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Abstract— In this paper we deal with the problem
of modeling a bottling plant using First—Order Hy-
brid Petri nets. The model we use is an hybrid model
that combines fluid and discrete event dynamics and
enables us to simulate the dynamic concurrent ac-
tivities of manufacturing systems. It also provides a
modular representation of the considered plant, thus
allowing one the bottom-up construction of models
for large scale systems.

I. INTRODUCTION

This paper shows how First-Order Hybrid Petri nets
(FOHPN), a class of nets that combine fluid and discrete
event dynamics, can be used to describe a flexible man-
ufacturing system. This hybrid model was originally
presented in [3] and adds to the formalism described
by David and Alla [1], {2} linear algebraic techniques for
analysis and control. In particular, in this paper we con-
sider the problem of modeling and simulating the pro-
duction process of a factory for the bottling of mineral
water. The simulation model we develop may be used to
evaluate the efficiency of the actual production process,
and to highlight its main drawbacks so as to better de-
termine in which directions the production cycle can be
improved. Moreover, it can be used as an efficient tool
for the solution of many management problems so as
to optimize some of the system parameters via numeri-
cal simulation. The main advantage of this approach is
that it enables us to easily take into account stochastic
and unforeseen phenomena, such as failures and abrupt
interruptions.

In this paper we consider an existing plant in Sar-
dinia, Italy, belonging to Sarda Acque Minerali (Sar-
dinian Mineral Waters). Its production process may be
divided into four main steps: PET (polyethylene) bottle
production, bottle filling, packaging, storage and trans-
portation. Each stage of the production system may
be further divided into an appropriate number of sub—
models depending on the number and type of machines
and/or buffers involved in it. Each elementary module
is modeled trough a FOHPN. Finally, all sub-nets are
put together so as to simulate the behavior of the whole
process.

The advantage of the proposed approach originates
from the following considerations. High-troughput
manufacturing systems, like those of interest here, are
discrete event dynamic systems whose number of reach-
able states is typically very large, thus the analysis and
optimization of these systems requirés large amount of
computational efforts, and problems of realistic scale
quickly become analytically and computationally un-
tractable. To cope with this problem, Auid models
which are continuous—dynamics approximations of dis-
crete event systems, may be successfully developed and

applied to the inventory management domain. This has
several advantages. Firstly, there is the possibility of
considerable increase in computational efficiency, be-
cause the simulation of fluid models can often be done
much more efficiently. Secondly, fluid approximations
provide an aggregated formulation to deal with complex
systems, thus reducing the dimension of the state space.
Thirdly, the design parameters in fluid models are con-
tinuous hence there is the possibility of using gradient
information to speed up optimization and perform sen-
sitivity analysis.

It should be noted that in general different fluid ap-
proximations are necessary to describe the same man-
agement system, depending on its discrete state. Thus,
the resulting model can be better described as an hybrid
model, where different dynamics are associated to each
discrete state.

FOHPN — and this is also generally true for Petri
pets — have been used in many application domains
such as manufacturing [4] and inventory management
control [6]. Hybrid and Batch Petri net models have
also been used for modeling packing and bottling plants
by I. Demongodin in [5].

II. FIRST-ORDER HYBRID PETRI NETS

The Petri net formalism used in this paper can be
seen as the "untimed” version of the model presented in
[3], in the sense that no timing structure is associated
to the firing of discrete traunsitions.

Net structure: An (untimed) FOHPN is a structure
N = (P,T,Pre, Post,C).

The set of places P = P;U P, is partitioned into a set
of discrete places P; (represented as circles) and a set
of continuous places P. (represented as double circles).
The cardinality of P, P; and P is denoted n, ng and
Tie.

The set of transitions T = TyUT, is partitioned into a
set of discrete transitions Ty (represented as boxes) and
a set of continuous transitions T; (represented as double
boxes). The cardinality of T, T; and T. is denoted g, g4
and ¢..

The pre- and post-incidence functions that specify the
arcs are (here Rf = RYU{0}): Pre,Post : P. xT —
RY, Pax T — N. We require (well-formed nets) that for
all t € T, and for all p € Py, Pre(p,t) = Post(p,t). This
ensures that the firing of continuous transitions does not
change the marking of discrete places.

The function € : T, = Rf x RE, specifies the firing
speeds associated to continuous transitions (here R, =
R* U {00}). For any continuous transition t; € T. we
let C(t;) = (V},V;), with Vj < Vj. Here Vj represents
the minimum firing speed (mfs) and V; represents the
mozimum firing speed (MFS). In the following, unless
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explicitly specified, the mfs of a continuous transition
will be V] = 0.

The incidence matriz of the net is defined as C(p,t) =
Post(p,t) — Pre(p,t). The restriction of C to Px and
Ty (X,Y € {c,d}) is denoted Cxy.

A marking is a function that assigns to each discrete

place a non-negative number of tokens, represented by -

black dots and assigns to each continuous place a fluid
volume. A continuous place can be seen as a tank that
can fill up with fluid (marking). However, we also con-
sider some connecting elements (such as a pipe) with
a zero capacity where fluid can flow but not accumu-
late. Thus we partition the set of continuous places
P, = Py U P, into a set of places Py (represented as full
dark circles) whose marking is always equal to zero (con-
necting elements), and a set of places P,. (represented as
double circles) whose marking may assume any nonneg-
ative real number (tanks). Therefore m : P, — Rf,
Py = 0, P; » N. The marking of place p; is denoted
m;, while the value of the marking at time 7 is de-
noted m(r). The restriction of m to P; and P, are
denoted with m® and m®, respectively. An FOHPN sys-
tem (N, m(7o)) is an FOHPN N with an initial marking
m{7o)-

Note that in the original formalism used in 3], [4] no
partition was introduced in the set of continuous places,
thus P, = P,, and places with a constant zero marking
were modeled through zero—capacity buffers.

Ezemple 1: Consider the net in figure l.a. Places
Plion; Ploffy P2ion) P2,0ff> P3.on and p3ogys are discrete
places. Places p; and p2 are continuous places, with
p1 € Pp and p; € P;. Transitions tion, ti1,05f, t2,0n,
t201f, t3,on and t3 o055 are discrete transitions. Transi-
tions t1, t2 and ¢3 are continuous transitions whose mfs
and MFS are specified between brackets.

The net in figure 1.a represents the manufacturing
process sketched in figure 1.b. The three continuous
transitions ¢, t2 and ¢3 represent three unreliable ma-
chines M, M> and M3; parts produced by the first two
machines are collected into a conveyor whose capacity
may be assumed equal to zero, and are then sent to
the third machine M3 who processed them again before
sending them to the buffer (modeled by place pz).

In the net system in figure 1.a the discrete part of
the net represents the failure model of the machines.
When place p1,on is marked, transition ¢; is enabled, i.e.,
machine M), is operational; when place p1,o¢y is marked,
transition t; is not enabled, i.e., the machine is down.
A similar interpretation applies to the other machines.
The marking represented in the net shows that initially
all machines are operational and the buffer is empty. B

Net dynamics: The enabling of a discrete transition
depends on the marking of all its input places, both dis-
crete and continuous. More precisely, a discrete transi-
tion ¢ is enabled at m if for all p; € °t, m; > Pre(pi,t),
where °t denotes the preset of transition t.

If a discrete transition t; is enabled at a certain time
instant 77, then it may fire and its firing at m(r™)
yields a new marking m(7). For each place p; it holds
mi(r) = m;(t7) + Post(pi, t;) — Pre(pi, t;) = mi(r7) +
C(pi, t;), thus we can write m°(r) = m°(r~) + C.q0,
m?(r) = m?(r") + Caao, where o is the firing count
vector associated to the firing of transition t;, i.e., o €
N% and o; =1if i = j else ; = 0.

To every continuous transition ¢; is associated an in-
stantaneous firing speed (IFS) v;(r). It represents the

Fig. 1. A First-Order Hybrid Petri Net.

quantity of markings by time unit that fires the contin-
uous transition at the generic time instant 7. For all 7
it should be V; < v;(7) < V;, thus the IFS of each con-
tinuous transition is piecewise constant between events.

An empty continuous place p; can be fed, i.e., sup-
plied, by an input transition, which is enabled. Thus, as
a flow can pass through an unmarked continuous place,
this place can deliver a flow to its output transitions.
Consequently, a continuous transition ¢; is enabled at
time 7 if and only if all its input discrete places px € Py
have a marking mx(7) at least equal to Pre(ps,t;), and
all its input continuous places p; € P. satisfy the fol-
lowing condition: either m;(7) > 0 or p; is fed. If all
input continuous places of ¢; have a not null marking,
then ¢; is called strongly enabled, else t; is called weakly
enabled. Finally, transition ¢; is not enabled if one of its
empty input places is not fed.

We can write the equation which governs the evolu-
tion in time of the marking of a place p; € P. as

mi(r) = Y C(pi,t;)v;(7) M

t; €T

where v(7) = [v1(7),... ,v,.(7)]T is the IFS vector at
time 7. Indeed Equation (1) holds assuming that at
time 7 no discrete transition is fired and that all speeds
v;(7) are continuous in 7.

The enabling state of a continuous transition ¢; de-

fines its admissible IFS v;.

e If t; is not enabled then v; = 0.

o If t; is strongly enabled, then it may fire with any
firing speed v; € [V, Vj].

« Ift; is weakly enabled, then it may fire with any firing
speed v; € [V}, V;], where V; < Vj since t; cannot re-
move more fluid from any empty input continuous place
P than the quantity entered in by other transitions.

The computation of the IFS of enabled transitions is
not a trivial task. We will set up in the next subsection
a linear—algebraic formalism to do this. Here we sim-
ply discuss the net evolution assuming that the IFS are
given.

We say that a macro-event occurs when: (a) a dis-
crete transition fires, thus changing the discrete mark-
ing and enabling/disabling a continuous transition; (b)
a continuous place becomes empty, thus changing the
enabling state of a continuous transition from strong to
weak

Let 7% and 7¢4: be the occurrence times of two con-
secutive macro—events as defined above; we assume that



within the interval of time [r¢,7k41), denoted as a
macro-period, the IFS vector is constant and we de-
note it v(rx). Then the continuous behavior of an
FOHPN for 7 € [7&,7Tk41) is described by m(r) =
me(7) + Cecv(Te)(T — 7)), me(r) = m%(r2).

Ezample 2: Let us consider again the net system in
figure 1.a. Discrete transitions t105s, t2,055 and t3.0f5
are enabled, while transitions £1,0n, t2,0n and t3.n are

disabled. Continuous transitions £1 and ¢, are strongly -

enabled, while transition t3 is weakly enabled because
it has an empty input continuous place p; that is fed by
transitions t; and 2. ]

We use linear inequalities to characterize the set of
all admissible firing speed vectors §. Each IFS vector
v € § represents a particular mode of operation of the
system described by the net, and among all possible
modes of operation, the system operator may choose
the best according to a given objective.

They form a convex set described by linear equations.

Defingtion 1 (admissible IFS vectors) Let (N, m) be
an FOHPN system with n. continuous transitions and
incidence matrix C. Let Te(m) C Tc (Tw(m) C To)
be the subset of continuous transitions enabled (not en-
abled) at m, and Pe(m) = {p € Py | mp = 0} be the
subset of empty continuous places in Py. Any admis-
sible IFS vector v = [v1,--- ,va.]T at m is a feasible
solution of the following linear set:

(@) Vi—-v; >0 Vt; € Te(m)
() v -V/>0 vt; € Ts(m)
() v;=0 Vt; € Ta(m)

d) Xy er Clo,ts)-v; 20 Vpe Pe(m)
(&) Xiyer Clo,t;)-v; =0 Vpeh
2

Thus the total number of constraints that define this set
is 2 card {Tz(m)} + card {Tw (m)} + card {Pe(m)} +
card {Po}. The set of all feasible solutions is denoted
S(N,m). =

Constraints of the form (2.a), (2.b), and (2.c) follow
from the firing rules of continuous transitions. Con-
straints of the form (2.d) follow from (1), because if a
continuous place is empty then its fluid content cannot
decrease. Constraints of the form (2.e) follow from the
fact that places in Py should always be empty by defi-
nition. Note that if V;' = 0, then the constraint of the
form (2.b) associated to ¢; reduces to a non-negativity
constraint on v;.

Ezample 3: Let us consider the net N in figure l.a.
As already discussed above the set of admissible IFS
depends on the actual marking of the net. In the par-
ticular case at hand, we first observe that a macro-event
may only occur when a discrete transition fires, being p;
an empty place by definition and p; a continuous place
with no output arcs. This implies that the set of macro—
periods may be uniquely characterized by the discrete
marking of the net.

In figure 2 we have reported the set of admissible IFS
for transitions ¢; and t.. Note that, being mi(r) = 0
for all time instants 7, it follows that va(r) = vi(r) +
va(7) for all 7, thus the dark areas in figure 2 completely
describe the set S(N,m) for all m. ~

The sets of reachable discrete markings have been
characterized by explicitly enumerating the set of
marked discrete places and have been denoted as 4, B,
--+, H. As an example, A = {p1,on,P2,0n,P3,0n} is repre-
sentative of the discrete marking m(p1,on) = m(p2,on) =

A={D1.onP 20nP 300
B={p1.ogp 2.0mP 300

v C={PromP 20fiP 300
D={p1opp 205 Psot}

"y, E={p1onp 208, P1.off
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Fig. 2. The set of admissible IFS for transitions ¢7 and tg
in figure 1.

m(ps,on) =1 and m(p1,0f5) = M{P2,055) = M{P3,05f) =
0

The plot in figure 2 has been obtained considering
that whenever transitions t; and t2 are enabled, it
should be 4 < v; € 10 and 2 < vy < 5, respectively.
Moreover, whenever transition t3 is enabled it should
be 3 < vz £ 11, thus implying two additional con-
straints in the set of IFS of transitions #; and ¢2, i.e.,
3<v +v2 <11,

The set A denotes the macro-period in which all ma-
chines are operational. The larger dark region in figure 2
is representative of the set of admissible IF'S for this dis-
crete marking. Note that an operating mode with both
transitions ¢; and ¢ firing at their MFS is not allowed
(point (10, 5) does not belong to this region).

The macro-period B corresponds to the situation in
which t; and ¢3 are enabled while ¢; is not enabled. We
may observe that ¢ may never fire at its mfs. Similar
considerations may be repeated for the macro—period C
with the only difference that in this case the admissible
IF'S of t3 imposes no additional constraint in the IFS of
t; being [V{, Vi] = [4,10] C [V4, V3] = (3, 11].

Macro-period D corresponds to the situation in which
no machine is operational.

Finally, let us observe that no operational mode exists
when the set of marked discrete places is any of the sets
E, F, G and H. As an example, let us consider the set
F. In this case the set of admissible IFS is

1 =0 m =0

2<uy2<5H 2<v2<5  _
S(N,m) = vs =0 vs =0 =0.

vi+vz—v3=0 vp2=0

Similar conclusions may be drawn for the sets E, G
and H. Physically this means that when a machine is
operational then its IFS should be within its mfs and its
MFS. If its mfs is strictly positive and we want its IFS
be null, then the machine should be switched off. ]

Once the set of all admissible IFS vectors has been
defined, we need a procedure to select one among them.
One possible way of computing an optimal IFS vector
consists in introducing an objective function that may
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Fig. 3. The Petri net model of a macro transition: (a)
detailed representation, (b) simplified representation.

be representative of a global performance index and
solving the corresponding optimization problem with
constraint set given by (2).

III. MODELING PLANT SUBSYSTEMS WITH FOHPN

In this section we present the Petri net model of the
most important elementary modules of a bottling plant,
namely transportation lines and switches, machines and
buffers, that are then put together to make the whole
Petri net model of a part of a real production plant.

We first introduce a novel elementary module of Petri
nets, named macro transition, that will be useful in the
following to get a more compact representation of the
other elementary modules. A macro transition is rep-
resented with a large rectangle with some continuous
transitions inside to denote that only one continuous
transition at a time may be enabled. In such a way we
can omit the representation of the discrete part of the
net. An example of macro transition is reported in fig-
ure 3 in the case of two continuous transitions. When
Pon,1 is marked, transition t; may fire. On the con-
trary, when the token is in pon,2, only t.» is enabled.

Transportation lines and switches: Transporta-
tion lines consist of pipes of appropriate diameter, de-
pending on the bottle sizes, where bottles are conveyed
at high speed thanks to the force produced by the com-
pressed air. Due to the high speed, the main feature of
these elements is that there is no accumulation of bot-
tles in their inside. Therefore, transportation lines may
be seen as connecting elements and the corresponding
places in the Petri net model are zero capacity places,
i.e., places in Pp.

In the general scheme the connections among different
lines may vary: this corresponds to a switch that can be
of different types: MIMO (multi input - multi output),
MISO (multi input - single output) and SIMO (single
input - multi output). In the MIMO case, we represent a
switch with a macro transition at the input and a macro
transition at the output, thus enabling one possible path
at a time. In figure 4 a MIMO switch is represented in
the case of two input and two output lines. Note that
place p. has been denoted as a dark circle because it is
a zero capacity place.

Machines: In this plant we have two different types
of machines. The first type is involved in bottles produc-
tion, while the second one is involved in bottles filling
and corking. '

Machines of the first type are equipped so as to pro-
duce bottles of different sizes. In the following, we con-
sider the case of a machine that can be used to produce
1.5 1t bottles and 2 It bottles. A detailed and a reduced
scheme of the Petri net model for such a machine is

®

Fig. 5. The Petri net model of a machine that produces
bottles: (a) detailed representation, (b) simplified repre-
sentation.

shown in figure 5. In particular, the firing of t.,; de-
notes the production of 1.5 It bottles, whereas the firing
of tc,2 denotes the production of 2 It bottles. Clearly,
the productivity of the machine is not the same in the
two cases, thus the weights of the input arcs to p. are
different. Note that the machine may also be off, thus
three discrete places have been introduced in the de-
tailed Petri net model, as well as an empty circle has
been included in the compact representation.

A dual scheme may be used to describe the function-
ing of those machines that are involved in the bottle
filling and corking. An example in the case of bottles
of two different sizes is reported in figure 6. A macro
transition with an empty circle is used again to denote
that the machine may also be off.

Buffers: A Petri net model of a buffer is reported in
figure 7 in the case that bottles of two different sizes may
be stored in it. For brevity’s requirements the detailed
model has been omitted, but it can be easily deduced
from the previous ones. When effectively modeling a
buffer we should take into account all sizes of bottles
that can be stored in it. This can be easily done by
simply introducing a continuous place for each possible

Fig. 6. The Petri net model of a machine that fills bottles:
(a) detailed representation, (b) simplified representation.



Fig. 7. The simplified Petri net model of a buffer.

format (see places p.1 and pc2). Then, an additional
place () should also be introduced to limit the total
volume of bottles entering the buffer, according to its
capacity. In this place the fluid content is complemen-
tary to the whole content of the buffer, i.e., it is empty
when the buffer is full and is full when the buffer is
empty. Clearly, the total number of bottles that can be
introduced in the buffer depend on their size, and this
is taken into account through the different values of oy
and as. Moreover, we should also impose that bottles
of different sizes are not put together. This implies that
the following conditions should be verified:
o if m(pc,1) > 0, then ¢1 2 is not enabled;
o if m(pc,2) > 0, then ¢, is not enabled.
These are safeness specifications that may be struc-
turally enforced in the net (e.g., by inhibitory arcs) or
may be imposed on-line by a supervisory controller.
Finally, let us observe that in all the examined cases,
different ranges should be assigned to continuous transi-
tions, depending on the physical system. Moreover, the
actual firing speeds should be computed as the solution
of on optimization problem that takes into account the
main goal we want to achieve. This problem has not
been dealt with in this paper, but it will be the object
of our future research.

IV. THE FOHPN MODEL OF A REAL BOTTLING PLANT

In this section we first describe a part of the whole
production process of a real bottling plant in Sardinia.
Then, we show how it can be modeled through FOHPN
by simply putting together the previous elementary
modules. For more details on the whole production pro-
cess we address to {7].

Plant description: Let us consider the flow diagram
sketched in figure 8. It represents the production cycle
whose first stage consists in the creation of the PET
bottles and whose last stage consists in self-filling and
corking. More precisely, the first operational machine
is M; that produces PET bottles starting from raw-
material of PET granules (PET chips). Thanks to an
appropriate equipment, this machine may be extremely
versatile and may produce different bottle sizes, e.g., 1.5
It and 2 It. The flow of bottles of the two types have
been distinguished in figure 8 with two different colours,
green and red, respectively. Then, the produced bottles
are directed to appropriate lines of different diameter,
depending on their size. The flow of bottles through the
conveyor lines occurs at a high speed and is induced by a
jet of compressed air. Bottles may follow different paths
and may be assigned to different buffers. Path assign-
ment may be seen as a decision problem whose solution
aims to optimize the production process. In particular,
in the case we are dealing with, there are 7 buffers (S,
Sa, - -+, S7) and the partitioning is established so as to

compensate as much as possible the delay due to the
reduced productivity of the machines that fill bottles of
mineral water with respect to those that produce them.

Finally, from buffers bottles are conveyed to the zone
of self-filling through other appropriate flow lines. Even
in this case, bottles may follow different paths so as to
better exploit the filling machines. In particular, there
are 3 filling machines that are denoted in figure 8 as M3,
M3 and My, and that can be used to fill bottles of all
Ssizes.

The FOHPN model: The FOHPN model of the
above production process has been reported in figure 9,
where all the elementary modules previously defined can
be easily recognized. The same colour notation has been
used in the two figures, so as to better distinguish the
flow of bottles of different sizes, and their flow in the
belt conveyor. We may also observe that all continuous
places with a zero capacity have been denoted as full
dark circles.

Note that two further colours with respect to those in
figure 8, namely blue and yellow, have been introduced
in figure 9 to denote that machine My is also used for
filling and corking bottles of two other sizes, namely 0.5
and 1 lt.

V. CONCLUSIONS

In this paper we have dealt with the problem of mod-
eling a bottling plant. In particular, we have considered
an existing plant in Sardinia.

To this aim we have used an hybrid Petri net model,
named First-Order Hybrid Petri net. This model has
been already used by the authors in other application
fields, such as manufacturing and inventory manage-
ment. Nevertheless, a slight variation in the continuous
place definition has been introduced here, so as to bet-
ter describe the behaviour of some elementary modules
where no fluid content accumulation may occur.
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— flow line of 2 Itb ottles
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Fig. 8. A scheme representing a part of the bottling production process.

finite capacity place for 2 It b. zero capacity place for 2 1t b.

finite capacity place for 1.5 1t b. zero capacity place for 1.5 1t b.
finite capacity place for 0.5 It b. zero capacity place for 0.5,1,1.5,2 Itb.

finite capacity place for 1 It b. zero capacity place for 1.5and 2 It b.

zero capacity place of transportation lines

Fig. 9. The Petri net model of the production process in figure 8.
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