
Observer-based state-feedback control
of timed Petri nets with deadlock recovery:

theory and implementation

Francesco Basile
Dip. Ing. dell’Informazione e Ing. Elettrica, Università di Salerno

Via Ponte don Melillo, 84084 Fisciano (Salerno), Italy

Phone: +39-089-96-4400, Fax: +39-06-233 227 957, E-mail: fbasile@unisa.it

Alessandro Giua, Carla Seatzu
Dip. di Ing. Elettrica ed Elettronica, Università di Cagliari

Piazza d’Armi, 09123 Cagliari, Italy

Phone: +39-70-675 5751, Fax: +39-70-675 5782, E-mail: {giua,seatzu}@diee.unica.it

Abstract—When a timed Petri net is controlled using
an observer in the control loop, the use of crude mark-
ing estimates may reduce the system performance and
often leads to partial or total deadlocks. Here we show
an efficient procedure that, using the knowledge of tim-
ing delays associated to transitions, may improve the
marking estimate and allow the net to recover from
partial or total deadlocks. A software developed for
implementing this procedure is also described in the
paper.

I. Introduction

In this paper we deal with the issue of controlling
a Petri net whose marking cannot be measured. The
approach we follow in this paper is based on the classi-
cal system theory notion of a state-feedback controller
that uses an observer to estimate the plant state.

In previous works [GIU, 02] we have shown how it
is possible to estimate the actual marking of the net
based on the observation of a word of events (i.e., tran-
sition firings) and an algorithm was given for comput-
ing the marking estimate and error bound. In partic-
ular, the set C of markings consistent with an observed
word, i.e., the set of markings in which the system may
actually be given the observed word, can easily be de-
scribed in terms of the observer estimate and can be
characterized as the integer solutions of a linear con-
straint set. Other approaches to the design of Petri
net observers can also be found in [MED, 98], [RAM,
00].

In [GIU, 02] we have also shown how the estimate
generated by the observer may be used to design a
state feedback controller, that ensures that the con-
trolled system never enters a set of forbidden states.
We considered a special class of safeness specifications
that limit the weighted sum of markings in subsets of
places called generalized mutual exclusion constraints
(GMEC). The problem of controlling a Petri net un-
der incomplete information has also been discussed by
Zhang and Holloway [ZHA, 95].

Published in the Proc. of the Symp. on Discrete Events in
Industrial and Manufacturing Systems at the IMACS/IEEE
Multiconference CESA’ 2003 (Lille, France), July 2003.

Clearly, the use of marking estimates, as opposed
to the exact knowledge of the actual marking of the
plant, leads to a worse performance of the closed-loop
system. In fact, in a safeness problem the aim of the
controller is that of preventing all those transition fir-
ings that lead to a forbidden marking. If the actual
marking is not exactly known, but is only known to
belong to a given consistent set C, the controller must
forbid all transitions firing that from ”any” marking in
C may lead to a forbidden marking and the controller
becomes usually more restrictive as the cardinality of
this set increases. Because of this it may be the case
that the controlled system reaches a deadlock, i.e., a
blocking condition.

In two previous papers [BAS, 01], [BAS, 02] we have
shown that using siphon analysis, the set of deadlock
markings Mb of a structurally bounded net can be
characterized as the integer solution of a linear con-
straint set. (Similar techniques have also been used for
deadlock analysis and avoidance by Barkaoui [BAR,
95], [BAR, 97], Chu and Xie [XIE, 97], Ezpeleta et et
al. [EXP, 95], and Park and Reveliotis [PAR, 01].)

In [BAS, 02] we considered timed Petri nets, i.e.,
Petri nets where a delay is associated to each transi-
tion. The delay represents the time that must elapse
from the enabling of the transition until it fires. In
a timed net, let us assume that a transition has been
control enabled for a period of time longer that its
delay without firing (we say that the transition has
timed out): one can conclude that the transition was
not marking enabled during that same period. In this
case a procedure that uses this additional informa-
tion to improve the marking estimate and that we call
transition time-out (TTO) procedure, is invoked.

In Section 2 and Section 3 we recall the background
material on Petri nets and on their control using ob-
servers following the procedure presented in [BAS, 02].

The new contribution of this paper with respect to
[BAS, 02] is threefold.

Firstly, in Section 4 we describe the architecture of
a software based on the Xpress Optimizer C/C++ li-

brary that we have developed for the control of Petri
nets using observers. It consists of a timed Petri net
simulator, of a Petri net observer that computes the
estimate, of a controller that given the marking esti-
mate and bound computes a safe control pattern, and
finally of a module that implements the recovery pro-
cedure invoked whenever a transition times out.

Secondly, in Section 5 we use the software to solve
an application example that is different from that one
discussed in [BAS, 02].

Thirdly, in Section 6 we show with an example that
unlike the procedure presented in [BAS, 01] — that
could only be invoked when a total deadlock has oc-
cured — the TTO procedure based on the net time out
may allow one to detect partial deadlocks as well, and
in general it improves and accelerates the convergence
of the marking estimation procedure.

II. Background on Petri nets

In this section we recall the formalism used in the
paper. For more details on Petri nets we address to
[MUR, 89].

A Place/Transition net (P/T net) is a structure
N = (P, T, Pre, Post), where P is a set of m places;
T is a set of n transitions; Pre : P × T → N and
Post : P × T → N are the pre– and post– inci-
dence functions that specify the arcs; C = Post−Pre
is the incidence matrix. The preset and postset of
a node X ∈ P ∪ T are denoted •X and X• while
•X• =• X ∪X•.

A marking is a vector M : P → N that assigns to
each place of a P/T net a non–negative integer number
of tokens, represented by black dots. In the following
we denote M(p) the marking of place p.

A transition t is enabled at M if M ≥ Pre(· , t) and
may fire yielding the marking M ′ = M + C(· , t). We
write M [w〉 M ′ to denote that the enabled sequence
of transitions w may fire at M yielding M ′. Finally,
we denote w0 the sequence of null length.

A marking M is reachable in N from M0 iff there ex-
ists a firing sequence w such that M0 [w〉 M . The set
of all markings reachable from M0 defines the reacha-
bility set of 〈N, M0〉 and is denoted R(N, M0).

A nonnegative integer vector ~x 6= ~0m such that ~x T ·
C = ~0n

T is called a P–invariant (here ~0k denotes a
k × 1 vector of zeros).

A transition t is said to be live if for any M ∈
R(N, M0), there exists a sequence of transitions firable
from M which contains t. A Petri net is said to be
live if all transitions are live. A Petri net is said to
be deadlock–free if at least one transition is enabled at
every reachable marking.

A place p is said to be bounded if there exists a
constant k such that M(p) ≤ k for all M ∈ R(N, M0).
A net system is bounded if all places are bounded.
A net is structurally bounded if it is bounded for all
initial markings.

Definition 1: Given a net N = (P, T, Pre, Post),
and a subset T ′ ⊆ T of its transitions, we define
the T ′−induced subnet of N as the new net N ′ =
(P, T ′, P re′, Post′) where Pre′, Post′ are the restric-
tion of Pre, Post to T ′. The net N ′ can be thought
as obtained from N removing all transitions in T \T ′.
We also write N ′ ≺T ′ N . ¥

A deterministic timed P/T net is a pair (N, δ),
where N = (P, T, Pre, Post) is a standard P/T net,
and δ(t) : T → R+

0 , called release delay, assigns a
non-negative fixed firing duration to each transition.
A transition with a release delay equal to 0 is said to
be immediate. The value of δ(t) represents the time
that must elapse, starting from the time at which the
transition t is enabled, until it fires. We use single
server-semantics, i.e., no concurrent firings of the same
transition are possible.

Finally, we conclude this section recalling a linear
algebraic characterization of deadlock markings de-
rived in [BAS, 01] that will be used in the paper.
Such a characterization is valid for ordinary and struc-
turally bounded Petri nets. Note that similar linear
characterizations have been independently proposed
in [BAR, 97], [XIE, 97], [PAR, 01].

Theorem 2 ([BAS, 01]) Given a structurally bounded
net N with m places, a marking M ∈ Nm is a deadlock
marking if and only if there exists a vector ~s ∈ {0, 1}m

such that the following set of linear equations is satis-
fied:

D(N) :=

K1 · PreT · ~s ≥ PostT · ~s (a)
K2 · ~s + M ≤ K2 ·~1m (b)
~s + M ≥ ~1m (c)
PreT · ~s ≥ ~1 (d)
M ∈ Nm (e)
~s ∈ {0, 1}m (f)

(1)

where K1 = maxt∈T PostT (·, t) ·~1 and K2 is any pos-
itive integer greater or equal to the maximum struc-
tural bound of p, for any p ∈ P . ¥

By virtue of the linear characterization above, we
define the set of blocking markings of a net N as:

Mb(N) = {M | ∃ ~s ∈ {0, 1}m : (M,~s) ∈ D(N)}.
(2)

III. Control with marking estimation and
time-out

In this paper we assume that partial information
about the initial marking is available. In particular,
we assume that the initial marking is given in the form
of a macromarking.

Definition 3 ([GIU, 02]) The macromarking defined
by V ∈ Nm×r and ~b ∈ Nr is the set of markings
V(V,~b) = {M ∈ Nm | V T M = ~b}. ¥

The notion of macromarking occurs frequently when
describing systems containing a known set of resources
(e.g., parts, machines) whose actual conditions (e.g.,

exact location of parts within the plant, state of a
machine) is unknown.

We make the following assumptions.
A1) The structure of the net N = (P, T, Pre, Post) is
known, while the initial marking M0 is not.
A2) The event occurrences (i.e., the transition firings)
can be observed.
A3) The initial marking M0 belongs to the macro-
marking V(V,~b), i.e., it satisfies the equation V T M0 =
~b.

We also introduce the following notation.
Definition 4 ([GIU, 02]) After the word w has been

observed we define the set of w−consistent markings
as

C(w) = {M ∈ Nm | ∃M0 ∈ V(V,~b), M0[w〉M}.
i.e., as the set of all markings in which the system
may be, given the observed behaviour and the initial
marking. ¥

In a previous work [GIU, 02] was provided a simple
algorithm1 to compute the estimate µ and the bound
B of each actual marking M based on the observation
of a word of events and on the knowledge of the initial
macromarking V(V,~b).

The following important result was also proved.
Theorem 5 ([GIU, 02]) Let us consider a net with

initial macromarking V(V,~b). Let w be an observed
word, and µ and B be the corresponding estimate
and bound computed using the estimation algorithm
in [GIU, 02]. We define the set of (µ,B)-consistent
markings

M(µ, B) = {M ∈ Nn | M ≥ µ, V T ·M = V T ·µ+B}
(3)

and it holds that the set of w-consistent markings co-
incides with the set of (µ,B)-consistent markings, i.e.,
C(w) = M(µ, B). ¥

In [GIU, 02] we showed how the marking estimate
can be used by a control agent to enforce a given spec-
ification on the plant behaviour. In particular, we
made several assumptions that are briefly summarized
here.
• We considered a special type of state specifica-
tions called generalized mutual exclusion constraints
(GMEC) that have been considered by various authors
[GIU, 92], [LI, 94], [YAM, 96].
Given an integer matrix L = [~l1 · · ·~lq] with ~lj ∈ Zm

and a vector ~k = [k1, · · · , kq] with kj ∈ Z, a GMEC
(L,~k) defines the set of legal states

L = {M ∈ Nm | LT ·M ≤ ~k}.
• The controller may disable transitions to prevent
the plant from entering a forbidden marking, comput-
ing a control pattern f(t,M) : T × Nm → {0, 1}. If
f(t,M) = 0 then t is disabled by the controller at M .

1This algorithm is not reported here: it consists in steps 7.(a)-
(c) of the more general Algorithm 7 presented in the following.

• All transitions are controllable, i.e., can be disabled
by the controller.

When an observer is used in the control loop, the
actual marking M is not known and only the set
of consistent markings C ⊆ Nm is available to the
controller. The control law thus becomes a function
f(t, C) : T ×2N

m → {0, 1} and can be given as follows.
Definition 6: [GIU, 02] [Optimal state feedback

with observer] Given a GMEC (L,~k) and a set of
consistent markings C ⊆ Nm, the firing of transition t
should be prevented if and only if there exists a legal
consistent marking M such that the firing of t from
M leads to a forbidden marking, i.e.,

f(t, C) =

0 if (∃M) M ∈ C, LT ·M ≤ ~k,

M [t〉M ′, (∃j) ~lj ·M ′ > kj

1 otherwise.

The computation of the control pattern may be car-
ried out solving a number of linear integer program-
ming problems (IPP) [GIU, 02]. ¥

A. Control and estimate updating after transition
time-out

Now, let us recall a general approach to exploit
available information on the timing structure of the
net so as to obtain a better estimate of the set of
consistent markings. The approach has been firstly
proposed by the authors in [BAS, 02] and is essen-
tially based on the linear algebraic characterization of
deadlock markings given by the system of inequalities
(1).

Let us assume that a known delay δ(t) : T → R is
associated to each transition. We say that a transition
t has timed-out at time now if it has been control
enabled without firing during the time interval [now−
δ(t), now] and the marking of its input places •t has
not increased during this interval. Thus, we can be
sure that at time now the actual marking M is such
that ¬M [t〉, or equivalently t is not marking enabled.
The set of timed-out transitions is denoted Tto.

The procedure that we describe in Algorithm 7 con-
siders two types of events that modify the marking es-
timate. The first type of events occurs when the firing
of a transition t̂ is detected, while the second type of
events occurs when a new transition times-out.

Algorithm 7: Control and Estimate Updating
After Transition Time-Out

In this algorithm the variable now represents the
current value of the time. At each instant of time it is
possible to partition the set of transitions T into three
subsets:
Tn is the set of transitions that are not control en-
abled given the current set of consistent markings. A
transition t belongs to this set if f(t, C) = 0.
Tto is the set of control enabled transitions that have
timed-out. A transition t belongs to this set if during

the time interval [now − δ(t), now] has continuously
been control enabled and the marking of all its input
places •t has not increased during this same interval.
Te is the set of those control enabled transitions that
do not belong to Tto.

These are the steps of the algorithm.

1. Let µ = µw0 and B = Bw0 be the initial estimate
and bound, and let C = M(µw0, Bw0) be the initial
set of consistent markings.
2. Compute for all transitions t ∈ T the control pat-
tern f(t, C) and let

Tto = ∅,
Tn = {t ∈ T | f(t, C) = 0},
Te = {t ∈ T | f(t, C) = 1}.

3. Set for all t ∈ Te the current clock to ω(t) = δ(t).
4. Let δ = min{ω(t) | t ∈ Te} the time to wait (step
6).
5. Let τ = now and fold(t) = f(t, C) (keeps track of
the previous control pattern).
6. Wait until
(a) EITHER a transition t̂ fires and THEN go to 7
(b) OR now = τ + δ and THEN go to 8.

If one event of type (a) and one event of type (b) occur
simultaneously, then condition 6.a takes priority.
7. Activate the observer update procedure.
(a) Update the estimate to µ′ with µ′(p) =

max{µ(p), P re(p, t̂)}.
(b) Let the current estimate and bound be µ = µ′ +

C(·, t̂) and B = B − V T · (µ′ − µ).
(c) Let the current set of consistent markings be C =
M(µ, B).
(d) Compute for all transitions t ∈ T the control

pattern f(t, C) and let

Tto = Tto \ {t ∈ Tto | •t ∩ t̂ • 6= ∅},
Tn = {t ∈ T | f(t, C) = 0},
Te = {t ∈ T | f(t, C) = 1, t 6∈ Tto}.

(e) Update the clocks of enabled transitions.
IF a transition t ∈ Te satisfies at least one of the
following three conditions
i. fold(t) = 0 {newly control enabled}
ii. •t ∩ t̂ • 6= ∅ {may have become marking enabled

by the firing of t̂}
iii. t = t̂ {it is the transition that has just fired}

THEN ω(t) = δ(t) {reset the clock}
ELSE ω(t) = ω(t)− (now − τ).
(f) Go to 4.

8. Activate the time-out procedure.
(a) Let Tto = Tto ∪ {t ∈ Te | ω(t) = δ}.
(b) Let Nto ≺Tto N be the Tto−induced subnet N .
(c) Compute for all transitions t ∈ T the control

pattern f(t, C ∩Mb(Nto)) and let

Tn = {t ∈ T | f(t, C) = 0},
Te = {t ∈ T | f(t, C) = 1, t 6∈ Tto}.

(d) Improve the previous estimate µ. This simply
requires the solution of m linear integer programming
problems (IPP), one for each place pi ∈ P :

min M(pi)
s.t.
M ∈M(µ, B)
M ∈Mb(Nto)

(4)

Now, let µ∗ = [µ∗1 · · · µ∗m]T , where µ∗i is the solution
of the i–th IPP, and let B∗ = B − V T (µ∗ − µ).
(e) Update the estimate and bound to µ = µ∗ and

B = B∗, and compute the new set of consistent mark-
ings C = M(µ, B).
(f) If Te = ∅ exit (the net is deadlocked and the time-

out procedure fails to recover from the deadlock), else
goto 4. ¥

The main idea behind the algorithm is the follow-
ing. If Tto is the set of transitions that have timed out
at time now we can be sure that the actual marking
M must also belong to the set of blocking markings
for the net Nto obtained from N removing all transi-
tions not in Tto. Thus in step 8.c we can compute a
(possibly) less restrictive control pattern using as set
of consistent markings C ∩Mb(Nto).

This set, even if defined by a set of linear inequalities
— namely, the constraint set of IPP (4) — is not in
the simple form given by eq. (3) that is required in the
following step of the algorithm. Thus at step 8.d we
approximate it with a set of the form given by eq. (3)
computing new estimates and bounds.

IV. Simulation and implementation of the
procedure

In this section we focus on the main aspects of the
simulation or implementation of the procedure pre-
sented in the Algorithm 7.

We observe that two sets of IPP problems have to be
solved: the first one, is the set of optimization prob-
lems required for the computation of f(t, C) at step
2; the second one is the set of m optimization prob-
lems (4) required to improve the previous estimate µ
at step 8. In addition, at step 8 again, once that an
induced subnet Nto has been defined the computation
of K2 requires the solution of an LP problem. Thus,
a number of calls to an IPP/LP solver library is nec-
essary at each step of the algorithm. We have devel-
oped a simulator using the Xpress Optimizer C/C++
library.

As shown in Figure 1 we implement in C language
the controller algorithm. The main program of the
controller can communicate with an open timed PN
simulator or can be properly interfaced with the plant.
Every time an event is generated (i.e. a transition t̂

Fig. 1. A possible architecture for an observer based feedback-control of timed PN modeled plant.

fires) a new control pattern is sent to the plant or to
the simulator.

We found useful in its development to write a main
program and four procedures described in the follow-
ing:

1. [f ,Tn,Tto,Te]=control pattern(µ,B,L,k,ω = δ) -
this procedure refers to step 2, steps 7.c-d and steps
8.a-c; it first computes Tto (that is initially an empty
set) and after f(t, C) from the solution of an IPP
problem where C = M(µ,B) = {M ∈ Nn | M ≥
µ, V T ·M = V T ·µ+B} and Mb(Nto) = {M | ∃ ~s ∈
{0, 1}m : (M,~s) ∈ D(Nto)} in the case that the logical
condition ω = δ is true; finally, the sets Tn, Te are
computed.
2. [ω]=clock manager(ω,f ,Te,t̂) - this procedure up-
dates the clocks according to step 7.e after the firing
of a transition t̂.
3. [µ,B]=observer(µ,B,V ,t̂) - this procedure refers
to steps 7.a-b; it is invoked when a transition t̂ fires
so that the current estimate µ and bound B are
updated according to the macromarking constraint
V(V, V T M0).
4. [µ,B]=estimate improve(µ,B,V ,Tto) - this proce-
dure refers to steps 8.d-e; on the basis of Tto the cur-
rent estimate µ and bound B are updated by solving
m IPP problems (4) and then by imposing the macro-
marking constraint.

By using the four procedure above the main pro-
gram results to be the following.

[f]=main(w)

1. µ = µw0; B = Bw0;
2. [f ,Tn,Tto,Te]=control pattern(µw0,Bw0,L,k,0)

3. if t ∈ Te then ω(t) = δ(t).
4. δ = min{ω(t) | t ∈ Te} (* time to wait for a transi-
tion firing *)
5. τ = now; fold = f ; (* keeps track of the previous
control pattern *).
6. Wait until
(a) EITHER a transition t̂ fires and THEN go to 7
(b) OR now = τ + δ and THEN go to 8.

If one event of type (a) and one event of type (b) occur
simultaneously, then condition 6.a takes priority.
7. Activate the observer update procedure.
(a) [µ,B]=observer(µ,B,V ,t̂)
(b) [f ,Tn,Tto,Te]=control pattern(µ,B,L,k,0)
(c) [ω]=clock manager(ω,f ,Te,t̂)
(d) Goto 4

8. Activate the time-out procedure.
(a) [f ,Tn,Tto,Te]=control pattern(µ,B,L,k,1)
(b) [µ,B]=estimate improve(µ,B,V ,Tto)
(c) if Te = ∅ exit (* the net is deadlocked and

the time-out procedure fails to recover from the dead-
lock*) else goto 4 ¥

V. A manufacturing example

Now, let us apply the above methodology to a man-
ufacturing system whose Petri net model is shown in
Figure 2.

This assembly system, that is similar to the one de-
scribed in [PRO, 93], consists of five machines, M1,
M2, M3, M4 and M5 whose operational process is
modeled by the firing of transitions t1, t2, t3, t4 and
t5, respectively. Two principal types of operations are
involved in this manufacturing system: regular oper-
ations and assembly operations. Regular operations
(modeled by transitions t1, t2 and t5) just transform
a component of the intermediate product. Assembly

 p10

 p3 p4

 p5 p6

 p1

 p7

 p8 p9

 p2

 t6

 t7
 t1

 t4

 t2
 t3

 t5

 p11 p12

 6

 3

 2

 5

 2

 1

 3

Fig. 2. Petri net model of the assembly system

operations (modeled by transitions t3 and t4) put com-
ponents together to obtain a more complex component
of a final product or the final product itself. Note that
this model uses transitions (t6 and t7) which do not
represent operations but the beginning of the manu-
facturing of components which are required to assem-
ble a more complex component or the final product.
In this example there are two manufacturing levels,
the primary one, performed by M3, leads to finite
product, the secondary one, performed by M4, leads
to semi–finished (in–working) product.

The markings of places p1 and p2 represent the num-
ber of assembly servers for t4 and t3 respectively. The
marking of places p3, p5, and p9 represent the avail-
ability of parts to be processed (raw materials), while
the marking of places p4, p6, p7 and p8 represent the
availability of semi–finished products. Places p11 and
p12 ensure that machines t1 and t2 work alternatively.

The Petri net model in Figure 2 is a strongly con-
nected event graph with m = |P| = 12 and n =
|T| = 7. There exist ten elementary circuits, that
correspond to an equal number of P-invariants. If we
assume that the initial marking of the net is M0 =
[3 4 1 0 1 0 0 1 0 0 0 1]T , we have (here to avoid a
heavy notation we denote as Mi the marking of place
pi)

M2 + M4 + M5 + M7 + M10 + M12 = 6 (1)
M2 + M3 + M6 + M7 + M10 + M11 = 5 (2)
M2 + M5 + M6 + M7 + M10 = 5 (3)
M2 + M3 + M4 + M7 + M10 = 5 (4)
M2 + M8 + M9 = 5 (5)
M1 + M4 + M5 + M12 = 5 (6)
M1 + M3 + M6 + M11 = 4 (7)
M1 + M5 + M6 = 4 (8)
M1 + M3 + M4 = 4 (9)
M11 + M12 = 1 (10)

(5)
We assume that the above set of P-invariants co-
incides with the macromarking, thus Bw0 = ~b =
[6 5 5 5 5 5 5 4 4 4 1]T .

Moreover, we assume that the controller must en-
force two specifications:

{
M3 + M5 ≤ 3 (a)
M9 ≤ 3. (b) (6)

The first specification requires that at most 3 raw
parts may be simultaneously waiting to be processed
by either machine M1 or M2. The second specifica-
tion requires that at most 3 raw parts may be waiting
to be processed by machine M5.

Finally, we assume that the delay times associated
to transitions are those reported in Figure 2.

Note that the untimed version of this Petri net sys-
tem has already been considered by the same authors
in [BAS, 01].

If the marking of the net is measurable, then the
controlled net is live, as it can be verified by reacha-
bility analysis. On the contrary, if the marking of the
plant is not measurable, an observer must be used in
the control loop and, as shown in [BAS, 01], this may
even lead the closed loop net to a deadlock.

In this paper we examine in detail the closed loop
behaviour of the timed Petri net system in Figure 2
assuming that the TTO procedure is applied. The
resulting evolution is represented in the reachabil-
ity graph in Figure 3 where each node is labeled
(M/µ/B). A thick arrows denotes a time-out and is
labeled by the corresponding set Tto. A thin arrow
denotes a transition firing.

At step 1 we define the initial estimate and bound.
At step 2 we compute for all transitions t ∈ T the con-
trol pattern f(t, C) and set Tn = {t6, t7}, Tto = ∅ and
Te = T \ Tn. In fact, the firing of t6 may potentially
violate specification (b), while the firing of t7 may po-
tentially violate specification (a). Then, we set up the
clock value of each transition in Te to its time delay.
Given the actual delays, the time-out to wait before
either applying the observer update procedure or the
deadlock recovery procedure, is δ = 1.

(3 4 1 0 1 0 0 1 0 0 0 1 / 0 0 0 0 0 0 0 0 0 0 0 0 / 6 5 5 5 5 5 4 4 4 1)

(3 4 1 0 1 0 0 1 0 0 0 1 / 0 0 0 0 0 0 0 0 0 0 0 0 / 6 5 5 5 5 5 4 4 4 1)

(3 4 0 1 1 0 0 1 0 0 1 0 / 0 0 0 1 0 0 0 0 0 0 1 0 / 5 4 5 4 5 4 3 4 3 0)

(3 4 0 1 1 0 0 1 0 0 1 0 / 0 0 0 1 1 0 0 1 0 0 1 0 / 4 4 4 4 4 3 3 3 3 0)

t1

(3 4 0 1 1 0 0 1 0 0 1 0 / 0 0 0 1 1 0 0 1 0 0 1 0 / 4 4 4 4 4 3 3 3 3 0)

(3 4 0 1 1 0 0 1 0 0 1 0 / 0 0 0 1 1 0 0 1 0 0 1 0 / 4 4 4 4 4 3 3 3 3 0)

t2

(3 4 0 1 0 1 0 1 0 0 0 1 / 0 0 0 1 0 1 0 1 0 0 0 1 / 4 4 4 4 4 3 3 3 3 0)

t4

(4 4 0 0 0 0 1 1 0 0 0 1 / 1 0 0 0 0 0 1 1 0 0 0 1 / 4 4 4 4 4 3 3 3 3 0)

(4 4 0 0 0 0 1 1 0 0 0 1 / 4 0 0 0 0 0 1 1 0 0 0 1 / 4 4 4 4 4 0 0 0 0 0)

t3

(4 5 0 0 0 0 0 0 0 0 0 1 / 4 1 0 0 0 0 0 0 0 0 0 1 / 4 4 4 4 4 0 0 0 0 0)

(4 5 0 0 0 0 0 0 0 0 0 1 / 4 1 0 0 0 0 0 0 0 0 0 1 / 4 4 4 4 4 0 0 0 0 0)

(4 5 0 0 0 0 0 0 0 0 0 1 / 4 5 0 0 0 0 0 0 0 0 0 1 / 0 0 0 0 0 0 0 0 0 0)

now = 1

now = 2

now = 2

now = 3

now = 4

now = 7

now = 8

now = 9

now = 11

now = 12

now = 14

{ t4 }

{ t5 }

{ t3, t4, t5 }

{ t1, t3, t4, t5 }

{ t1, t4, t5 }

{ t1, t2, t4, t5, t7 }

{ t1, t2, t3, t4, t5, t7 }

Fig. 3. The evolution of the net in Figure 2 under control when
the TTO procedure is applied.

At time now = 1, no transition fires and t4 times
out. Thus the time-out procedure is activated (step 8).
This first implies the updating of Tto = ∅ to Tto =
{t4}. Then, we define the net Nto obtained from N
removing all transitions not in Tto. For all t ∈ T we
compute the new control pattern f(t, C) according to
step 8.c and we update the transition partitioning. In
particular, we find out that both t6 and t7 are still
disabled by the controller, thus Tn = {t6, t7}, while
Te = T \ (Tn ∪ Tto). Now, by solving m = 12 IPP we
compute the new marking estimate and bound and go
back to step 4 of the algorithm. In such a case, we find
out that the updated marking estimate and bound are
coincident with the previous ones. We compute the
new value δ and, as in the previous step, it holds that
δ = 1.

At time now = 2, when one more time unit has
elapsed, both conditions 6.a and 6.b are simultane-
ously satisfied because t1 fires and t5 times out. Con-
dition 6.a takes priority and transition t1 fires. The
observer update procedure is applied. We update
the estimate and bound as shown in Figure 3, while
the control pattern keeps the same for all transitions
t ∈ T . Note that the firing of t1 increases the token
content of place p4 that is an imput place for t4: thus

p1

p2p4

p3

p5

t1t2t4 t31 6 2 1

Fig. 4. An example showing how the knowledge of the timing
structure may be used to solve partial deadlocks.

t4 is removed from the set Tto at step 7.d. We com-
pute the new value δ and it holds that δ = 0 because
t5 is ready to time out.

Then, always at time now = 2, the time-out proce-
dure is activated for t5. This enables us to improve
the marking estimate as shown in Figure 3 and also to
make transition t6 control enabled. More precisely, at
time now = 2, after the TTO procedure has been
applied, it holds that Tn = {t7}, Tto = {t5} and
Te = T \ (Tn∪Tto). Once again, at step 4, we find out
that δ = 1.

At time now = 2, after one more time unit has
elapsed, no transition fires. Therefore, the time-out
procedure is invoked with Tto = {t3, t4, t5}, and so on.

As it can be seen in Figure 3, at the end of this
evolution path, at time now = 14, the marking is
completely reconstructed and no further deadlock may
occur.

Let us finally observe that, if we apply the procedure
presented in [BAS, 01], we are only able to completely
reconstruct the actual marking of the net after a time
interval that is greater than 21 time units.

VI. Partial deadlocks

In this section we want to highlight an important
feature of the procedure based on transition time-outs
(TTO), namely the fact that it may allow the net to
recover from partial deadlocks.

This is a significant improvement with respect to the
procedure previously proposed by the same authors in
[BAS, 02] that is based on net time-outs (NTO): in
fact the latter procedure does not use timing informa-
tion and can only be invoked when a total deadlock
has occurred.

Example 8: Let us consider the net system in Fig-
ure 4 with m = 5 places and n = 4 transitions.
There exist 3 circuits, each one corresponding to a
P-invariant. If the initial marking is that shown in
Figure 4 we have:

V(V,~b) =

M1 + M2 = 2
M3 + M4 = 2
M2 + M4 + M5 = 3.

Moreover, we assume that the controller must enforce
one specification:

M1 ≤ 1.

(0 2 1 0 1 \ 0 1 0 0 0 \ 1 2 2)

(1 1 2 0 2 \ 0 0 0 0 0 \ 2 2 3)

now=7

(0 2 0 1 0 \ 0 1 0 1 0 \ 1 1 1)

(0 2 1 0 1 \ 0 1 1 0 1 \ 1 1 1)

now=6

now=2
t2

t3

t4

t3
now=13

………

(1 1 2 0 2 \ 0 0 0 0 0 \ 2 2 3)

now=4

(1 1 2 0 2 \ 0 0 2 0 0 \ 2 0 3)

(0 2 2 0 1 \ 0 1 2 0 1 \ 1 0 1)

(0 2 2 0 1 \ 0 2 2 0 1\ 0 0 0)

now=2

now=1

t2

t1
now=5

………

(a) (b)

{ t4 }

{ t2, t4 }

Fig. 5. The behavior of the controlled net in Figure 4: (a)
without TTO procedure, (b) when the TTO procedure is
used.

Let us first consider the case in which no informa-
tion on the timing structure is available. In such a case
the net never times out and the behavior is that shown
in Figure 5.a where we can observe that a partial dead-
lock occurs. In fact, transition t2 may initially fire, but
in the sequel only t3 and t4 may alternately fire. On
the contrary, t1 is always disabled by the controller
because the marking of p1 has not been reconstructed
and its firing may potentially violate the specification.

Now, let us assume that the timing structure is
known and the TTO procedure is applied. In such
a case the partial deadlock can be solved and the net
evolution is that shown in Figure 5.b.

At first transition t1 is disabled by the controller,
i.e., Tn = {t1}, and δ = δ(t4) = 1.

At time now = 1 since no transition fires, the TTO
procedure is invoked with Tto = {t4}. The set Tn

keeps the same but the marking estimate is improved.
In particular, we reconstruct the marking of places p3

and p4. It now holds δ = δ(t2)− now = 1.
At time now = 2, after one more unit of time has

elapsed, transition t2 fires: once again we improve the
marking estimate but we still have that Tn = {t1}. It
now holds δ = δ(t2) = 2.

At time now = 4 the TTO procedure is applied
again with Tto = {t2, t4} and all transitions become
control enabled. Note that at this step, when we up-
date the marking estimate, we completely reconstruct
the actual marking of the net. ¥

VII. Conclusions

In this paper we have dealt with the problem of
enforcing a set of GMEC on a timed Petri net by a
state feedback control under the assumption that the
system state is not measurable but can only be esti-
mated. The use of an estimate instead of the actual
marking, may lead to a deadlock even if the controlled
system is live. In the case that the net system is struc-

turally bounded, one can use an algorithm that accel-
erates the state estimation and helps to recover from
observer induced deadlocks.

A software architecture implementing the observer-
controller and the recovery procedure has been pre-
sented and an application example has been discussed.
Finally we have also shown that this procedure may
allow the net to recover from partial deadlocks.

References

[BAR, 95] K. Barkaoui, I. ben Abdallah, “A deadlock preven-
tion method for a class of FMS,” 1995 IEEE Int. Conf. on
Systems, Man and Cybernetics, pp. 4119-4124, (Vancou-
ver, BC, Canada), Oct. 1995.

[BAR, 97] K. Barkaoui, A. Chaoui, B. Zouari, “Supervisory
control of discrete event systems using structure theory
of Petri nets ,” 1997 IEEE Int. Conf. on Systems, Man
and Cybernetics (Orlando, FL, USA), pp. 3750-3755, Oct.
1997.

[BAS, 01] F. Basile, P. Chiacchio, A. Giua, C. Seatzu, “Dead-
lock recovery of controlled Petri net models using ob-
servers,” 8th IEEE International Conference on Emerging
Technologies and Factory Automation (Antibes, France),
pp. 441–449, Oct. 2001.

[BAS, 02] F. Basile, A. Giua, C. Seatzu, “Petri net control us-
ing event observers and timing information,” IEEE 2002
Conference on Decision and Control (Las Vegas, NV,
USA), pp. 787–792, Dec. 2002.

[XIE, 97] F. Chu, X. Xie, “Deadlock analysis of Petri nets using
siphons and mathematical programming,” IEEE Trans. on
Robotics and Automation, Vol. 13, No. 6, pp. 793–804,
1997.

[EXP, 95] J. Ezpeleta, J.M. Colom, J. Martinez, “A Petri net
based deadlock prevention policy for flexible manufactur-
ing systems”, IEEE Trans. On Robotics and Automation,
Vol. 11, No. 2, pp. 173–184, 1995.

[GIU, 92] A. Giua, F. DiCesare. M. Silva, “Generalized mutual
exclusion constraints on nets with uncontrollable transi-
tions,” Proc. 1992 IEEE Int. Conf. on Systems, Man, and
Cybernetics (Chicago, IL, USA), pp. 974–979, Oct. 1992.

[GIU, 02] A. Giua, C. Seatzu, “Observability of
place/transition nets,” IEEE Trans. on Automatic
Control, Vol. 47, No. 9, pp. 1424–1437, Sep. 2002.

[LI, 94] Y. Li, W.M. Wonham, “Control of vector discrete-
event systems — part II: controller synthesis,” IEEE
Trans. on Automatic Control , Vol. 39, No. 3, pp. 512–531,
1994.

[MED, 98] M.E. Meda, A. Ramı́rez, A. Malo, “Identification
in discrete event systems,” Proc. IEEE Int. Conf. on Sys-
tems, Man and Cybernetics (San Diego, CA, USA), pp.
740–5, Oct. 1998.

[MUR, 89]] T. Murata, “Petri nets: properties, analysis and
applications,” Proc. IEEE, Vol. Proc. 77, N. 4, pp. 541–
580, Apr. 1989.

[PAR, 01] J. Park, S.A. Reveliotis, “Deadlock avoidance in se-
quential resource allocation systems with multiple resource
acquisitions and flexible routings,” IEEE Trans. on Auto-
matic Control , Vol. 46, No. 10, pp. 1572–1583, 2001.

[PRO, 93] Di Cesare, F., G. Harhalakis, J.M. Proth, M. Silva
and F.B. Vernadat, Practice of Petri nets in manufactur-
ing, Chapman and Hall, 1993.

[RAM, 00] A. Ramı́rez–Treviño, I. Rivera–Rangel, E. López–
Mellado, “Observer design for discrete event systems mod-
eled by interpreted Petri nets,” 2000 IEEE Int. Conf. on
Robotics and Automation (San Francisco, CA, USA) pp.
2871–2876, Apr. 2000.

[YAM, 96] K. Yamalidou, J.O. Moody, M.D. Lemmon, P.J.
Antsaklis, “Feedback control of Petri nets based on place
invariants,” Automatica, Vol. 32, No. 1, 1996.

[ZHA, 95] L. Zhang, L.E. Holloway, “Forbidden state avoidance
in controlled Petri nets under partial observation,” Proc.
33rd Allerton Conf. (Monticello, IL, USA), pp. 146–155,
Oct. 1995.

[DIC, 93] M.C. Zhou, F. DiCesare, Petri net synthesis for dis-
crete event control of manufacturing systems, Kluwer Ac.,
1993.

