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Abstract

We present a technique for estimating the marking of a
Petri net based on the observation of transition labels.
In particular, the main contribution of the paper consists
in deriving a methodology that can handle the case of
nondeterministic transitions, i.e., transitions that share
the same label. Under some technical assumptions, the
set of markings consistent with an observation can be
represented by a linear system with a fixed structure
that does not depend on the length of the observed word.
The validity of the proposed methodology is illustrated
in detail through a numerical example.

1 Introduction

This paper deals with the problem of estimating the
marking of a Place/Transition (P/T) net based on the
observation of transition firings. The problem of esti-
mating the state of a dynamic system is a fundamental
issue in system theory and the construction of state ob-
servers for time-driven systems is treated in most linear
systems textbooks. Although less popular in the case
of discrete—event systems, the issue of state estimation
under partial state observation has been discussed in the
literature. For systems represented as finite automata,
Ramadge [12] was the first to show how an observer could
be designed for a partially observed system. Caines et
al. [2] showed how it is possible to use the information
contained in the past sequence of observations (given as
a sequence of observation states and control inputs) to

compute the set of consistent states, while in [3] the ob-
server output is used to steer the state of the plant to a
desired terminal state. A similar approach was also used
by Kumar et al. [7] when defining observer based dy-
namic controllers in the framework of supervisory pred-

icate control problems. Ozveren and Willsky [10] pro-
posed an approach for building observers that allows one
to reconstruct the state of finite automata after a word
of bounded length has been observed, showing that an
observer may have an exponential number of states.
Let us define the set of states consistent with the observed
behavior as the states in which the system may actually
be given the observation. There are two main drawbacks
in the above mentioned automata based approaches to
the design of a discrete event observer. Firstly, the set
of consistent states must explicitly be enumerated. Sec-
ondly, to compute the set of consistent states at step k it
is not usually sufficient to know the new observation and
the set of consistent states at step k — 1, but it is neces-
sary to recompute this set as a function of all previous
observations.

Looking for more efficient approaches that do not re-
quire the enumeration of this set, we explored the possi-
bility of using Petri nets as discrete event models [5, 6].
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We showed that under the following three assumptions:
(A1) the net structure is known; (A2’) the initial mark-
ing is not known or is only known to belong to an initial
macromarking, i.e., a given linear convex set; (A3’) all
transition firings can be observed; it is possible to rep-
resent the set of consistent markings (i.e., the states of
the Petri net) as the solution of a linear system that has
a fixed structure which only depends on two parameters
(the estimate and the bound) that can be recursively
computed. Note that other authors [8] have also dis-
cussed the problem of estimating the marking of a Petri
net using a mix of transition firing and place observa-
tions.

In this paper, we further extend the approach of [5, 6]
relaxing what we felt was its major limitation, i.e., the
assumption (A3’) that all transition firings can be ob-
served. In fact, we assume that to each transition ¢ is
associated a label L(t) and two or more transitions may

have the same label. When t fires, only its label L(t)
is observed and this may introduce nondeterminism in
the observer, in the sense that the observed word is not
sufficient to reconstruct the transition firing and thus
the actual marking. Note, however, that in this paper
we restrict assumption (A2’) assuming that the initial
marking is perfectly known. In effect, this may not be
strictly necessary but we need it in this paper to simplify
the results we present.

In a first part of the paper, we show a rather simple
result: using the net state equation it is possible to rep-
resent the set of consistent markings as the solution of
a linear system that can be recursively computed, but
whose structure, unfortunately, is not fixed: it grows
linearly with the length of the observed word. A sim-
ilar approach that uses a logical formalism rather than
linear programming was also presented by Benasser [1].
This author has studied the possibility of defining the
set of markings reached firing a “partially specified” step
of transitions using logical formulas, without having to
enumerate this set.

In a second part of the paper, we propose a different
approach that, under some technical assumptions, al-
lows us to characterize the set of consistent markings
as the solution of a different linear system with a fixed
structure that depends on some parameters (the upper
bounds w’s) that can be recursively computed. In par-
ticular, we make some restrictions on the structure of
the labeling function and we assume that the same label
cannot be assigned to more than two transitions. More-
over, we assume that nondeterministic transitions (i.e.,
transitions whose label is also associated to other tran-
sitions) should also be contact free, i.e., if t and t' are
nondeterministic transitions the set of input and output
places of ¢ cannot intersect the set of input and output
places of t'. The validity of the proposed characteriza-
tion has been formally proved and is illustrated in detail
through a numerical example.
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2 Background on Petri nets

In this section we recall the formalism used in the paper.
For more details on Petri nets we address to [9)].

A Place/Transition net (P/T net) is a structure N =
(P, T, Pre, Post), where P is a set of m places; T is a set
of n transitions; Pre : PxT — Nand Post: PxT — N
are the pre— and post— incidence functions that specify
the arcs; C' = Post — Pre is the incidence matrix. The
preset and postset of a node X € PUT are denoted *X
and X*® while *X*® =* X U X°.

A marking is a vector M : P — N that assigns to each
place of a P/T net a non-negative integer number of
tokens, represented by black dots. We denote M (p) the
marking of place p. A P/T system or net system (N, M)
is a net N with an initial marking M.

A transition ¢ is enabled at M iff M > Pre(-,t) and may
fire yielding the marking M’ = M + C(-,t).

A labeling function L : T — FE assigns to each tran-
sition ¢ € T a symbol from a given alphabet E. Note
that the same label e € F may be associated to more
than one transition. Using the notation of [11] and [4]
we say that the labeling function is A-free. In the follow-
ing we say that a transition ¢ is nondeterministic if its
label is also associated to other transitions, otherwise a
transition ¢ is said to be deterministic. We also denote
T? the set of deterministic transitions and 7™ the set
of nondeterministic transitions. Clearly, T = T¢ U T™.
For simplicity of notation, we assume that the transition
enumeration is such that 7" = {t; | j = 1,---,n"}
and T4 = {t; | j = n"+1,--- ,n}, where n" = |T™].
Analogously, we say that an event e is deterministic if
there exists only one transition ¢ such that L(t) = e,
otherwise we say that the event e is nondeterministic.
Therefore, with no ambiguity on the notation, we may
write E = E*U E™.

We denote as T, the set of transitions labeled e, i.e, T, =
{t €T | L(t) = e}. Moreover, we denote as 3, € {0,1}"
the characteristic vector of Te, i.e., §.(i) = 1if L(t;) = e,
and 8. (i) = 0 otherwise.

We write M [o) M’ to denote that the enabled sequence
of transitions o may fire at M yielding M’. We denote
as w the word of events associated to the sequence o,
i.e., w = L(o). Moreover, we denote as og the sequence
of null length and wy the empty word. Finally, we use
the notation w; < w to denote the generic prefix of w of
length i < k, where k is the length of w. In particular,
for ¢ = 0, we have by definition the empty word, wy = €.
A marking M is reachable in (N, M) iff there exists a
firing sequence o such that My [o) M. The set of all
markings reachable from M, defines the reachability set
of (N, Myp) and is denoted R(N, Mp).

3 Problem statement

In this paper we deal with the problem of estimating the
marking of a net system (N, My) whose marking cannot
be directly observed. The following properties of the
system will be assumed.

(A1) The structure of the net N is known.

(A2) The initial marking Mj is known.

(A3) Labels associated to transition firings can be ob-
served.

After the word w has been observed, we define the set
C(w) of w-consistent markings as the set of all mark-
ings in which the system may be given the observed be-
haviour.

Definition 1. Given an observed word w, the set
of w-consistent markings is C(w) = {M € N™ | 3
a sequence of transitions o : My[o)M and L(o) = w}. W

a e b

Figure 1: Petri net system that can only be partially ob-
served

Our goal is that of providing a systematic and efficient
procedure to estimate the set of markings that are con-
sistent with an observed word.

Clearly, C(wg) = My and C(w) is a singleton if for all
e in w, T, is a singleton. On the contrary, the degree
of nondeterminism may increase as the cardinality of T
increases.

Finally, let us observe through a simple example, that the
cardinality of the set of consistent markings may either
increase or decrease as the length of the observed word
increases.

Example 2. Let us consider the Petri net system in
figure 1 where T¢ = {ts5,t5,t7} and T™ = {t1,t2,t3,t4}
More preCiSQIY7 Ta = {tlatZ}a Tb = {t37t4}, Tc = {t5}7
Td == {tg}, and Te = {t7}.

Clearly when no event has been observed, C(e) =

{lto101011)T} Let us first assume that the
event b is observed. Given the initial marking M,
either t3 or t4 may have been fired, thus C(b) =

{flloo11011)%,[10101002]7}.
Now, let a be the next observed event. Label a is
associated to transitions t; and ¢, and both transi-
tions are enabled at both markings in C(b). There-
fore, C(ba) = {0 10110117 [10010111]7%,
011010027,10100102]7}.
Now, if d is observed, we may be sure that neither
100101117 nor[10100102]7 in C(ba) may have
een reached because none of these markings enables ¢.
Thus, C(bad) = {[001110117,[0020100 27}
If b is observed again, both transitions ¢3 and ¢4 may
have fired from the first marking in C(bad), while only
transition ¢3 may have fired from the second marking.
Thus C(badb) = {[00021011]7,/00111002]7}.
Finally, if we observe the deterministic event ¢ we can
conclude that only the first marking in C(badb) is com-
patible with the last observation, thus the actual mark-
ing of the net is completely reconstructed and C(badbc) =

{[tooo2010]T}. [
4 Computation of the set of consistent markings

We first present a recursive algorithm strictly based on
the definition of the set of consistent markings C(w), then
we provide an algebraic characterization of C(w).

Algorithm 3.

1. Let C(wo) == M().

2. Let i = 0.

3. Wait until a new event e is observed.
4. Let i =1+ 1.

5. Let w; = w;_1e.

6. Let C(w;) = 0.

7. For all M € C(w;—1) do

For all ¢ such that M[t) and L(t) = e
compute M’ = M + C(-,t) and let C(w;)

= C(wl) UM’
8. Goto 3. ]
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Clearly, the main disadvantage of the above iterative al-
gorithm is that to compute the set of markings that are
consistent with an observed word w of cardinality k, we
preliminary need to compute the set of markings that
are consistent with all prefixes w; < w,i=1,--- ,k — 1.
A solution to this problem consists in using a linear alge-
braic characterization of the set of consistent markings.

Proposition 4. Let (N, M) be a net system and w =
e1, -+ ,ex be an observed word. The set of w-consistent
markings is given by:

C(w) = {M®*) ¢ N™|

1T .30 =1 i=1,---k (a)
5, -0 =1 i=1,---k (b
MG > pre. g i=1,-k (¢
MO =MD 0.0 =1,k (d)
7@ e {0,1}" i=1,---k} (e)

where M(© = M, and T is the n-dimensional column
vector of 1’s.

Proof: It follows from the definition of the set of
consistent markings. In fact, for any observed event e;,

we introduce an unknown vector &) of zeros and ones
(constraint (e)) representing the firing vector associated
to the observed event. Then, the first constraint (a)
imposes that when the event e; is observed, only one
transition has fired and the second constraint (b) states
that the label of that transition should be equal to the
observed event. Moreover, if a transition has fired, then
it should be enabled by at least one marking in the set
C(w;—1) (inequality (c)) and its firing brings to a new
marking that is given by constraint (d). O

Example 5. Let us consider again the net system de-
picted in fig. 1. Let us assume that the observed event
is b. By virtue of Proposition 4 we may write: C(b) =

(MM ¢ N8 [IT . (1) = 1, ogl) —&—04(11) =1, MO >
Pre-¢M, MWD = MO +C.0 71D € {0,1}7} where
M© is the initial marking. Now, let a be the next
observed event. Using Proposition 4 we may conclude
that C(ba) = {M® e N8 |IT .0 =1, o{V + 4l =
1, MO > pre.¢®», MO = pO 4 .70 1 =
{0, 1}7, 1T . 0_—’(1) — ]_’ ng) + O’éQ) — 1’ M(l) 2
Pre-3, M® =M® + .53, 72 c{0,1}7} W
This example clearly shows that, even if Proposition 4
enables us to directly describe the set of consistent mark-
ings without iterating on the sets of markings that are
consistent with the prefixes of the observed word, it still
presents a significant drawback. In fact, both the num-
ber of unknowns and the number of constraints increase
as the length of the observed word increases.

The main goal of this paper is that of investigating
whether it is possible to define the set of w-consistent
markings using a fixed (even if large) number of con-
straints. A general solution to this problem has not been
determined yet. But the wide variety of scenarios we
dealt with, enables us to conclude that this possibility is
mainly related to the degree of contact of nonderminis-
tic transitions and to the number of transitions with the
same label.

Now, we derive some restrictive assumptions under
which it is possible to prove that the set of consistent
markings may be expressed with a fixed number of con-
straints.

5 The contact-free case

In this section we assume that the following two condi-
tions are verified:

oy —
1:nn+1 t, thea \/ P +1i" tr1
PrOUt I:’r+10m
N\ B ", \
—0 IR Ty ﬁ

\\
w

Figure 2: The generic couple of nondeterministic transi-
tions ¢, and t,41.

(A4) for each label e € E there are at most two transi-
tions such that L(t) = e, or equivalently, |T.| < 2;

EA5) nondeterministic transitions are contact free, i.e.,
or any two nondeterministic transitions ¢; and t;, it
holds that *tf N *t7 = (.

Note that, given assumption (A4), we always assume
that the transition enumeration is such that L(t.) =
L(ty41) forr=1,3,---n™ — 1.

In the following we formally prove that under the above
assumptions, a fixed number of constraints, not depend-
ing on the length of the observed word w, may be used to
describe the set of w consistent markings. In particular,
we formally prove that:

Clw) = {M € N™| M = Mo+ C5,

op < Uy T:LZ;"'?“” (CL)
O-T+Ur+1:nr T:1a37"' ’nn_l (b) (1)
Og=n g=n"+1,---,n (c)

Fe N} (d)

is the set of w consistent markings where the upper
bounds u,’s are appropriately computed and n, (ng) de-
notes the number of times a nondeterministic (determin-
istic) event L(t,) (L(t,)) has been observed.

Note that any vector & satisfying constraints (a) to (d)
of eq. (1) represents an admissible firing vector associ-
ated to a sequence of transitions ¢ that may have fired
and whose labeling is equal to the observed word w, i.e.,
L(o) = w.

For any couple of nondeterministic transitions ¢, and
t,+1 we have 3 constraints: for each transition we need
an upper bound on the number of times it may have
fired, plus an additional constraint keeping into account
the total number of times the corresponding nondeter-
ministic event L(t,) = L(t,4+1) has been observed (n,.).
On the contrary, for each deterministic transition ¢, we
only need one constraint, because we exactly know how
many times it has fired.

Looking at hypothesis (A4) and (A5) we may conclude
that for each couple of nondeterministic transitions, the
nets we are dealing with contain ”nondeterministic” sub-
nets whose structure is like that one shown in fig. 2,
where weights associated to arcs are not required to be
ordinary.

In the following page we have reported the algorithm
that enables us to compute the upper bounds u,.’s used
in eq. (1).

The main idea behind this algorithm is that of evaluat-
ing the upper bounds u,.’s on the base of the knowledge
of two parameters associated to nondeterministic transi-
tions. The first one is 2! that represents the enabling
degree of transition ¢, assuming that it has never fired.
This parameter is used to update the upper bound wu,
when one of the following two cases occur.

328
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Algorithm 6 (Upper bounds computatlon)
1. Let u,, =0 forall r =1,-
2. Letﬂq—Oforallq—n +1
3. Wait until an event e is observed.
4. If e € B9, then
let t, be such that t, € T and L(t,) = e
ng =mng+1
if t, € (°*T™)*®, then

for every r € {1,...,n"} such that ¢, € (°t,)®, do
i | min MO( )+ thgmed Ng Post(p, tq) — thep°de ng - Pre(p,tq)
T | petts Pre(p,t,)
uy = min(u,., 2")
endfor
endif
if t, € (17*)°*, then
for every r € {1,...,n"} such that ¢, €°® (°¢,), do
Jout _ | yas EtEP'ﬂTd ng - Pre(p,ty) — Mo(p) Zte-med ng - Post(p, tq)
T | pets Post(p,t,)
ur = min(uz, n, — 22"") where 7 =r + 1 if r is odd, else 7 =1 — 1
endfor

endif
5. If e € E™ then
for every r such that L(t,) = e do

o { ] {MO( P) + 24, o prra Ng - Post(p, tq
2 = | min

" pE*t, Pre(p,t
u, = min(u, + 1, 227)
endfor
endif
6. Goto 3.

)r) >t,epsrra g - Pre(p,tq )} J

— If a deterministic transition ¢, fires and ¢, € (*¢,)*

(see tpny1, tynio and t,n3 in fig. 2), the value of 2"
may decrease because we know for sure that some to-
ken(s) in P}™ were still available to enable t,. Thus, by

A
definition of 2", we may conclude that ¢, may have fired
at most 2" times.

— A nondeterministic event e is observed and ¢, is a
transition whose label is e. In such a case, the value
of zi" keeps the same and by definition of 2z we may

conclude that ¢, may have fired at most 2" times.

The second parameter used to compute the upper
bounds is z2%. Tt is a measure of the number of tokens
that have been removed from the output places to t, by
firing deterministic transitions exiting P°%' (see tpn 4,

tanys and tonye in fig. 2). In particular, the value of

22 is equal to the minimum number of times transi-

tion t, has to be fired to fulfill the token demands of the
transitions exiting P°“t. Consequently, it enables us to
evaluate which is the maximum number of times transi-
tion t,41 may have fired, namely u,11. Analogously, the

value of z"“t enables us to update the upper bound u,..

Example 7. Let us consider the ordinary Petri net sys-
tem in figure 3. There are only two nondeterministic
transitions whose label is a.

The upper bounds u; and us may be updated as a con-
sequence of three different types of observed events.

(1) If the first observed event is a, the upper bounds
should be both updated to u; = wua = 1 being 2{" =
z4" = 2 and the initial bounds equal to zero. We are in
the case of step 5 of Algorithm 6.

(2) If a is observed again, we are once again in the case
of step 5 of Algorithm 6. The upper bounds are updated

Ps b pe

L(t)=a

Ps fg

s P2

Figure 3: The Petri net system considered in example 7.

to u; = uy = 2 being 2i" = zi" = 2 and the previous
bounds equal to one.

Now, let us assume that L(t3) is observed, thus ng = 1

and 2'1 = 1. This means that for sure ¢; has fired at
most one time, otherwise t3 would have not been en-
abled. Thus the upper bound of ¢; is updated to u; = 1.
We are in the first if case of step 4 of Algorithm 6 being
t3 an output transition to one input place of ¢;.

(3) Now, let us assume that L(tggj is observed, thus w =
aa L(t3) L(tg). This implies that ¢; should have fired
at least once, and consequently to should have fired at
most once. In fact in such a case ng = 1, 29 = 1 and
consequently us = 1. We are in the second if case of
step 4 of Algorithm 6. |

Lemma 8. Let us consider a Petri net system (N, M)
and let L : T'— FE be its labeling function. Assume that
(A4) and (Ab) are satisfied. Let C(w) be defined as in
equation (1) where the upper bounds u,’s are computed
using Algorithm 6. Assume that a label a is observed and
there is a transition ¢, labeled L(¢,) = a with bound w,
such that it is disabled at any marking in C(w). Then the
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new bound u!. computed by Algorithm 6 fulfills u, = u/..
Proof: First, notice that if transition ¢, is disabled at
any marking in C(w) then all solutions of equation (1)
verify o, = 2" where 2" is computed by Algorithm 6.
In fact, o, cannot be greater than z!™ and being less
would mean that there is a marking in C éw) in which ¢,
is enabled. Furthermore o, = wu, since if o, < u, then
there would exist another solution for equation (1), let’s
say o), such that o]/ > o,, meaning that ¢, was enabled
at the consistent marking given by o,.. Therefore we have

2" =y, and since step 5 of Algorithm 6 computes u/. as

ul = min(u, + 1, 22), we have ul. = 2! = u,.. O

Proposition 9. Let us consider a Petri net system
(N,Mp) and let L : T — E be its labeling function.
Let us assume that assumptions (A4) and (A5) are sat-
isfied and let w be an observed word of events. Then all
markings in the set C(w) defined as in equation (1) are
consistent with the observed word w, when the upper
bounds u,’s are computed using Algorithm 6.

Proof: = We prove this by induction on the length of
the observed word.

When no event is observed, i.e., when w = wq is the
empty word, using equation (1) we have that C(wg) =
{My}, thus the statement of the proposition holds.
Moreover, when a word wy_1 of length k —1 is observed,
we assume that all markings in C(wg_1) are consistent
with wg_1, where C(wg—1) is defined as in equation (1)
and the bounds are computed using Algorithm 6.

Now, let e be a newly observed event, and let w = wy, =
wi—1e. We have to prove that all markings in C(w) are
consistent with the observed word w.

For simplicity of presentation in the following we as-
sume that there exists only one couple of nondetermin-
istic transitions, thus n” = 2 and n% = n — 2. We call
a their label, ie., L(t;) = L(t2) = a. Note that such
an assumption does not affect the validity of the proof
thanks to the contact freeness hypothesis (A5).

We partition the set of transitions as follows (see fig. 2):

T=TUTm™UT""UT, (2)
where T, = {t1,t2}; P{" (P{*) and Pi" (P§!) are the
set of input (output) places to transitions ¢; and to re-
spectively. T is the set of input and output transitions
to P{™ and P", apart from t; and to; T°"! is the set
of input and output transitions to PP*! and P§“!, apart

from t; and to; finally, T is the set of deterministic tran-
sitions that are not contained in the previous sets.

Moreover, we define the following two sets!:

01 < up Ulﬁujl
_Joa<up i oo <
8= 01+ 02 =ng S = o1+ 09 =n), (3)
01,02 €N 01,00 €N

where § (8') consists of the subset of constraints of equa-
tion (1) only involving the nondetermininistic transitions
t; and to, when the observed word is wy—1 (w). Clearly,
these sets contain the only equations that are related to
the nondeterministic part of the net, thus only an error
on their definition may produce an error on the defini-
tion of the set of consistent markings. Therefore, the
next step of the induction is proved if we demonstrate
that each solution of S’ originates from a solution of S
when the bounds are updated using Algorithm 6, i.e.,

1Slightly abusing the notation, we denote with S and S’ both
the set of constraints given by (3) and their respective solutions

(o1,02).
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— if the observed event is deterministic, i.e., e # a, then

§'CS;

— if the observed event is nondeterministic, i.e., e = a,

then given a solution & = (o1, 02) € S, if t1 (resp., t2)

is enabled from the marking corresponding to &, then

o = (0'1 + 1, 0'2) cdS’ (resp., (0'1, o9 + ].) € Sl)

Now, when an event e is observed, four different cases

may occur.

(1) A transition ¢ € T has fired. In such acase &' =8

and the statement of the proposition holds.

(2) A transition ¢ € T%" has fired.

—a. —If t € *(P{") U*(Pi"), no bound is updated thus
J—

—b. —Ift € (P{")*U(P4™)® the upper bounds may either

stay the same or may be even smaller thus &’ C S.

(3) A transition ¢t € T°%* has fired.

—a. —Ift € *(PP“t)U*(Pg"!), no bound is updated thus

S =8S.

~b. ~If t € (P“)* U (Pg“t)* the upper bounds may

either stay the same or may be even smaller thus S’ C S.

(4) A transition t € T, has fired.

Let us denote T} the set of transitions whose label is a

and that are enabled by at least one marking in C(wy_1).

Two different cases may occur: (1) T¢ is a singleton, i.e.,

either T¢ = {t1} or T¢ = {t2}. (2) TS = {t1,t2}.

— 1. — With no loss of generality we may assume 77 =

{t1}. In such a case the generic solution (o7, o4) of &’

may always be written as o] = &1 + 1, 05 = 5. In fact,

if this was not possible, then ¢ = 0 and 0§ = n/, =

ng +1 > ng > us = uhy, where the last equality follows

from lemma 8. Therefore, we would obtain ¢ > u}, that

leads to a contradiction.

Now, we want to prove that (61, d2) is a solution of

S. By simply substituting (o7, o) in (3) where &’ is

defined, and taking into account that n/, = n, + 1, u}, =

uz and v} = uy +1, we can trivially verify that (&1, d2) €

— 2. — Let us now consider the case in which T =
{t1,t2}. We first observe that for at least one transition
t; € TS, of > o™ where 0", i = 1,2, is the minimum
value of o; for any (01, 02) € S. In fact, if this was not
true, then for all solutions (o1, 03) € S, and (¢}, 0%) €
&’ it holds that n/, = o} + 0 = o' + 07" < g1+ 09 =
n, contradicting n!, = n, + 1 > n,.

Now, with no loss of generality we assume that o] >
o > (0. Then, we may write 61 = 0} — 1 and G2 = 0.
We show that (51, d2) € S.

The only constraint that is not trivially verified is o <
ug. In fact, o < u), — &9 < u). However, we show that
ifof, =ub =ua+1theno) =n,—uh=n,+1—us—1=
Na — Uz. By assumption o] > %", thus o} > n, — us
that leads to a contradiction.

Proposition 10. Let us consider a net system (N, M)
and let L : T — FE be its labeling function. Let us assume
that assumptions (A4) and (Ab) are satisfied and let w
be an observed word of events. Then all markings that
are consistent with the observed word w are contained
in C(w), when C(w) is defined as in equation (1) and the
upper bounds u,.’s are computed using Algorithm 6.
Proof: = We prove this by induction on the length of
the observed word. Clearly, when no event is observed
the only consistent marking is the initial one, thus the
statement of the proposition holds. Moreover, we assume
that it also holds when a word wy_1 is observed, i.e., we
assume that there exists no marking that is consistent
with wg_; and that is not contained in C(wg_1).
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To complete the prove, we must demonstrate that when
a new event e is observed, i.e., when the current word is
w = w, = wi_1e, all markings that are consistent with
w are contained in C(w). As in the case of the previous
proposition, thanks to the contact freeness assumption
(Ab), we may assume that there exists only one couple of
nondeterministic transitions, namely ¢; and t;. There-
fore, we may restrict our attention to the sets & and
S’ defined in equation (3). Now, the next step of the
induction is proved if we demonstrate that, from each
solution (o1, o02) € S corresponding to a marking in
C(wg—1) enabling a transition labeled e, we get a solu-
tion (o7, o4) € &’ that is a consistent marking associated
to the observation of e.

We refer again to the partition of 7" introduced via equa-
tion (2) and we consider four different cases.

(1) A transition t € T fires. Being &’ = S, the statement
of the proposition is trivially verified.

(2) A transition ¢t € T fires. In such a case, S’ C S
and we must prove that when updating the bounds we
are not neglecting markings that are consistent with w.
However, by looking at Algorithm 6 we may observe that
S’ € Sif and only if Ir € {1,2} such that ¢ € (*¢,.)® and
2z < u, (first if case of step 4 of Algorithm 6). But this
is correct because if we allow ] to be greater than 2",
the non—negativity constraints would be violated.

(3) A transition ¢ € T°% fires. This case is similar to the
previous one. In fact, &’ C S. In particular, S’ C S if
and only if 3r € {1,2} such that ¢ € (¢2)® and n,—22"" <
uy, where 7 is defined as in step 4 of Algorithm 6. But
this is correct, because z2“* denotes by definition the
number of times transition ¢, has fired for sure. If we
allow u; to be greater than n, — z2** (or equivalently w,.

ks
to be smaller than z2*"), the non-negativity constraints
are violated.

(4) A transition t € T* fires. We must prove that, given a
solution & = (o1, 02) € S, if t1 (resp., t2) is enabled from
the marking corresponding to &, then & = (01+1, 02) €
S’ (resp., (01, o2 +1) € §’).

With no loss of generality we may assume that ¢; is en-
abled from the marking corresponding to ¢. This implies

that for that & it holds that o7 < 22" being by definition
2" the enabling degree of transition t, assuming that
t. has never fired. Thus, oy < 2", o7 < u, =—
oy =01+ 1 <min(u, +1,2") = u}.

Moreover, 0] — 1+ 04 = n, — o + o4, = nl,. Therefore,
we may conclude that (o7,0%) € §'. O
Theorem 11. Let us consider a net system (N, My) and
let L : T'— E be its labeling function. Let us assume
that assumptions (A4) and (A5) are satisfied and let w
be an observed word of events. Then the set C(w) defined

by equation (1) contains all and only those markings that
are consistent with the observed word w, when the upper
bounds u,’s are computed using Algorithm 6.

Proof: It follows from propositions 9 and 10. O

Example 12. Let us consider again the Petri net system
in fig. 1. Assumptions (A4) and (A5) are verified. Thus,
by virtue of Theorem 11, the set of consistent markings
can be described in terms of equation (1) where the up-
per bounds are computed using Algorithm 6.

All bounds are initially set to zero, thus C(e) = {M €

N8|M = MO“FCE; 01,02,03,04 S 07 o1+ 02 = 03 o3+
o, =1, 05 = 06 = 07 = 0, & € N’} and the only
admissible firing vector is & = 0.

Assume that b is observed. Both ug and uy4 are updated
to one, while the other bounds keeps equal to zero. Thus,
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C(b):{MeNS‘M:MO—FOE, 01 <0, 02<0, 03<
17 0—4§13 01+02:0, 03+U4:1, 05 = 0g = 07 =

0, 7 € N}.
It is easy to wverify that in this case there
are two admissible firing vectors and C(b) =

{floo11011)7,[10101002]7}.

Similarly, if a is observed, we get u; = uy = 1 and
C(ba) ={M e N®| M = My+C@q, 01 <1, 09 <1, 03 <
l,ou<1l,o1+00=1 03+04=1, 05 =06 =07 =

0, 3 € N}
This implies that there are four ad-
missible firing vectors and C(ba) =

{fo1o11o1r,10010111)% 0110100 2|7,
(101001027}

Now, if d is observed, we have that 2% = 1. Con-
sequently us = 0 and C(bad) = {M € N¥|M =
My+CG, 00 <1,02<0,03<1,04<1, 01 +02=
1,03 +04=1,06=1, 05 =07 =0, 7 e N}

Finally, if the whole observed word is w = badbc, then
the marking is perfectly known being & =[1 02011 0]
the only admissible firing vector. |

6 Conclusions

We have presented a marking estimation procedure that
can be applied to labeled Petri nets. Under some as-
sumptions, we proved that the markings consistent with
an observed sequence can be described by a constraint
set of linear inequalites: this set has a fixed structure
that does not change as the length of the observed se-
quence increases.
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