetic field of the electromagnet and the damping force
varies proportionally. The MagnetoShockTM has no moving
parts (like valves, spring, etc.) other than the piston and rod
itself.
The power required is very low (on the average,3 W per shock)
and the reaction time is very fast, usually less than2 millisec-
onds. In its simplest form the damping force of the shock can
be easily adjusted. It is capable of updating the damping force
500 times/second to each shock.
Figure 3 shows the nonlinear (static) characteristics force-
velocity of the considered damper at different constant current
values (in this figure, following a usual convention, a positive
force corresponds to a positive velocity of deformation).
As we have anticipated in the introduction, on the basis of the
simulation results discussed in section 5, the main drawback
of this damper is not due to the updating frequency (that does
not pose in practice any limitation) but lies in the fact that even
with a null magnetic field the damper coefficient is too high. To
improve the damper performance it is necessary to have char-
acteristic curves closer to the x axis than the one labelled ”1”
in Figure 3.

4 Semiactive suspension design
In this section we first discuss how the target active control law
has been determined. Then we show how such a control law,
that requires an actuator, may be approximated by a semiac-
tive suspension, whose varying parameter is the characteristic
coefficient of the damperf .

4.1 Target active control law

The design of the active suspension requires determining a suit-
able control lawu(·) for system (1). To this end, we first deter-
mine the control lawu(·) that minimizes a performance index

of the form

J =
∫ ∞

0

(xT (t)Qx(t) + ru2(t))dt

whereQ is positive semidefinite andr > 0. As well known
from the literature [12], the solution of this problem can be eas-
ily computed by simply solving an algebraic Riccati equation,
and takes the form of a feedback control law

u(t) = −Kx(t).

Obviously, when the system state is not directly measured, but
is reconstructed via an asymptotic observer, the above control
law is replaced by

ut(t) = −Kx̂(t)

wherex̂(t) is the state estimate.
In this paper the asymptotic state observer is designed using the
procedure we proposed in [5]. We assume that the suspension
and the tire deformation are measurable. This is equivalent to
choose

C =
[

1 0 0 0
0 0 1 0

]

for the output equationy(t) = Cx(t). This ensures the ob-
servability of the pair(A, C).
The considered asymptotic state observer has the structure of a
Luenberger observer, i.e., it takes the form

˙̂x(t) = Ax̂(t) + Bu(t) + K0(y(t)−Cx̂(t)). (2)

The gain matrixK0 is determined by simply minimizing the
H2 norm of the transfer function matrix

F (s) = [sI − (A−K0C)]−1L

between the estimate errore(t) = x(t)− x̂(t) and the external
disturbancew(t). In such a way we can be sure that we are
minimizing the effect of the disturbance on the error estimate.

4.2 Semiactive approximation

In this section we show how the active target control lawut

may be approximated using a MR semiactive suspension, tak-
ing into account the nonlinear characteristics force-velocity of
the MR damper (see Figure 3). These characteristics are pa-
rameterized by the values of the external current (the control
action) that enables to modify the viscosity of the fluid and
consequently the coefficient of the damper. The aim of the
controller is that of selecting the nonlinear characteristic that
minimizes the difference among the resulting semiactive con-
trol force and the target active control force. The nonlinear
characteristic force-deformation of the spring is also taken into
account.
Note that a certain time∆t, depending on the physical sys-
tem, is necessary to update the damper coefficient. In general
this time interval also depends on the required variation of the
force, and consequently on the required variation of the exter-
nal current. For small variations of the force the value of∆t is
approximately equal to2 ms, while for the largest admissible
variations it may reach values of the order of4 ms [2]. Thus,
if we assume∆t = 4 ms, we may be sure that within this time
interval we can move from any characteristic to any other one,
regardless of the particular characteristics at hand.
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Figure 4: The nonlinear characteristic of the suspension spring.

In previous works the delay time∆t has been neglected. This
implies that, if at the generic time instantt we select a certain
characteristic, then such a characteristic will only be reached at
the time instantt + ∆t, thus never allowingus(·) to be equal
to ut(·).
To overcome such a problem, in this paper our goal at time
t becomes that of minimizing the quadratic difference among
the semiactive control force and the target active control force
at the time instantt + ∆t, namely

(ut(t + ∆t)− us(t + ∆t))2.

The target control force has been chosen equal to

ut(t + ∆t) = −Kx̂(t + ∆t).

The semiactive control force may be written as:

us(t + ∆t) = −λs(x1(t + ∆t))x1(t + ∆t)−
f(t + ∆t)(x2(t + ∆t)− x4(t + ∆t))

' −λs(x̂1(t + ∆t))x̂1(t + ∆t)− Fd(t + ∆t)

where thêxi denotes the estimate of statexi generated by the
observer, whileFd(t + ∆t) = f(t + ∆t)(x̂2(t + ∆t)− x̂4(t +
∆t)) denotes the force due to the damper at the time instant
t + ∆t.
Thus, given the nonlinear characteristics of the damper, we re-
strict our attention to only those values of the force that can be
generated when the suspension velocity deformation is equal
to x̂2(t + ∆t)− x̂4(t + ∆t) ' ẋ1(t + ∆t). We select the char-
acteristic that generates the force that minimizes the quadratic
difference:

(−Kx̂(t + ∆t) + λs(x̂1(t + ∆t))x̂1(t + ∆t) + Fd(t + ∆t))2

and we denote itF ∗d (t+∆t). Finally, we can impose the chosen
characteristic selecting the corresponding value of the magne-
tization current.

5 Application example
In this section we discuss in detail the results of several simu-
lations. First, however, we explain the choices we have made
for the various parameters.
The proposed procedure has been applied to the quarter car
suspension shown in Figure 1, with values of the parame-
ters taken from [14]:M1 = 28.58Kg, M2 = 288.90Kg,
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Figure 5: Geometrical characteristics of the bump (a) and the
resulting disturbancew(t) = ẋ0(t) (b).

λt = 155900N/m. In the simulation we used the non linear
characteristic of the suspension spring suspension spring given
in Figure 4. Finally, the characteristics of the damper [2] are
those shown in Figure 3.
The matricesQ andr of the performance indexJ have been
taken from [14] and are the same as those already used in [4, 6]:
Q = diag{1, 0, 10, 0}, r = 0.8·10−9. Thus, the resulting feed-
back control matrix isK = [35355 4827 −21879 −1386]. For
the computation of the observer matrix we used the software
tools available in Matlab:fmins is the minimization proce-
dure andnormh2 computes theH2 norm. We determined

Ko =
[

176.1 1334.4 1.9 −145.7
51.3 426.1 1852.5 −5501.4

]T

.

Finally, we have taken∆t = 0.4 · 10−2s.
To show the performance of our semiactive suspension design,
we have simulated two different situations.

5.1 Simulation 1

In the first simulation we consider null initial conditions, i.e.,
x(0) = x̂(0) = 0 and assume that an external disturbance
is acting on the system, caused by a bump in the road profile.
The geometrical characteristics of the bump are shown in Fig-
ure 5.a.
We make the hypothesis that the velocity of the vehicle keeps
at a constant valueV during all time period of interest.
Moreover, we assume that the point of contact of the tire with
the road perfectly follows the road profile, or equivalently we
assume that no loss of contact between wheel and road may
occur. Finally, we assume that the damping of the tire is negli-
gible and its dynamical behaviour may be modelled through a
pure elastic constant.
Under these hypothesis the vertical positionx0 of the point of
contact of the tire with the road depends not only on the shape
of the bump, but also on the velocityV of the vehicle. The
value ofx0 wrt timet is shown in Figure 5.b where(tB−tA) =
(tD− tC) = H/V . As a consequence, the external disturbance
w(t), i.e., the vertical velocity of the point of contact of the tire
with the road, varies wrt time as shown in Figure 5.b.
The results of this simulation are shown in Figure 6, where we
have takenH = 25 mm,L = 50 mm, andV = 10 m/s.
Figure 6.a shows the road profilex0 (thin line) along with the
unsprung mass displacementx3 + x0 (thick line). Figure 6.b



shows the road profilex0 (thin line) along with the sprung mass
displacementx1 + x3 + x0 (thick line). It is possible to ob-
serve that the semiactive suspension well behaves in front of the
abrupt obstacle, smoothing the movement of the sprung mass.
Figure 6.c compares the sprung mass displacement in the case
of the semiactive suspension (thick line) and in the case of
a completely passive suspension (thin line), while Figure 6.d
compares the sprung mass displacement in the case of the semi-
active suspension (thick line) and in the case of the target active
suspension (thin line). As it can be noted, the behaviour of the
semiactive suspension is intermediate between that of the pas-
sive and active suspension.
Figure 6.e compares the target force (thin line) with the control
force produced by the semiactive suspension (thick line). We
can observe that the variation off guarantees a satisfactory
approximation.
Figure 6.f shows the values of the index denoting the current
nonlinear characteristic during the evolution of the semiactive
suspension.
Figures 6.g – l show the efficiency of the asymptotic state ob-
server used during simulations. We can observe that it pro-
vides a good evaluation of both the state variables and their
derivatives. As an example, in Figure 6.g we have reported the
evolution of the first state variablex1, while in Figure 6.h we
have reported the evolution of its error estimatee1 = x1 − x̂1.
Figure 6.i shows the evolution oḟx1, while ė1 = ẋ1 − ˙̂x1 is
reported in Figure 6.l.

5.2 Simulation 2

In the second simulation we consider an initial state different
from zero and no external disturbance. We assumex(0) =
[0.1 0 0.01 0]T . The results of this simulation are shown in
Figure 7.
In the upper part, plots (a)-(b) compare the unsprung and the
sprung mass displacement of the semiactive suspension with
that of a completely passive suspension and a purely active
one. Note that the spring of the passive suspension is the same
as that used in the semiactive suspension, while the nonlinear
characteristic of the damper is that one denoted with the num-
ber 7 in Figure 3. In particular, looking at plot (b) that shows
the most significant variable, we can conclude that the semi-
active system guarantees better performance than the passive
one [4]. In fact, in such a case the behaviour of the semiactive
suspension system in terms of the sprung mass displacement,
is quite similar to that obtained using the purely active system.
The lower left plot (c) compares the target force with the con-
trol force produced by the semiactive suspension.
Finally, plot (d) shows the values of the index denoting the cur-
rent nonlinear characteristic during the evolution of the semi-
active suspension.

Remark 1. We observed that: (a) the prediction of the ob-
server is always good for the given updating interval delay
∆t; (b) during most of the time the active characteristic is the
one labelled ”1” in Figure 3. The first observation leads us
to conclude that the updating frequency does not pose in prac-
tice any limitation. The second observation highlights the main
drawback of this damper: even with a null magnetic field the
damper coefficient is too high, and to improve the performance
it should be necessary to have characteristic curves closer to
the x axis than the one labelled ”1”.

6 Conclusions
This paper presents a two–phase design technique for magneto-
rheological semiactive suspensions.
The first phase of the project consists in the design of a target
active control law that has been obtained by solving an LQR
problem. The assumption of non-measurable state required the
introduction of an asymptotic state observer, that has been de-
signed using a procedure proposed by the authors in a previous
work.
In the second phase, this target law is approximated by con-
trolling the damper coefficient of the semiactive suspension. In
particular, we have taken into account the delay∆t required for
the updating off : we have assumed that the new value off is
chosen so as to minimize the difference between the target and
the semiactive control law at the time instantt + ∆t. In such a
way we can be sure that when the computed value off is really
imposed, then the semiactive force is as close as possible to the
target one. The nonlinear behaviour of both the damper and the
spring is also take into account to approximate the target active
control law.
Several numerical simulations have been carried out consider-
ing a real existing MR damper.
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Figure 6: The results of Simulation 1.
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