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Abstract

In this paper we deal with the problem of controlling a
Petri net whose marking cannot be measured but is es-
timated using an observer. The control objective is that
of enforcing a set of generalized mutual exclusion con-
straints (GMEC) and all transitions are assumed to be
controllable. Clearly, the use of marking estimates may
significantly reduce the performance of the closed-loop
system and may lead to a deadlock. If the net times
out, i.e., if no transition firing occurs within a reason-
able amount of time in the controlled system, an efficient
procedure may be invoked to recover the net from a con-
troller induced deadlock. The novel contribution of this
paper is that of exploring in detail the characterization
of those cases in which the proposed recovery procedure
works.

1 Introduction

In this paper we deal with the problem of controlling
a Petri net whose marking cannot be measured. The
state-feedback control of discrete event systems with in-
complete information has already been discussed in the
literature [7, 8, 13, 15]. In particular, we assume that
the net structure is completely known while the initial
marking is only known to belong to a “macromarking”,
i.e., we know the token contents of subsets of places but
not the exact token distribution.
In previous works [7, 8] we have shown how it is possible
to estimate the actual marking of the net based on the
observation of a word of events (i.e., transition firings)
and an algorithm was given for computing the mark-
ing estimate and error bound. The estimate is always
a lower bound of the actual marking. The system that
computes the estimate is called an observer. The special
structure of Petri nets allows us to use a simple linear
algebraic formalism for estimate and error computation.
In particular, the set C of markings consistent with an
observed word, i.e., the set of markings in which the sys-
tem may actually be given the observed word, can easily
be described in terms of the observer estimate and can
be characterized as the integer solutions of a linear con-
straint set. Other approaches to the design of Petri net
observers can also be found in [12].
In [7, 8] we have also shown how the estimate generated
by the observer may be used to design a state feedback
controller, that ensures that the controlled system never
enters a set of forbidden states. We considered a special
class of safeness specifications that limit the weighted
sum of markings in subsets of places called generalized
mutual exclusion constraints (GMEC).
Clearly, the use of marking estimates, as opposed to the
exact knowledge of the actual marking of the plant, leads
to a worse performance of the closed-loop system. In
fact, in a safeness problem the aim of the controller is
that of preventing all those transition firings that lead
to a forbidden marking. If the actual marking is not
known, but is known to belong to a given set C, the con-

troller must forbid all transitions firing that from ”any”
marking in C may lead to a forbidden marking, i.e., the
controller may disable transitions whose firing is per-
fectly legal. Because of this it may be the case that the
controlled system is blocking.
In [2] we have shown that using siphon analysis, the set
of deadlock markings Mb of a structurally bounded net
can be characterized as the integer solutions of a linear
constraint set.
The characterization based on siphon analysis has been
used in [2] to derive an efficient deadlock recovery pro-
cedure that is proposed here in a slightly different form.
More precisely, we assume that if no transition firing oc-
curs within a reasonable amount of time in a controlled
system — we say that the net has timed out — one can
conclude that a deadlock has occurred and a recovery
procedure should be invoked. We have also shown how
the linear algebraic characterization of deadlock mark-
ings may be used to improve the marking estimate, thus
providing a better characterization of the set of consis-
tent markings.
In this paper we explore in detail the characterization
of those cases in which the proposed procedure works.
More precisely, these are the novel contributions.
— The algorithm used to compute the maximally per-
missible control pattern — given a set of consistent states
produced by the observer — is formally presented in sec-
tion 4 where we also show that it enjoys an important
monotonicity property.
— The properties of the deadlock recovery algorithm are
studied in subsection 5.3.
— In section 6 sufficient conditions are given to ensure
that the controlled net will never time out or to ensure
that, in the case that a time-out occurs, the proposed
procedure will always recover the net from deadlock.
Finally, the presented results are applied to a manufac-
turing example.

2 Background on Petri nets
In this section we recall the formalism used in the paper.
For more details on Petri nets we address to [10].
A Place/Transition net (P/T net) is a structure N =
(P, T, Pre, Post), where P is a set of m places; T is a set
of n transitions; Pre : P×T → N and Post : P×T → N
are the pre– and post– incidence functions that specify
the arcs; C = Post− Pre is the incidence matrix.
A marking is a vector M : P → N that assigns to each
place of a P/T net a non–negative integer number of
tokens, represented by black dots. In the following we
denote M(p) the marking of place p.
A transition t is enabled at M if M ≥ Pre(· , t) and
may fire yielding the marking M ′ = M + C(· , t). We
write M [w〉 M ′ to denote that the enabled sequence of
transitions w may fire at M yielding M ′. Finally, we
denote w0 the sequence of null length.
A marking M is reachable in N from M0 iff there exists
a firing sequence w such that M0 [w〉 M . The set of all
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markings reachable from M0 defines the reachability set
of 〈N,M0〉 and is denoted R(N, M0).
A nonnegative integer vector ~x 6= ~0m such that ~x T ·C =
~0n

T is called a P–invariant (here ~0k denotes a k × 1
vector of zeros).
A transition t is said to be live if for any M ∈ R(N,M0),
there exists a sequence of transitions firable from M
which contains t. A Petri net is said to be live if all
transitions are live. A Petri net is said to be deadlock–
free if at least one transition is enabled at every reachable
marking.
A place p is said to be bounded if there exists a constant k
such that M(p) ≤ k for all M ∈ R(N, M0). A net system
is bounded if all places are bounded. A net is structurally
bounded if it is bounded for all initial markings.
Definition 1. Given a net N = (P, T, Pre, Post),
and a subset T ′ ⊆ T of its transitions, we define
the T ′−induced subnet of N as the new net N ′ =
(P, T ′, P re′, Post′) where Pre′, Post′ are the restriction
of Pre, Post to T ′. The net N ′ can be thought as ob-
tained from N removing all transitions in T \ T ′. We
also write N ′ ≺T ′ N . ¥
Now, let us recall a linear algebraic characterization of
deadlock markings [2] that is valid for ordinary and
structurally bounded Petri nets. Note that similar lin-
ear characterizations have been independently proposed
in [1, 3, 5, 11].

Theorem 2 ([2]). Given a structurally bounded net N
with m places, a marking M ∈ Nm is a deadlock marking
if and only if there exists a vector ~s ∈ {0, 1}m such that
the following set of linear equations is satisfied:

D(N) :=





K1 · PreT · ~s ≥ PostT · ~s (a)
K2 · ~s + M ≤ K2 ·~1m (b)
~s + M ≥ ~1m (c)
PreT · ~s ≥ ~1 (d)
M ∈ Nm (e)
~s ∈ {0, 1}m (f)

(1)

where K1 = maxt∈T PostT (·, t) · ~1 and K2 is any posi-
tive integer greater or equal to the maximum structural
bound of p, for any p ∈ P . ¥
By virtue of the linear characterization above, we define
the set of blocking markings of a net N as:

Mb(N) = {M | ∃~s ∈ {0, 1}m : (M,~s) ∈ D(N)}. (2)

Finally, we present a useful technical result.
Proposition 3. Given a net N = (P, T, Pre, Post),
and a subset of transitions T ′ ( T , let N ′ ≺T ′ N be
the T ′−induced subnet of N . Then D(N) ⊆ D(N ′), or
equivalently Mb(N) ⊆Mb(N ′).
Proof: Let us define n′ = |T ′| and n = |T| > n′. Then
it is easy to see that constraints 1.a and 1.d in D(N) are
each composed by n inequalities, i.e., the correspond-
ing n′ inequalities in D(N ′) plus additional ones. This
proves the statement.

3 Marking estimation with macromarkings
In this paper we assume that the initial marking is avail-
able in the form of a macromarking.

Definition 4 ([8]). The macromarking defined by V ∈
Nm×r and ~b ∈ Nr is the set of markings V(V,~b) = {M ∈
Nm | V T M = ~b}. ¥

We make the following assumptions. A1) The structure
of the net N = (P, T, Pre, Post) is known, while the
initial marking M0 is not. A2) The event occurrences
(i.e., the transition firings) can be observed. A3) The
initial marking M0 belongs to the macromarking V(V,~b),
i.e., it satisfies the equation V T M0 = ~b.
We also introduce the following notation.
Definition 5 ([7]). After the word w has been observed
we define the set of w−consistent markings as C(w) =
{M ∈ Nm | ∃M0 ∈ V(V,~b), M0[w〉M}, i.e., as the set
of all markings in which the system may be given the
observed behavior and the initial marking. ¥
Given an evolution of the net M0[tα1〉M1[tα2〉 · · · , we
use the following algorithm to compute estimate µw and
bound Bw of each actual marking Mw based on the ob-
servation of the word of events w = tα1tα2 · · · tαk

, and of
the knowledge of the initial macromarking V(V,~b).

Algorithm 6. ( Marking Estimation with Event
Observation and Initial Macromarking [7])
Assume that the initial macromarking is V(V,~b).

1. Let the initial estimate be µw0 = ~0m.
2. Let the initial bound be Bw0 = ~b.
3. Let the current observed word be w = w0.
4. Wait until t fires.
5. Update the estimate µw to µ′wt with µ′wt(p) =

max{µw(p), P re(p, t)}.
6. Let µwt = µ′wt + C(·, t).
7. Let Bwt = Bw − V T · (µ′wt − µw).
8. Goto 4. ¥

The set of consistent markings can be characterized in
terms of the estimate and bound as follows.

Theorem 7 ([7]). Given a net with initial macromark-
ing V(V,~b), an observed word w ∈ L(N, M0), and the
corresponding estimated marking µw and bound Bw
computed by Algorithm 6, the set of w−consistent mark-
ings coincides with the set of (µw, Bw)−consistent mark-
ings, i.e., C(w) = M(µw, Bw)def= {M ∈ Nn | M ≥
µw, V T ·M = V T · µw + Bw}. ¥

4 Control using observers
In this section we show how the marking estimate can be
used by a control agent to enforce a given specification
on the plant behavior [8]. We make several assumptions
that are briefly discussed here.
— We assume that the specification on the desired be-
havior is given as a set of legal markings L.
— We consider a special type of state specifications
called generalized mutual exclusion constraints (GMEC)
that have been considered by various authors [6, 9, 14].
Given an integer matrix L = [~l1 · · ·~lq] with ~lj ∈ Zm and
a vector ~k = [k1, · · · , kq] with kj ∈ Z, a GMEC (L,~k)
defines the set of legal states L = {M ∈ Nm | LT ·M ≤
~k}.
— The controller may disable transitions to prevent the
plant from entering a forbidden marking, computing a
control pattern f(t, M) : T ×Nm → {0, 1}. If f(t,M) =
0 then t is disabled by the controller at M .
— All transitions are controllable, i.e., can be disabled
by the controller.
When an observer is used in the control loop the actual
marking M is not known and only the set of consistent
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markings C ⊆ Nm is available to the controller. The
control law thus becomes a function f(t, C) : T × 2N

m →
{0, 1} and can be given as follows.
Definition 8. (State feedback for GMEC with ob-
server)
Given a GMEC (L,~k) and a set of consistent markings
C ⊆ Nm, the firing of transition t should be prevented
if and only if there exists a legal consistent marking M
such that the firing of t from M leads to a forbidden
marking, i.e.,

f(t, C) =





0 if (∃M) M ∈ C, LT ·M ≤ ~k,

M [t〉M ′, (∃j) ~lj ·M ′ > kj
1 otherwise.

¥
The computation of the control pattern may be car-
ried out solving a number of linear integer programming
problems (IPP) as given in the following algorithm.

Algorithm 9. (Computation of the optimal state
feedback with observer)
The control law in definition 8 can be computed as fol-
lows.

1. For all transitions t, let Jt = {j | ~l T
j · C(·, t) > 0}

be the set of indices of those constraints that may
potentially be violated by the firing of t.

2. Solve for each j ∈ Jt the IPP




max ~l T
j ·M ′

s.t.
M ∈ C (a)
LT ·M ≤ ~k (b)
M ≥ Pre(·, t) (c)
M ′ = M + C(·, t) (d)

(3)

and let hj(t) be its optimal solution.
3. Define

f(t, C) =
{

0 if (∃j ∈ Jt)hj(t) > kj
1 otherwise. (4)

the desired control pattern. ¥

Thus a transition t is disabled only if it may fire (con-
straint (c)) and there exists a consistent marking M
(constraint(a)) that is legal (constraint (b)) and from
which the firing of t leads to a marking M ′ (constraint
(d)) that is not legal because for at least one j it holds
hj(t) = ~l T

j ·M ′ > kj . Note that under the assumption
that the actual marking is legal, we need not solve IPP
(3) for all those constraints such ~l T

j ·C(·, t) ≤ 0, because
they may never be violated by the firing of t.

Remark 10. If C = M(µ, B), i.e., the set of consistent
markings can be described using the marking estimate
µ and bound B as suggested by theorem 7, we simply
substitute constraint (a) in (3) with

{
V T ·M = V T · µ + B
M ≥ µ
M ∈ Nm

¥

 p10

 p3  p4

 p5  p6
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Figure 1: Event graph model of the assembly system.

Finally, we state a useful elementary proposition.
Proposition 11. Let C′ and C′′ be two sets of consis-
tent markings, with C′ ⊆ C′′. Then f ′ = f(·, C′) is at
least as permissive as f ′′ = f(·, C′′) i.e., for all t it holds
f(t, C′) ≥ f(t, C′′). We denote this writing f ′ ≥ f ′′.
Proof: For all t and for all j, C′ ⊆ C′′ implies h′j(t) ≤
h′′j (t), where h′j(t) and h′′j (t) denote the solutions of (3)
with, resp., C = C′ and C = C′′. Thus the result follows
from the definition of f given in (4).
A trivial consequence of this proposition is the following.
When the actual marking M is perfectly known the set
of consistent markings is C′ = {M}. On the contrary,
if the actual marking can only be estimated by an ob-
server, then the set of consistent markings is C′′ ⊇ C′.
This means that the control pattern computed using an
observer may be more restrictive than the optimal state
feedback computed when the actual marking is known.
As shown in the following example this may often lead
to a block.

4.1 A manufacturing example
We apply the above methodology to a manufacturing
system whose Petri net model is shown in fig. 1.
This assembly system, that is similar to the one de-
scribed in [4], consists of five machines, M1, M2, M3,M4 and M5 whose operational process is modeled by
the firing of transitions t1, t2, t3, t4 and t5, respectively.
The markings of places p1 and p2 represent the number
of assembly servers for t4 and t3 respectively. The mark-
ing of places p3, p5, and p9 represent the availability of
parts to be processed (raw materials), while the marking
of places p4, p6, p7 and p8 represent the availability of
semi–finished products. Places p11 and p12 ensure that
machines t1 and t2 work alternatively.
The Petri net model in fig. 1 is a strongly connected
event graph with m = |P| = 12 and n = |T| = 7. There
exist eleven elementary circuits, that correspond to an
equal number of P-invariants. If we assume that the
initial marking of the net is that in fig. 1, we have (here
to avoid a heavy notation we denote as Mi the marking of
place pi): M11+M12 = 1, M1+M3+M4 = 5, M1+M5+
M6 = 5, M1+M3+M6+M11 = 6, M1+M4+M5+M12 =
5, M2 + M8 + M9 = 6, M2 + M3 + M4 + M7 + M10 = 6,
M2 + M5 + M6 + M7 + M10 = 6, M2 + M3 + M6 + M7 +
M10 + M11 = 7, M2 + M4 + M5 + M7 + M10 + M12 = 6.
We assume that the above set of P-invariants co-
incides with the macromarking, thus Bw0 = ~b =
[1 5 5 6 5 6 6 6 7 6]T .
Moreover, we assume that the controller must enforce
two specifications: (a) M3 + M5 ≤ 3 and (b) M9 ≤ 3.
If the marking of the net is measurable, then the con-
trolled net is live, as can be verified by reachability anal-
ysis.
If the marking of the plant is not measurable, an observer
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must be used in the control loop. The resulting closed
loop behavior is represented in the reachability graph
within the dashed rectangle in fig. 2. Here each node is
labeled as: (M / µ/B).
We can immediately observe that the error estimate
M − µ decreases as the length of the observed word in-
creases. Nevertheless, after the firing of t3 we reach a
blocking condition. In fact, the controller prevents the
firing of both transitions t6 and t7 even if their firing is
perfectly legal. This is due to the fact that there exists
at least one marking in C(t1t4t3) that would produce the
violation of one of the controller specifications if either
transition t6 or t7 fires. In particular, the firing of t6
may potentially violate specification (b), while the firing
of t7 may potentially violate specification (a).

5 A procedure for deadlock recovery and
estimate updating

Let us suppose that we can be sure that the net is blocked
if a sufficiently long time has elapsed without observing
any event occurrence. We say, in this case, that the net
has timed out.
Proposition 12 ([2]). Assume that the net N =
(P, T, Pre, Post) controlled with the control pattern
f(·, C) has timed out. Let us define T ′ = {t ∈ T |
f(t, C) = 1} as the subset of T containing the transi-
tions enabled by the controller, and let N ′ ≺T ′ N be
the T ′−induced subnet of N . Then the actual (un-
known) marking M of the controlled net N is a deadlock
marking for the uncontrolled net N ′, i.e., it belongs to
C′ = C ∩Mb(N ′). ¥
We now present an automatic procedure that tries to
exploit the information that the net has timed out to
recover from this blocking condition and improve the
estimate.

5.1 Deadlock recovery
The deadlock recovery procedure we firstly present in
[2] in a slightly different form consists in recomputing
the control pattern using a new IPP that adds to the
constraints in (3) some additional constraint to capture
the fact that the actual (unknown) marking M belongs
to Mb(N ′) for the net N ′ defined in proposition 12.

Algorithm 13. (Control Pattern Updating After
Net Time-Out)
Given a net N = (P , T, Pre, Post) controlled using an
observer, let µ and B be the current value of estimate
and bound, and define C = M(µ,B). Assume that the
computed control pattern f(·, C) has led the net to a
time-out. We can update the control pattern using the
following procedure.

1. Let i = 0 and define f0(·)def= f(·, C) as the initial
control pattern.

2. Let Ti = {t ∈ T | fi(t) = 1} be the set of transi-
tions enabled by the current control pattern, and
let Ni ≺Ti N be the net obtained by N removing
all transitions not in Ti.

3. Update the control pattern to fi+1 = g(fi), where

g(fi)
def= f(·, C ∩Mb(Ni)). (5)

4. If fi+1 = fi THEN exit: the deadlock recovery
procedure has failed.

5. Wait until

(a) EITHER a transition fires and THEN exit:
the net has recovered from the deadlock

(b) OR a new net time-out occurs and THEN let
i = i + 1 and go to 2. ¥

Note that the operator g : {0, 1}n → {0, 1}n defined by
(5) is a function of fi because Ni is defined using fi.
In this algorithm the knowledge that a time-out has oc-
curred is used to restrict the set of consistent markings
and construct a new control pattern (step 3) that, as the
next proposition shows, is at least as permissive as the
previous one. If the new control pattern is still block-
ing and a new time-out occurs the procedure is repeated
until either the net recovers from deadlock, or until we
cannot update the control pattern any more and the pro-
cedure fails.
We now present some elementary results concerning this
algorithm.
Proposition 14. Algorithm 13 has the following prop-
erties:
— for all i, the updated control pattern computed at
step 3 is at least as permissive as the previous one, i.e.,
fi+1 ≥ fi;
— the algorithm terminates in a finite number of steps;
— if the algorithm terminates at step 4 with i = ı̄, the
final control pattern fı̄ is a fix point of the operator g.
Proof: The first statement can be proved by induc-
tion. In fact we observe (base step) that, by proposi-
tion 11, C∩Mb(N0) ⊆ C implies f1 = f(·, C∩Mb(N0)) ≥
f(·, C) = f0. Assume now that fi ≥ fi−1 for a given
i: we prove (induction step) that the same inequal-
ity also holds for i + 1. In fact, fi ≥ fi−1 implies
Ni−1 ≺Ti−1 Ni. Thus C ∩Mb(Ni) ⊆ C ∩Mb(Ni−1) by
proposition 3 and this implies, by proposition 11, that
fi+1 = f(·, C ∩Mb(Ni)) ≥ f(·, C ∩Mb(Ni−1)) = fi.
The second statement follows from the fact that each
time the loop in the algorithm is repeated, either fi+1 =
fi (and in this case the algorithm terminates), or, by
the previous statement, fi+1  fi and eventually the
maximally permissive control that enables all transitions
is reached in a number of steps less or equal to |T|.
The third statement follows trivially from the fact that
if the algorithm terminates at step 4, then fı̄ = fı̄+1 =
g(fı̄).
5.2 Improving the marking estimate
Assume that given an observed word w, a current esti-
mate µw and bound Bw, a blocking condition occurs, and
that after ı̄ iterations of algorithm 13 a newly enabled
transition t fires. At this point, before the firing of t,
the set of consistent markings is M(µw, Bw) ∩Mb(Nı̄),
using the notation defined in the previous subsection.
This set corresponds to the dark area in fig. 3.
We should keep this information when computing the
new set of consistent markings C(wt) after the firing of t.
Nevertheless, this would destroy the framework that in-
spired the estimate algorithm 6, in the sense that the set
of consistent markings would loose the structure given
by theorem (7).
Thus, we propose the following alternative solution. For
each place pi ∈ P we solve an IPP of the form:





min M(pi)
s.t.
M ∈M(µw, Bw)
M ∈Mb(Nı̄)

(6)

Now, we define µ∗ = [µ∗1 · · · µ∗m]T where µ∗i is the so-
lution of the i–th IPP and let B∗ = Bw − V T (µ∗ − µw)
be the corresponding bound. We use µ∗ and B∗ as new
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( 4 5 1 0 0 1 0 1 0 0 0 1 / 0 0 0 0 0 0 0 0 0 0 0 0 / 1 5 5 6 5 6 6 6 7 6 )

( 4 5 0 1 0 1 0 1 0 0 1 0 / 0 0 0 1 0 0 0 0 0 0 1 0 / 0 4 5 5 4 6 5 6 6 5 )

( 5 5 0 0 0 0 1 1 0 0 1 0 / 1 0 0 0 0 0 1 0 0 0 1 0 / 0 4 4 4 4 6 5 5 5 5 )

( 5 6 0 0 0 0 0 0 0 0 1 0 / 1 1 0 0 0 0 0 0 0 0 1 0 / 0 4 4 4 4 5 5 5 5 5 )

t1

t4

t3

( 5 6 0 0 0 0 0 0 0 0 1 0 / 5 1 0 0 0 0 0 0 0 0 1 0 / 0 0 0 0 0 5 5 5 5 5 )

t6

( 5 5 0 0 0 0 0 0 1 1 1 0 / 5 0 0 0 0 0 0 0 1 1 1 0 / 0 0 0 0 0 5 5 5 5 5 )

t7

( 4 5 1 0 1 0 0 0 1 0 1 0 / 4 0 1 0 1 0 0 0 1 0 1 0 / 0 0 0 0 0 5 5 5 5 5 )

t2

( 4 5 1 0 0 1 0 0 1 0 0 1 / 4 0 1 0 0 1 0 0 1 0 0 1 / 0 0 0 0 0 5 5 5 5 5 )
t5

( 4 5 1 0 0 1 0 1 0 0 1 0 / 4 0 1 0 0 1 0 1 0 0 0 1 / 0 0 0 0 0 5 5 5 5 5 )
t1

( 4 5 0 1 0 1 0 1 0 0 1 0 / 4 0 0 1 0 1 0 1 0 0 1 0 / 0 0 0 0 0 5 5 5 5 5 )

( 5 5 0 0 0 0 1 1 0 0 1 0 / 5 0 0 0 0 0 1 1 0 0 1 0 / 0 0 0 0 0 5 5 5 5 5 )

( 5 6 0 0 0 0 0 0 0 0 1 0 / 5 1 0 0 0 0 0 0 0 0 1 0 / 0 0 0 0 0 5 5 5 5 5 )

t4

t3

( 5 6 0 0 0 0 0 0 0 0 1 0 / 5 6 0 0 0 0 0 0 0 0 1 0 / 0 0 0 0 0 0 0 0 0 0 )

Figure 2: One possible evolution of the net in figure 1.

current values of the estimate µw and bound Bw and
continue from step 5 of algorithm 6, computing the up-
dated estimate µ′wt.
This is equivalent to approximate the set of
w−consistent markings after recovery, with the set
M(µ∗, B∗) = {M ∈ Nm | M ≥ µ∗, V T · M =
V T · µ∗ + B∗}.
This set is also shown in fig. 3: being M(µw, Bw) ∩
Mb(Nı̄) ⊆ M(µ∗, B∗) ⊆ M(µw, Bw) we may be los-
ing information, but nevertheless we can keep on with a
linear algebraic characterization of the set of consistent
markings in the simple form given by theorem (7).

5.3 Numerical example
In this section we show how the deadlock recovery pro-
cedure may be efficiently applied to the net in fig. 1.
If we assume that the initial marking is that in fig. 1,
then the first blocking condition occurs after the firing
of the sequence w = t1t4t3, as already discussed in sub-
section 4.1.
At this point, when a sufficiently long time has elapsed
we apply algorithm 13 to update the control pattern. In
particular, we have that the set of transitions enabled
by the actual control pattern is T0 = T \ {t6, t7}, while
after only one iteration, we find out that f = f1 = ~1, i.e.,
all transitions become control enabled and the net has
recovered from the observer induced deadlock. Finally,
by solving m = 12 IPP, we may also improve the marking
estimate.
To completely demonstrate the effectiveness of the pro-
posed approach, in fig. 2 we have reported one possi-
ble evolution of the closed loop system with observer,
assuming that also the deadlock recovery procedure is
applied. We used larger arrows to denote that no transi-
tion has fired, but only the marking estimation has been
updated. As it can be seen, at the end of this evolution
path, the marking is completely reconstructed and no

further deadlock may occur.
The same can be repeated for any other evolution start-
ing from the initial marking in fig. 1, as it can be easily
seen by looking at the whole reachability graph, that has
not been reported here for brevity’s requirements.

6 A sufficient condition for deadlock freeness
It is important to determine necessary and sufficient con-
ditions to characterize those cases in which the deadlock
recovery procedure works.
Here we consider a particular class of macromarkings,
such that the vectors ~vj are P−invariants. In this case,
it is possible to show that the set of consistent markings
at each step is a subset of the initial macromarking.
Proposition 15. Let the initial macromarking V(V,~b)
be such that V T C = ~0, i.e., each column ~vj of V is a
P-invariant. Then, for all observed words w, C(w) ⊆
C(w0) ≡ V(V,~b).
Proof: First note that for all observed words w,
V T µw +Bw = ~b, whenever V is a matrix of P-invariants.
In fact, by algorithm 6, each time a new transition
fires we have V T µwt + Bwt = V T [µ′wt + C(·, t)] +[
Bw − V T (µ′wt − µw)

]
= V T µw + Bw + V T C(·, t) =

V T µw + Bw, while initially, V T µw0 + Bw0 = ~b.
Furthermore, µw ≥ ~0 = µw0 , thus for all observed word
w, the set of w–consistent markings is C(w) = {M ∈
Nn | M ≥ µw, V T M = ~b} ⊆ {M ∈ Nn | V T M = ~b} =
C(w0).
We use the previous result to give a sufficient condition
to ensure that the controlled net will never time out.

Theorem 16. Consider a net N with initial macro-
marking V(V,~b) such that V T C = 0, and controlled with
algorithm 9. Let T0 = {t ∈ T | f(t, C(w0)) = 1} be the
set of transitions enabled by the initial control pattern
and let N0 ≺T0 N be the T0−induced subnet of N .
Then the closed loop system will never reach a blocking
state, i.e., the net will never time out, if the following
constraint set {

V T M = ~b
M ∈Mb(N0)

(7)

does not admit any admissible solution for M ∈ Nm.
Proof: First note that when the net is initialized,
the set of consistent markings coincides with the ini-
tial macromarking, i.e., C(w0) = V(V,~b) = {M ∈ Nm |
V T M = ~b}. If the constraint set (7) does not admit
a feasible solution, the net is never blocked when the
control pattern f(·, C(w0)) is applied, regardless of the
initial marking M ∈ V(V,~b).
After a word w has been observed, the set of consistent
marking is C(w) ⊆ C(w0) (by proposition 15) while the
actual marking still belongs to V(V,~b), being V a matrix
of P-invariants. Thus by proposition 11 it holds that
f(·, C(w)) ≥ f(·, C(w0)), and regardless of the current
marking the controlled net is not blocked.

We finally extend the previous result, giving a sufficient
condition to ensure that, even if a time-out may occur,
algorithm 13 will always successfully recover the net from
a deadlock.
Consider a net N with set of consistent markings C. As-
sume that algorithm 13 is invoked but at step 5 we al-
ways execute step 5.b, until the algorithm stops at step
4 with fi+1 = fi: this is the maximally permissive con-
trol pattern that could be applied if the net always times
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Mb(N � )  

M(µw,B w)  

M(µ*,B*)  

C �
+1 = M(µw,B w) ∩ Mb(N � ) 

Figure 3: Generic inclusion relationship among sets
M(µw, Bw), M(µ∗, B∗) and Mb(Nı̄).

out when the set of consistent markings is C. A formal
definition is the following.
Definition 17. Given a net N controlled with an ob-
server, and a set of consistent states C, let us define
f0

def= f(·, C) the initial control vector and let fi+1 = g(fi)
for i ≥ 0.
The maximal control pattern associated to C is
fmax(·, C)def= limi→∞ fi, i.e., it is the fixed point of g
reached iterating from f0. Note that by proposition 14
part 2, this fixed point is reached in a finite number of
steps (less or equal to the cardinality of the set of tran-
sitions T ). ¥

Theorem 18. Consider a net N with initial macro-
marking V(V,~b) such that V T C = 0, and controlled with
algorithm 9. Let Tmax = {t ∈ T | fmax(t,V(V,~b)) =
1} be the set of transitions enabled by the maximal
control pattern associated to the initial consistent set
C(w0) = V(V,~b), as defined in the previous proposition.
Let Nmax ≺Tmax N be the Tmax−induced subnet of N .
If a net time-out occurs and the procedure given in al-
gorithm 13 is applied, the net will always recover from
a deadlock if the following constraint set

{
V T M = ~b
M ∈Mb(Nmax)

(8)

does not admit any admissible solution for M ∈ Nm.
Proof: Firstly, observe that if the constraint set (8)
does not admit a feasible solution, the time-out pro-
cedure is always capable of recovering from an ini-
tial deadlock, because eventually the control pattern
fmax(t,V(V,~b)) will be reached and there exists at least
an enabled transition regardless of the initial unknown
marking M ∈ V(V,~b).
Secondly, observe that by induction on the iteration step
in algorithm 13, it is immediate to show that C′ ⊆ C′′
implies fmax(t, C′) ≥ fmax(t, C′′).
Finally, as in the proof of theorem 16, the result follows
from the fact that after a word w has been observed, the
set of consistent markings is C(w) ⊆ C(w0) (by proposi-
tion 15) while the actual marking still belongs to V(V,~b),
being V a matrix of P-invariants.

Example 19. Let us consider again the manufacturing
system in subsection 4.1. The initial macromarking con-
sidered is such that V T C = 0, thus the assumption of
theorem 18 are fulfilled. If we compute the maximal con-
trol pattern as defined in definition 17, we find out that
fmax(·,V(V,~b)) = ~1, that implies Nmax = N according to
the notation of theorem 18. Now, if we consider the set

{M ∈ Nm | V T ·M = ~b, M ∈Mb(N)}, we find out that
it does not admit any admissible solution for M ∈ Nm.
By theorem 18 this implies that if a net time-out occurs
and we apply the procedure given in algorithm 13, then
the net will always recover from deadlock. ¥

7 Conclusions
In this paper we have dealt with the problem of enforcing
a set of GMEC on a timed Petri net by a state feedback
control under the assumption that the system state is not
measurable but can only be estimated. We show that the
use of an estimate instead of the actual marking, may
lead to a deadlock even if the controlled system is live.
In the case that the net system is structurally bounded,
we propose an algorithm that accelerates the state es-
timation and helps us to detect the observer induced
deadlock. A characterization of those cases in which the
proposed procedure works is finally provided.
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