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Abstract

In this paper we consider a high-level description of a
railway network using a skeleton net that belongs to the
class of ES2PR nets. The resource places of this model
correspond to the action of a safeness enforcing supervisor.
Liveness constraints may also be enforced for this class by
adding appropriate monitor places designed using siphon
analysis. We show how this can be done without an exhaus-
tive computation of all siphons and characterize the cases
in which this procedure can be recursively applied, giving a
simple test for the closed loop net to remain an ES2PR net.

1 Introduction

In this paper we deal with the problem of designing a
liveness enforcing supervisory controller for railway net-
works modeled by a place/transition net. The literature on
modelling and analyzing railway systems using Petri nets
(PN) is not extensive and a good survey is given by Janczura
in [11].

In our approach, presented in [5, 8], we give a PN modu-
lar representation of railway networks in terms of stations
and tracks including sensors and semaphores. In [5] we
also showed how the safe operation1 of such a net can be
expressed by a set of Generalized Mutual Exclusion Con-
straints (GMECs) [7]. Thus the corresponding safeness en-
forcing controller takes the form of a set of monitor places
that can be computed using Moody’s parametrization [12].

In [8] we also addressed the problem of global deadlock
avoidance. In fact, when a safeness enforcing supervisor
has been designed, it may well be the case that the closed
loop net is not live. A solution to this problem consists in
additionally restricting its behavior so that blocking states
are never reached.

To solve this problem we propose to apply siphon anal-
ysis to a simplified net (that we call skeleton). This net can
be thought as a simple state machine Petri net represent-
ing the uncontrolled railway network with the addition of
monitor places that abstract the behavior of the safeness en-
forcing supervisor. The overall net thus belongs to the class
of ES2PR net [6, 15], a class for which deadlock freeness
ensures liveness.

1By safe operation we mean that collisions are avoided.

Now, it is well known that for ordinary nets deadlock
freeness may sometimes be enforced adding new monitors
that control the net siphons to prevent them from becoming
empty: see [10] as an example of recent development in this
area. One original feature of the approach we firstly pre-
sented in [8] and that is also used in this paper, consists in
the fact that to compute the liveness enforcing monitors, we
use a very efficient linear algebraic technique that does not
require the exhaustive enumeration of all siphons, whose
number may be too large even for small nets such as the
one we consider. In fact, we are able to compute a liveness
enforcing monitor solving a mixed integer linear program-
ming problem (MILPP). Similar techniques were also used
in [1, 2, 4, 14].

In our approach monitors are added to the net following
an iterative procedure as the number of trains that are ad-
mitted into the network increases. We initially assume that
only k = 2 trains may enter the net, i.e., the initial marking
of the ES2PR net contains k = 2 tokens in the idle place
p0. We determine if from this initial marking there exists a
reachable marking such that a siphon is empty: if such is the
case, we add a monitor place to prevent it from becoming
empty.

In general the addition of such a monitor may give rise
to some problems as discussed in [10].
Problem 1: the closed loop net may not be an ES2PR net
and we cannot carry on with our iterative procedure. The
main contribution of this paper is the derivation of a nec-
essary and sufficient condition to verify if the addition of a
monitor to an ES2PR net still produces an ES2PR net. This
result is also useful to characterize the class of ES2PR nets.
Problem 2: the monitor may create new siphons that re-
quire to be controlled as well, i.e., new deadlocks may occur
and the procedure need to be reapplied. We cannot always
ensure that the procedure will eventually converge to a live
net.

If a live net has been obtained for k tokens we consider
an initial marking with k+1 tokens in the idle place p0. We
continue until we reach a value k = K where we have to
stop because either the procedure does not converge or the
value K is sufficiently large to cover all cases of practical
interest.

In the example we present in this paper, the approach can
be successfully applied. However, as we mentioned before,
this iterative procedure may fail because either at a given
step the addition of a monitor generates a net that is not an
ES2PR anymore (Problem 1), or because it does not con-
verges to a live net (Problem 2).
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A general solution to Problem 1 was given by Park and
Reveliotis. In [14] they defined a class broader than ES2PR
and showed that for these nets it is possible to compute the
liveness enforcing monitors solving, as we do in this paper,
a MILPP. The class of nets they consider is closed under the
addition of a monitor and thus Problem 1 may never occur.

We were not aware of the results of Park and Reveliotis
when this paper was written and in fact these results were
brought to our attention by an anonymous referee whose
help is gratefully acknowledged. We agree that the more
general results of [14] reduce the contribution of the present
paper. However, we also believe that the approach we pro-
pose may still be practically useful in many cases, because
the linear characterization we derive requires the solution
of a MILPP with a reduced computational complexity (in
terms of integer variables) with respect to the one used in
[14]. Thus we suggest that our procedure should be initially
used and only if it fails because of Problem 1 should the
procedure of [14] be invoked during the successive steps.

2 Background

Generalities on Petri nets: In the following we recall
the formalism used in the paper. For more details on Petri
nets we address to [13].

A Place/Transition net (P/T net) is a structure N =
(P; T;Pre;Post), where P is a set of m places; T is a set
of n transitions;Pre : P �T ! N andPost : P �T !
N are the pre– and post– incidence functions that specify
the arcs; C = Post� Pre is the incidence matrix.

A marking is a vector m : P ! N that assigns to each
place of a P=T net a non–negative integer number of to-
kens, represented by black dots. In the following we denote
as mi the marking of place pi. A P=T system or net system
hN;m0i is a net N with an initial marking m0 and its set
of reachable markings is denoted R(N;m0).

A non-null vector x 2 Nm such that xTC = 0 is called
a P–semiflow (or P–invariant) of the net N . The support
jjxjj of a P–semiflow is the set of places pi such that xi > 0.
Let X be a matrix where each column is a P–semiflow of
N , and denote IX(N;m0) = fm 2 Nm j XT m =

XT m0g. Then R(N;m0) � IX(N;m0).
A P/T net is called ordinary when all of its arc weights

are 1’s. A state machine is an ordinary Petri net such that
each transition t has exactly one input place and exactly one
output place. A net is strongly connected if there exists a
directed path from any node in P [ T to every other node.

A siphon of an ordinary net is a set of places S � P
such that:

S
p2S

�p �
S
p2S p

�. A siphon is minimal
if it is not the superset of any other siphon. The num-
ber of tokens assigned to the siphon S by a marking m is
m(S) =

P
pi2S

mi. A siphon can also be described by
its characteristic vector s 2 f0; 1gm such that si = 1 if
pi 2 S, else si = 0; thus m(S) = sTm.

GMECs and monitors: The development of this sub-
section is kept very concise for sake of brevity. Please, refer
to [12] for a more complete discussion of this topic.

Assume we are given a set of legal markings L � Nm ,
expressed by a set of nc linear inequality constraints called

Generalized Mutual Exclusion Constraints (GMECs). Each
GMEC is a couple (w; k) where w : P ! Z is a m � 1
weight vector and k 2 Z. Given the net system hN;m0i,
a GMEC defines a set of markings that will be called le-
gal markings: M(w; k) = fm 2 Nm j wTm � kg.
The markings that are not legal are called forbidden mark-
ings. A controlling agent, called supervisor, must ensure
that the forbidden markings will be not reached. So the set
of legal markings under control isMc(w; k) =M(w; k)\
R(N;m0).

In the presence of multiple constraints, all constraints
can be grouped and written in matrix form as

W Tm � k (1)

where W 2 Zm�nc and k 2 Znc. The set of legal mark-
ings is M(W ;k) = fm 2 Nm jW Tm � kg.

Each constraint requires the introduction of a new place
(denoted as monitor place) thus the controller net has nc
monitor places and no transition is added. To each monitor
place, it corresponds an additional row in the incidence ma-
trix of the closed loop system. In particular, let Cc be the
matrix that contains the arcs connecting the monitor places
to the transitions of the plant, and mc0 the initial marking
of the monitors. The incidence matrix of the closed loop

system is C 0 =
h
CT CT

c

iT
2 Z(m+nc)�n while its initial

markingm0
0 is m0

0 =
�
mT

0 m
T
c0

�T
.

In the case of controllable and observable transitions,
Giua et al. provided the following theorem.

Theorem 1 ([7]). If k�W Tm0
0 � 0 then a Petri net con-

troller with incidence matrix Cc = �W TC and initial
marking mc0 = k �W Tm0 enforces constraint (1) when
included in the closed loop system.

The controller so constructed is maximally permissive,
i.e. it prevents only transitions firings that yield forbidden
markings.

3 The class of ES2PR nets

In this section we first recall the definition of two im-
portant classes of Petri nets, namely the S2P and ES2PR
nets, firstly introduced by Tricas et al. in [6, 15]. These
classes of nets have been identified because they frequently
appear in the framework of manufacturing systems, and
for the ES2PR class deadlock and liveness problems may
be related to structural elements of the Petri net model —
namely, siphons — as discussed in detail in [6, 15]. In the
rest of the paper we shall see that a reduced model of a rail-
way network, that we call ”skeleton net”, belongs to this
class and the liveness problem may be solved using an im-
portant property of this model.

A Simple Sequential Process (S2P) is a strongly con-
nected state machine where all circuits contain a common
place p0, denoted as the idle place. From a modeling point
of view, a S2P represents the set of different sequences that
a unit of the process can follow across the system. An Ex-
tended Simple Sequential Process with Resources (ES2PR)
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is defined as a S2P that uses resources in the states of the
system that are not the idle one. In this class of nets a pro-
cess state can need the use of several resources simultane-
ously [6].

Definition 2 ([6]). A Simple Sequential Process, S2P, is an
ordinary Petri netN = (PS[fp0g; T;Pre;Post) where:

1. PS 6= ;, p0 =2 PS .
2. N is a strongly connected state machine.
3. All the circuits in N contain the place p0.

Definition 3 ([6]). An Extended Simple Sequential Process
with Resources, ES2PR, is a generalized self–loop free Petri
net N = (PS [ fp0g [ PR; T;Pre;Post), such that:

1. the subnet generated by the set X = PS [ fp0g [ T
is a S2P,

2. (PS [ fp0g) \ PR = ;,
3. 8 t 2 T , 8 p 2� t, Pre(p; t) = 1,
4. 8 r 2 PR, 9 a unique minimal P–semiflow xr such

that frg = jjxrjj \ PR, p0 =2 jjxrjj, PS \ jjxrjj 6= ; and
xr(r) = 1.

An important result was proved in [15].

Proposition 4. Let hN;mi be a marked ES2PR net. If a
transition t 2 T is dead for a reachable marking m, then
there exists a reachable markingm0 and siphon S 6= ; such
that m0(S) = 0, i.e., all places in the siphon S are empty.

Note that the above result has been proved [15] for a
wider class of generalized Petri nets, the ES3PR nets, that
are a superclass of the ES2PR nets. In this paper however,
results are referred to the ES2PR model because it is that of
interest here.

Now, we present an important result that is useful when
studying liveness problems, and in particular when applying
an iterative procedure for deadlock–avoidance that will be
presented in section 4. More precisely, let us consider an
ES2PR net N with K resource places. Let (wK+1; kK+1)
be a positive and minimal–support GMEC2 and let rK+1 be
the corresponding monitor place. We prove that the addition
of rK+1 to N produces a closed–loop net N 0 that is still
an ES2PR net, if and only if two conditions are verified,
namely, the GMEC should only involve places in PS and
the corresponding monitor place should only have ordinary
output arcs.

To do this, in the next two lemma we present two inter-
mediate results. Note that in the following we denote by
Imin(N) the set of minimal P–semiflows of N .

Lemma 5. Let N = (P; T;Pre;Post) be a Petri net. Let
(w; k) be a positive and minimal–support GMEC and r be
the corresponding monitor place. It holds that�
y =

�
x
0

�
j x 2 Imin(N)

�
[

��
w
1

��
� Imin(N

0)

(2)
where N 0 = (P [ frg; T;Pre0;Post0) is the closed–loop
net.

2A GMEC (w; k) is called positive if w � ~0m , k > 0, and is
minimal–support if there exists no P-semiflow x such that jjxjj � jjwjj,
i.e., jjwjj does not contain the support of any P–semiflow.

Proof. Proof is carried out in two different steps.
(i) We first prove that:�

y =

�
x
0

�
; x 2 Imin(N)

�
� Imin(N

0): (3)

Let C (C0) be the incidence matrix of N (N 0). Being x 2
Imin(N), it holds that xT �C = 0. Thus, yT =

�
xT 0

�
�

C0 = xT � C = 0, i.e., y =
�
xT 0

�T
is a P–semiflow of

N 0.
We prove by contradiction that y is also minimal. Let

us assume that there exists a positive vector y =
�
xT 0

�T
,

with x � x, that is a P–semiflow of N 0. This would imply
that x is not a minimal P–semiflow of N , that is a contra-
diction.

(ii) Now, let us prove that

y =

�
w
1

�
� Imin(N

0): (4)

Clearly, being yT �C0 =
�
wT 1

�
�C 0 = wT �C�wT �C =

0, we may be sure that y is a P–semiflow of N 0. We may
prove by contradiction that it is also minimal. Let us assume
that there exists another P–semiflow of N 0 such that y � y.

Two cases may occur.

— y =
�
xT 0

�T
: This would imply that w  x where

x is a minimal P–semiflow of N . But this leads to a con-
tradiction being by assumption (w; k) a minimal–support
GMEC.

— y =
�
xT 1

�T
: In such a case ~y = y�y =

�
~xT 0

�T
is a P–semiflow of N 0 and w � ~x, that leads again to a
contradiction.

Lemma 6. Let N = (PS [ fp0g [ PR; T;Pre;Post)
be an ES2PR net, where PS = fp1; � � � ; pmg and PR =
fr1; � � � ; rKg. Let (wK+1; kK+1) be a positive and
minimal–support GMEC only involving places in PS and
rK+1 be the corresponding monitor place. Let N 0 =
(PS [fp0g[PR[frK+1g; T;Pre

0;Post0) be the closed
loop net. It holds that

A =

�
y =

�
x
0

�
j x 2 Imin(N)

�
[

��
wK+1

1

��
� Imin(N

0):
(5)

Proof. We prove by contradiction that there exists no vector
v =2 A that is a minimal and positive P-semiflow of N 0.

Let us first consider table 1. If we neglect the last col-
umn, the first (K + 1)’s row vectors yi, i = 0; � � � ;K,
represent the P–semiflows of N ; vector yK+1 (when also
the last term is taken into account) is the P–semiflow of the
closed–loop net N 0 that originates from the introduction of
the monitor place rK+1.

In the most general case, the hypothetical vector v =2 A
may involve places in PS [ fp0g [ fr1; � � � ; rK ; rK+1g. It
has been included in the last row of table 1. Clearly, we
are interested in the case where the component of the P–
semiflow relative to the (K + 1)–th resource place rK+1
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p0 p1
�

pm r1
� � �

rK rK+1

y0
T 1 1 T 0

�

0
�

0 0
y1

T 0 w1
T 1

�

0
�

0 0

: : : � : :
: : 0 1 0 0
: : : � : :

yK
T 0 wK

T 0
�

0
�

1 0
yK+1

T 0 wK+1
T 0

�

0
�

0 1
vT v0 vS

T vR
T vm+K+1

Table 1: P–semiflows considered in the proof of lemma 6.

is strictly greater than zero, i.e., vm+K+1 > 0. In fact, if
vm+K+1 = 0, then [v0 v

T
S v

T
R]
T is a P–semiflow of N .

Now, let us define z = vm+K+1 � yK+1 � v. Different
cases may occur.

1. z = 0. In such a case v = vm+K+1 � yK+1 is a
non minimal P–semiflow of N 0 because it only differs from
yK+1 for the positive constant vm+K+1.

2. z � 0. In this case z is a P–semiflow (being a non
negative vector written as a linear combination of two semi-

flows) and may be written as z =
�
xT 0

�T
where x is a

P-semiflow of N . Being v = vm+K+1 � yK+1 � z � 0,
this implies that vm+K+1 � wK+1 � x, i.e., jjwK+1jj �
jjxjj. But this leads to a contradiction being by assumption
(wK+1; kK+1) a minimal–support positive GMEC.

3. z � 0. In this case ~z = �z 2 Imin(N
0) and v =

~z + vm+K+1 � yK+1 is not minimal.
4. Now, let us assume that z has both positive and nega-

tive components. We can write: z = [zT zTR zm+K+1]
T

where z 2 Zm+1, zR 2 ZK�. Note that zR � 0

by construction, given the structure of yK+1 and the as-
sumption that v � 0 (see table 1). Thus we have that

z +
PK

i=1 vR;iyi =
�
rT 0

T 0
�T

where r 2 Zm+1.
Now, let � 2 N be the smallest non–negative constant

such that z+
PK

i=1 vR;iyi+�y0 =
�
~rT 0

T 0
�T

� 0:
Note that ~r is a non–null left annuler ofCE2S , whereCE2S

is the incidence matrix of the E2S net, i.e., ~rTCE2S = 0.
Since this net has a single minimal P–semiflow 1, two dif-
ferent cases may occur.

(a) ~r = 0. In such a case, v = vm+K+1 � yK+1 +PK

i=1 vR;i � yi + �y0 and cannot be a minimal P–semiflow,
thus leading to a contradiction.

(b) ~r = 1. In such a case ~r(p0) = 1 = z(p0) =
vm+K+1 yK+1(p0)� v(p0) = �v(p0), being yK+1(p0) =
0 (see table 1). But this leads to a contradiction, being by
assumption v � 0.

In this case
�
~rT 0

T 0
�
= y0 and by definition of � we

have � = 0. In this case, v0 = �y0(p0) = �1 and this leads
to a contradiction.

Theorem 7. Let N = (PS [ fp0g [ PR; T;Pre;Post)
be an ES2PR net, where PR = fr1; � � � ; rKg. Let rK+1
be the monitor place corresponding to the minimal–support
and positive GMEC (wK+1; kK+1) only involving places

station α
3-tracks

station β
2-tracks

station γ
2-tracks

station δ
2-tracks

double
track

single
track

single
track

Figure 1: Scheme of the railway network.

in PS . The closed loop net N 0 = (PS [ fp0g [ PR [
frK+1g; T;Pre

0;Post0) is an ES2PR net if and only if
it holds that:

(a) 8 t 2 T , Pre0(rK+1; t) = 1,

(b) fp0g [ PR \ jjwK+1jj = ;, i.e., jjwK+1jj � PS .

Proof. (if) We first observe that the addition of the mon-
itor place rK+1 relative to the positive and minimal–
support GMEC (wK+1; kK+1) produces a new P–semiflow�
wT
K+1 1

�T
. Now, the if statement is trivially verified be-

cause, by lemma 5 and lemma 6, it holds that:

Imin(N
0) =

��
x
0

�
j x 2 Imin(N)

�
[

��
wK+1

1

��
:

(only if) If (a) is violated then condition 3 in definition 3 is
not satisfied; if (b) is violated, then condition 4 of defini-
tion 3 is not satisfied.

4 Enforcing liveness constraints

In a previous work [5] we have studied in detail the
problem of modeling and controlling railway networks with
Petri nets. Now we focus our attention to the problem of
global deadlock avoidance that has already been partially
considered in [8].

Consider, as an example, the railway system sketched in
figure 1 [5, 8], that represents a short segment between the
stations of Chilivani and Olbia, in Sardinia, Italy. It consists
of four stations, where the first one is a three–tracks station
while the others are two–tracks stations. All intermediate
tracks are single tracks, apart from the second one where
two trains may travel in opposite directions simultaneously.

Once the procedure of [5] has been applied and the safe-
ness enforcing supervisory controller has been designed, a
skeleton Petri net model of the supervised network (at this
level of abstraction all transitions can be considered as con-
trollable and observable) can be easily constructed. For the
railway system in figure 1 the skeleton net is shown in fig-
ure 2; here the monitors inside rectangles limit the number
of trains within stations and tracks according to each sta-
tion or track capacity. The monitor place p0 contains the
maximum number B of trains that may be allowed into the
network.

It is easy to verify using this skeleton model that sev-
eral blocking conditions may occur. Consider the case in
which B = 3 and two trains are in the station � directed
towards station � (place p9 contains two tokens) and one
train has already left station � and is moving towards sta-
tion � (place p4 contains one token). When such a marking
is reached places p5 and p8 are empty and the net reaches a
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deadlock. Note that the set of places fp5; p6; p7; p8g is an
empty deadlock.

To determine a maximally permissive liveness enforc-
ing control policy, we first observe that the reduced model
of the railway network obtained removing from the skele-
ton net all monitor places, apart from p0, is a S2P net.
In fact, it is an ordinary and strictly connected state ma-
chine with two circuits — both containing p0 — and PS =
fp1; p3; p4; p6; p7; p9; p10; p12; p14; p16; p17; p19; p20; p22g.

Moreover, by theorem 7 the whole skeleton net re-
ported in figure 2 is an ES2PR net, because all mon-
itors are relative to minimal–support positive GMECs
only involving places in PS and have only ordinary out-
put arcs. In particular, we have 8 resource places, i.e.,
PR = fp2; p5; p8; p11; p13; p15; p18; p21g corresponding to
the minimal–support positive GMECs:(

m1 +m3 � 3 m4 +m6 � 1 m7 +m9 � 8
m12 � 1 m20 +m22 � 2 m14 +m16 � 2
m17 +m+19 � 1 m10 � 1:

To ensure liveness of the model, we use proposition 4 as
in [15]. We determine if there are siphons in the net that
can become empty and if so add a monitor to control them
and prevent this. In general cases the addition of a new
monitor may yield a net that is not an ES2PR net any more.
However, theorem 7 provides an efficient and immediate
test to verify when the iterative procedure may be efficiently
continued.

We compute the liveness enforcing monitors, using a lin-
ear algebraic technique based on integer programming that
does not require the exhaustive enumeration of all siphons,
whose number is too large even for a small net such as the
one we consider. Although solving a linear integer optmiza-
tion problem is still an NP complete problem (as is siphon
enumeration) we observed that in practice the integer pro-
gramming approach is much more efficient. This technique
is inspired by other linear algebraic approaches appeared in
the literature, in particular by the results of [4].

First of all we observe that the net in figure 2 has 9 P–
semiflows corresponding to the monitor places fp0g [ PR
shown as dashed circles. The places in the support of
each semiflow are shown within a rectangle, except for
the semiflow corresponding to place p0 whose support is
PS . Thus the reachable set of the net can be approxi-
mated as R(N;m0) � IX(N;m0) = fm 2 Nm j
XTm = kg where each column of the 23 � 9 matrix
X contains a P-semiflow and k = XTm0 is a 9 � 1
vector whose components represent the token content of
each semiflow. Although we cannot formally prove that
R(N;m0) = IX(N;m0), if we can ensure that no dead-
lock markingm 2 IX(N;m0) is reachable, then no reach-
able marking may be a deadlock.

To determine if there are siphons that need to be con-
trolled in a structurally bounded ordinary net one can use,
as shown in [3], the following mixed integer linear program:8>>><

>>>:

min 1
Ts

s:t: K1Pre
T s � PostTs

XTm = k
K2s+m � K21

1
Ts � 1

(6)

p0

t16

t15

p22

p21

p20

t14

t13

p19

p18

p17

t12

t11

p16

p15

p14

t10

t9

p13

p12

p11

p10

t8

t7

p9

p8

p7

t6

t5

p6

p5

p4

t4

t3

p3

p2

p1

t2

t1

Station α Station β Station δStation γ

 single-track double-track single-track

B

Figure 2: The skeleton Petri net model of the railway net-
work in figure 1.

where s 2 f0; 1gm and m 2 Nm are the unknowns.
Here the two constants K1 and K2 are defined as: K1 =
maxf1TPost(�; t) j t 2 Tg and K2 = maxfm(p) j p 2
P;m 2 R(N;m0)g (for the net in figure 2 K1 = 2 and
K2 = B).

We claim (a formal proof can be found in [3]) that pro-
gram (6) has an admissible solution (m; s) if there exists
a reachable marking m such that the siphon S with char-
acteristic vector s is empty. The objective function chosen
for the program (6) ensures that only minimal siphons are
computed.

We started with a value of B = 2 and applied the pre-
viously described approach to determine siphons to be con-
trolled. As such a siphon is found, we add a new monitor to
the net to prevent the siphon from becoming empty. After a
few steps the procedure converges to a live net. We increase
the value of B of one token and continue the procedure.

Note that program (6) gives only sufficient conditions
for liveness (and not necessary) due to the approximation
of the reachability set with the larger potentially reachable
set. However, if a solution is found, as in the example we
study in the paper, this solution is maximally permissive: if
the siphon controlled by the monitor never gets empty the
monitor is behaviorally redundant.

Now, let us discuss in detail the procedure we adopted
to compute the positive GMEC preventing a given siphon
from becoming empty. Let S be the siphon obtained by
solving an integer linear programming problem of the form
(6). For this siphon it should be m(S) =

P
pi2S

mi � 1

or equivalently,�m(S) = �
P

pi2S
mi � �1. First of all,

for each place p 2 fp0g [ PR such that p 2 S, we replace
its marking with the marking of its complementary places.
Then, if the resulting GMEC (w; k) only contains places in
PS , we compute the incidence matrix of its monitor place
Cc = �wTC. If 8 t 2 T such that Cc(t) < 0, it holds
that Cc(t) = �1, i.e., the monitor place only has ordinary
output arcs, then both statements (a) and (b) of theorem 7
hold, and the closed loop net belongs to the ES2PR class.

In table 2 we have reported the siphons computed for B
varying from 3 to 7 and the corresponding GMECs prevent-
ing them from becoming empty. Note that when B = 2, no
siphon is determined being the net live when no more than
two trains are contained in it.

It is easy to prove that all the above positive GMECs are
also minimal–support and the addition of the correspond-
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B Siphons GMECs Monitors
3 fp5; p6; p7; p8g m4 +m9 � 2 p23
3 fp18; p19; p20; p21g m17 +m22 � 2 p24
3 fp15; p16; p17; p18g m14 +m19 � 2 p25
4 fp17; p19; p24; p25g m14 +m22 � 3 p26
4 fp2; p3; p4; p5g m1 +m6 � 3 p27
5 fp4; p6; p23; p27g m1 +m9 � 4 p28
6 fp8; p9; p11; p13; p14; p15g m7 +m10 +m12 +m16 � 5 p29
7 fp5; p6; p8; p11; p13; p14; p15g m4 +m7 +m9 +m10 +m12 +m16 � 6 p30
7 fp8; p9; p11; p13; p15; p17; p18g m7 +m10 +m12 +m14 +m16 +m19 � 6 p31

Table 2: Results of the liveness enforcing procedure.

ing monitor places does not destroy the structure of the net
that still belongs to the ES2PR class. This may be imme-
diately verified by virtue of theorem 7. On the contrary,
when B = 8, the procedure finds out a siphon that can-
not be controlled by a monitor with ordinary output arcs,
thus we have to stop because assumption (a) of theorem 7
is violated. More precisely, when B = 8 we determine
S = fp8; p9; p11; p17; p24; p26; p31g and the corresponding
GMEC is 2m7+2m10+m12+2m14+m16+m19+2m22 �
13 whose monitor has non–ordinary output arcs.

Finally let us observe that, as already mentioned in the
introduction, a similar approach has been recently proposed
by Park and Reveliotis in [14]. The procedure in [14] is
more general than ours, but requires solving a MILPP with a
larger number of binary variables, that are those that signif-
icantly increase the computational complexity of the proce-
dure. In particular, while in our approach, the number of bi-
nary variables is jP j, in the approach by Park and Reveliotis
the number of binary variables is equal to jP j+ jT j+ jPrej.
Thus we suggest that the two procedures may be used in
conjunction. So we first start with our procedure, and when-
ever a monitor place with only ordinary Pre arcs and satis-
fying the necessary and sufficient conditions (NSC) we de-
rived, then we go on with it. On the contrary, if at a certain
step we find out that a monitor with non-ordinary Pre arcs
or not satisfying the NSC should be added, we switch to the
approach proposed by Park and Reveliotis.

In the actual case, although using our procedure we are
able to ensure liveness of the model for a number of trains
up to 7, we do not apply the procedure of Park and Revelio-
tis because, as shown in [8], it is desirable to allow no more
than 5 trains in the network to bound the time it takes a train
to go from one end station to the other one.

5 Conclusions

In this paper we provided a high–level description of a
railway network using a skeleton net that belongs to a par-
ticular class of Petri nets, the ES2PR nets. The main contri-
bution of this work consisted in the derivation of the neces-
sary and sufficient condition that assures that a closed loop
net, constructed adding a monitor place to an ES2PR net,
still belongs to this class. This characterization provides a
useful test when enforcing liveness by applying a recursive
procedure that consists in the addition of appropriate moni-
tor places designed using siphon analysis.
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