Job-shop scheduling models with set-up times

Marco Ballicu, Alessandro Giua, Carla Seatzu

Dip. Ingegneria Elettrica ed Elettronica, Universita di Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy.
marcobal@tiscalinet.it, {giuva,seatzu}@diee.unica.it

Abstraci— In this paper we consider the classical
representation of job-shop scheduling problems in
terms of disjunctive graphs, We derive a mixed
integer-linear programming model that keeps track
of the immediate precedence relation between op-
erations. Finally, we show how this framework can
be used to solve job-shop scheduling problems with
sequence-dependent set-up times. Two cases are
considered: the set-up operation required before
processing a job on a machine may start as soon as
the machine is available, or only if both job and ma-
chine are available.

1. INTRODUCTION

A classical representation of a job-shop scheduling
problem takes the form of a graph {2], [3] where each
node represents an operation and the constraints among
operations are represented by two types of arcs. Prece-
dence constraints between operations that belong to the
same job are represented by a path of conjunctive arcs
that specifies the order in which the different operations
that compose the job should be executed. Mutual ex-
clusion constraints between operations that should be
executed on the same machine are represented by a set
of disjunctive arcs. The solution of a scheduling problem
requires to find, among all sets of disjunctive arcs that
link all operations belonging to the same machine, an
acyclic directed path (that represents the order in which
the machine processes the different operations) so as to
optimize a given performance index.

A common model [2] used to describe a job-shop
scheduling problem with N operations is a mixed
integer-linear program (MILP) in the unknowns zi; €
{0,1} where #,7 = 1,...,N. The variable z;; takes
the value 1 if operation j is processed after operation
i and takes the value 0 if operation ¢ is processed af-
ter operation j. Note that after does not necessarily
mean immediately after, in the sense that if operations
1, 2 and 3 are processed in the order {1,2,3), then
Tiz = Tz = ZF23 = 1, i.e., operation 1 is processed
before cperation 3 albeit not immediately so.

The fact that we do not keep the information on the
immediate precedence relation between operations does
not create any problem when we solve scheduling prob-
lems in which the set-up times are not considered. When
the set-up times between operations associated to dif-
ferent jobs are specified, this model may need to be
changed. Assume, in fact, that the length of the set-
up depends on the job just completed end on the one
about to be started: we say that the set-up times are
sequence-dependent [3]. In this case it is necessary to
keep the information on the immediate precedence rela-
tion between operations.

In (2] it was shown an MILP that solves the sin-
9le machine scheduling problem 1/s;; /v with sequence-
dependent set-ups. In [2] it was taken v = 3. wiCy, ie.,

the objective was that of minimizing the total weighted
completion time, but the same approach can be easily
applied to a wider class of objective functions. The new
MILP contained unknowns z;; € {0,1}: variable z;;
takes the value 1 if and only if operation 7 is processed
immediately after operation 1.

In this paper we derive a different MILP that can be
applied to more general job-shop scheduling problems
J/8i; /v with sequence dependent set-ups and an arbi-
trary number of machines. The formulation we propose
in this paper may handle two different cases. In the
first case we assume that the set-up needs to be per-
formed only on the machine, and may start as scon as
the machine has completed the precedent operation. In
the second case, we assume that the set-up can only be
performed if both machine and job are available. In this
second case falls the class of set-up problems that can
also be described with the software Lekin presented in
(3], based on heuristic algorithms.

Finally, we compare the results of our MILP approach
with the results obtained with the software Lekin, ap-
plying both programs to the same example in the ser-
vice area. In particular, we found out that for some
performance indices the approach in terms of integer
programming provides a better solution with respect to
the heuristic approach. This paper is based on the work
presented in [1].

II. THE JOB SHOP SCHEDULING PROBLEM

Scheduling problems involve a set of jobs and a set
of processors. Each job consists of a set of operations.
For each operation we know the set of machines able to
perform it and its processing time. Note that the pro-
cessing time is known because lots, unlike in lot-sizing
problems, are already sized. Operations are related by
precedence constraints [2]. Classical machine scheduling
models rely on a set of restrictive assumptions that are
briefly summarized in the following:

« single parts and batches ‘of parts are always treated
as a single job;

« preemption is not allowed;

« job cancellation is not allowed;

« processing times are independent of the schedule;

« work-in-process is allowed: this means that jobs may
wait in a quene until the next machine required for pro-
cessing is free;

« machines are able to process one job at a time;

« each job visits all machines at most once;

« machines are always available,

In scheduling problems each job is characterized by a
sequence of operations. For each operation we exactly
know the machine in which it will be executed and its
process time, The main parameters identifying a job are
the following [2]:

© 2002 IEEE SMC

TP1K3

o C;: the completion time of the i-th job, i.e., the time
at which the last operation of the i-thk job is completed;
« di: the due date, denoting the time at which the i-th
job should be completed. Note that a due date rep-
resents a soft constraint, in the sense that it can be
violated at a certain price, whereas a deadline is a hard
constraint;

« ri: the release time, i.e., the time at which the job is
released and we may start processing it;

o i = Ci — ri: the flow time that is usually considered

synonymous of lead timeé since it'is the tiine thé job™

‘spends on the shop floor.

Different classification schemes of scheduling prob-
lems have been proposed in the literature [2], [5], [6].
The most common one is due to Graham [6] and is based
on a three field coding. The classical objective functions
are built by considering the following elementary func-
tions [2]:

o flow time: F; =Ci — ry;

o lateness: L; = C; — dy;

+ tardiness: T; = maz{L;,0};

o earliness: E; = maz{—L;,0}.

The most commonly used objective functions are either
of the 'minsum’ or the minmax’ type. They are mostly
built by combining elementary functions ~;{C;) of the
completion time of the i-th job. The most significant
minsum objective functions are:

s 3, Ci: total completion time;

o 3. Ty: total tardiness;

o 3. wiCi: total weighted completion time;

o >, wiTi: total weighted tardiness.

The most significant minmax objective functions are:

o Lipay = max; Li: mazimum lateness;

» Crmax = max; C;: makespan.

Note that makespan is related to machine utilization
and minimizing makespan implies minimizing machine
idle time [2].

III. THE DISJUNCTIVE GRAPH

In this section we briefly recall how the problem of
minimizing the makespan in a job shop can be repre-
sented by a disjunctive graph. For more details we ad-
dress to [3].

Consider a job shop problem with n jobs and m ma-
chines. Each job has to be processed by a set of ma-
chines in a given order, and there is no recirculation.
The processing of job j orn machine i is referred to as
operation (%, 7), and its duration is p; ;.

Consider a directed graph G with a set of nodes A
and two sets of arcs P and D. The nodes A correspond
to all the operations (i,j) that must be performed on
the n jobs. The so-called conjunctive (solid) arcs P rep-
resent the routes of the jobs, If arc (i,j) — (k,j) is
part of P, then job j has to be processed on machine ¢
before being processed on machine &; that is operation
(i, 7) precedes operation {k, j}. Two operations that be-
long to two different jobs and that have to be processed
on the same machine are connected to one another by
two so-called disjunctive (broken) arcs going in oppo-
site directions. The disjuntive arcs D form m cligues of
double arcs, one clique for each machine Y All opera-
tions {(nodes) on the same clique have to be done on the

1C"li(;uue is & term in graph theory that refers to a graph in
which any two nodes are connected to one another; in this case
each connection within a clique is a pair of disjunctive arcs (3],

same machine. All arcs outputting from a node, con-
junctive as well as disjunctive, have associated a weight
representing the processing time of the operation that is
represented by that node. In addition, there is a source
S and a sink U, which are dummy nodes. The source
node S has in output n conjunctive arcs going to the
first operations of the n jobs, and the sink node U/ has
in input » conjunctive arcs coming from all the final
operations. The arcs emanating from the source have
length 0. We denote this graph by G = (4,P, D). An
éxample is reported in figure l.a 3] where for simplicity
of notation, cliques have been denoted as double arrows,
and many arc weights are not shown.

Note that in many cases a simpler representation of
the previous graph is adopted, where each node is de-
noted by only one integer number instead of a couple.
The equivalent representation of the graph in figure 1.a
is reported in figure 1.b. We may also observe that only
one sibscript is required to denote the duration of each
operation. Thus, in general, p; denotes the processing
time of the j-th operation represented by the node j.

A feasible schedule corresponds to a selection of one
disjunctive arc from each pair such that the resulting di-
rected graph is acyclic. That the graph is acyclic implies
that the selection of arcs within a clique must be acyclic.
Such a selection determines the sequence in which the
operations have to be performed on that machine [3].

Fig. 1. Disjunctive graphs.

IV. A MATHEMATICAL MODEL WITH NO SET-UP TIMES

In this section we discuss in detail a common model
used to describe a job-shop scheduling problem with IV
operations that is based on the disjunctive graph {2].
Using the same notation as above, A = {§,1,--- ,N, U}

denctes the set of nodes of the disjunctive graph,
while P is the set of conjunctive arcs. We also de-
fine A" = {1,---,N} as the set of nodes that actu-
ally correspond to the operations. Moreover, .we call
I the set of couples of nodes relative to the eperations
of different jobs processed by the same machine, i.e.,
D’ = {(i,5} | 3a disjunctive arc from 1 to j with 7 < j}.
Finally, As and Ay are the set of successors and pre-
decessors of S and U respectively. We assume that our
goal is that of minimizing the makespan.

This problem may be easily written an a mixed
integer-linear program (MILP)'[2): ~

min Crax

s,

ey Ciz2Ci+p; Y(i.j)eP
C; 2 Ci +p; — M(1 — zy5) . '

) C‘: > C; -i-_z):T — Mzxi; ! (i.j) € D

(c) Cizpi+r: Vi€ Ag

(d) Cmax>C: Vi€ Ay

(e} =i €{0,1} V(i,j)eD'.

(1)

The known terms are: the process times p; for all i €
A’, the release times r; for all § € Ag, an arbitrarily large
copstant M that should be greater than the maximum
allowable makespan.

The unknowns are: the completion time C; for all
i € A, ie., the time at which the i—th operation is
completed; the makespan Crmex, 2nd the binary variables
zij € {0,1} for i,j = 1,--- , N. The variable z;; takes
the value 1 if operation j is processed after operation
i on some machine and takes the value 0 if operation 1
is processed after operation j. Note that after does not
necessarily means immedialely after, in the sense that if
operations 1, 2 and 3 are processed in the order (1,2, 3),
then T12 = r13 =223 = 1.

Constraint (a) refers to operations belonging to the
same job, and imposes that operations should be exe-
cuted according to a pre-specified ordering.

Equations (b) imply that if two operations require
the same machine, they cannot overlap, i.e., one must
be scheduled before the other. In formulae, we must
enforce a disjunctive constraint:

either C; > Ci +p;

or C; 2> C;+p;.

We enforce the disjunction of these constraints by intro-
ducing a suitable large constant M and requiring

Ci —p; 2 Ci — Mzji = Cs — M{1 — x45)

Ci—pi > C; — Mz

where M should be an upper bound on the schedule
makespan. If #;; = 1 and z;; = 0, i.e., operation 1
precedes operation §, the second constraint is redundant
and the first one is enforced; the contrary happens if
z;; =0and 25 = 1.

Equation (¢} is relative to the first operation of each
job and imposes that the completion time should be
greater or equal to the sum of the release time and the
processing time of that operation.

Equation (d) refers to the last operation of each job.

So as to better clarify the above problem formula-
tion, let us consider the disjunctive graph in figure 1.b.
Let us focus our attention on the first job. The set of
constraints relative to that job are:

{a) Co2Ci+4+psy C32Co4ps
00 Cizp+n
(d) Crnax 2 Cs.

" Similar constraints should also be written for the other

twe jobs.

Let us now consider the first machine. Constraints
{b) should be written for each disjunctive arc connecting
operations 1, 5 and 8:

Cs > Ci +ps — M(1 — z15)

Arc1l &= 5{ Ct > Cs +p1 — Mz1s

Cs = C1+ps — M(1 — z15)

Arcl «— 8§ Ci > Cs+p1— Mz1s

Cs > Cs+ps — M(1 —zs8)
Arc5 «+— 8 { Cs > Cs + ps — Mzss
Similar constraints hold for the other machines.

The advantage of this mathematical formulation is
that it can be easily solved with an appropriate software
tool for integer programming problems, such as Lindo.

Let us finally observe that also the solution of the
scheduling problem may be efficiently represented with
a graph. As an example, if we consider again the above
scheduling problem, one admissible solution for the first
machine may be represented as shown in figures 2.a-b.
Both these figures represents the same solution in which
machine 1 first processes operation 1, then operation 5
and finally operation 8. In figure 2.a. each arc repre-
sents an immediate precedence, while in figure 2.b. the
additional arc 1 — 8 represents a non-immediale prece-
dence. On the contrary, an unfeasible solution is shown
in figure 2.c. In fact, in such a case the set of equations
{b) would be:

Cs 2C1+ps
Cs > Cs +ps
C1>2Ce+m

that has no sclution being all processing times different
from zero.

To conclude, we also observe that even if all machines
admit acyclic solutions, this does not imply a priori that
the graph relative to the whole scheduling problem is
acyclic as well. As an example, let us consider the graph
in figure 2.d. In this case there is no cycle associated
to the single machines, but the graph contains the cycle
1 —3—= 24— 1. Nevertheless, we may easily verify
that a spurious solution of this kind may never occur
due to equations (a) and (b) that force the following
constraints:

{a) C3>Ci+ps; Co2>Catpy
B CozCi+py C12Ci+p.

© @

Fig. 2. Disjunctive graphs.

V. A MATHEMATICAL MODEL WITH SET-UP TIMES

Machines often have to be reconfigured or cleaned be-
tween jobs. This process is known as a changeover or
set-up. If the length of the set-up depends on the job
just completed and on the one about to be started, then
the set-up times are sequence-dependent [3].

For example, paint operations often require change-
over. Every time a new color is used, the painting de-
vices must be cleaned. The cleanup time often depends
on the color just used as well as the colour about to be
used. In practice the best sequence is to go from light
to dark colors because the cleanup process is easier.

Besides taking valuable machine time, set-ups also in-
volve costs in the form of labor, waste of raw material,
and so on. For example, machines in the process and
chemical industries are not stopped when going from one
grade of material to ancther. Instead, a certain amount
of the material produced at the start of a new run is
usuaily off-quality and is discarded or recirculated [3].

In this section we present the original contribution of
this work. In particular, we derive a new model that can
be applied to different job-shop problems with set-up
times. In fact, the new model enables us to take into ac-
count the exact order of operations, and this additional
informnation is an essential requirement in many schedul-
ing problems with set-ups. On the contrary, this infor-
mation was not considered in the previous model. In
fact, in that case, whenever the binary variable z;; =1
we know that operation { precedes operation j, but we
do not know if i comes immediately before j or if some
other operation is performed among them. As an ex-
ample, in figure 2.b an arc conmecting nodes 1 and 8
has been drawn dencting that operation 1 precedes op-
eration 8. However, we can immediately observe that,
given the other two arcs, it is redundant and can be
omitted (see figure 2.a).

As an intermediate result we prove the following
lemma.

Lemma 1: Given a positive integer n € N* consider

the constraint set

(i Zn: zij=n—1

i=1j=l; i

n
2 Ti; <1

< J=li g) {2)
e
Z ri; €1
i=1; i%j

L zi; € {0,1}

Let X* = {06,1}*"" be a matrix whose elements zJ;
(for i # j) are feasible solutions of (2) while zj; = 0
(for i =1,... ,n). The directed graph G = (V, B) with
set of nodes V = {1,...,n} and set of directed arcs
B = {(3,j) | z{; = 1} is such that card(B) =n — 1 and
consists of one directed acyclic path of length between 0
and n — 1 plus zero or more elementary directed cycles.

Proof: To prove the above statement, we may con-
sider, without loss of generality, a graph with four nodes.
In this case, all solutions reported in figure 3 are feasi-
ble. We want to prove that these solutions are the only
ones, apart from those that can be obtained by sim-
ply renaming the nodes. But this immediately follows
from the consideration that the statement of the lemma
would be violated if any of the situations reported in fig-
ure 4 occur. The first case (a) would violate the second
condition stating that at most one arc may exit from
each node. The second case (b) is in contrast with the
third condition, that states that at most one arc can
enter a node. The third case (¢) that contains K > 1
acyclic paths violates the first condition since the num-
ber of arcs is in thiscasen - K <n-1. O

O—eD D7) D>—@

O—® @ @

{a) (» (e)

Fig. 3. Feasible solutions.

rs hRN

~

@ D @ 0
) ” @D
(a) {b} (c)

Fig. 4. Unfeasible solutions.

Now, let us introduce a new mathematical model that
also takes into account the set-up times.

Let A = {5,1,--- ,N,U} be the set of nodes of the
disjunctive graph representative of a scheduling prob-
lem, and A' = {1,---, N} be the set of nodes obtained
from the previous one by simply removing the dummy
nodes. As in the previous section, As and Ay are the
set of successors nodes of S and the set of predecessors
nodes of U, respectively. Let P be the set of conjunctive

arcs connecting nodes relative to operations in the same
job. Moreover, let {A1, -+ ,Am} be a partition of A’ in
m classes, where m is the number of machines. Thus,
by definition, (Ut A)U{S,U} = Aand AynAy =6
if ¢ # ¢'. Finally, let Dy = {(1,5) € &g x A, |¢ # j}
and D' = U5 D,.

Now, assume that the performance index we want to
minimize is the makespan (but it is easy to extend this
approach to a wider class of objective functions). Then
we can write the following MILP.

¢ min Coax
8..
(a) Cj > (o] + pj V(l,_’,‘) eP
(b) Cj2pj+1‘j Vi€ As ’
(C) Cj26i+pj+8§j—M(1_x‘.j) V(i,j)ED
] i + 8i5 e f YL EeD
$ (@ G52 Ci+p;+si; — M(L—=y) vane
(e} Eijen, Tii = [Aq ~ 1 Yge{l,--- ,m}
(41 (i.5)eDr Tij <1 VI'.E A"
(g) i (1,5)eD’ Tij <1 Vj cA
(h) Cnax z C; Vie Ay
(3) =z € {0,1}
(3

The known terms are: the processing times p; for all
j € A', the release times r; for all j € Ag, the set-up
times si; for all couples (%, 7) € IV, the constant M, and
the number of nodes in each disjunctive class A,.

The unknown variables are: the completion times C;
for all j € A’, the makespan, and the binary variables
zij, for 4,5 =1,--- ,N.

Note that if we also want to take into account both the
tardiness and the weighted tardiness, we simply have to
add constraints (d}, (e) and (g) of the previous problem
(1) with no set-up times.

Now, we will informally discuss in detail the set of
constraints.

We can immediately observe the equivalence between
constraints (a} and (b) of problem (3) with constraints
(a) and (c) of problem (1}.

In equation (c) we have also included the set-up times
that occur whenever job i is processed before job j in a
certain machine: 8;; denotes the time interval required
by the machine before starting the processing of job j,
after the processing of i is completed. If the set-up needs
to be performed only on the machine, and may start as
soon as the machine has completed the precedent op-
eration constraints (c) captures all constraints imposed
by the set-up.

On the contrary, if the set-up can only be performed
whenever both machine and job are available we also
need to add constraint (d) that says that the set-up
from i to j cannot start before the completion of the
operation { belonging to the same job of j and that is
the immediate predecessor of operation j.

Equation (e) establishes that the number of arcs of
the sub-graph relative to the generic machine g is equal
to the number of nodes minus one.

Equations (f) and (g) make sure that the number of
input and output arcs of each node is at most equal to
one.

Finally, equation (i) states that z;; are binary vari-
ables. In particular, if we compute z;; = 1 then opera-
tion j is processed immediately after operation i,

Proposition 1: The MILF (3} solve the problem
J/ 515 /Cmax when the set-up may start only if both ma-
chine and job are available. By removing constraints
{d) we obtain a solution for the case in which the set-up
may start as soon as the machine is available.

Proof: Follows from the previous discussion, and
the fact that equations (e), (f) and (g} are the conditions
of iemma 1 written for each machine. The introduction
of these equations in the set of constraints, insures that
for each machine the resulting graph can only assume
one of the structures shown in figure 4. Moreover, if all
processing time are non zero there may be no cycles in
the graph that describes the solution (as in figure 2.a)
thus solutions like those reported in figure 3.b and ¢ are
not feasible. 0

VI. A NUMERICAL EXAMPLE

In this section we compare the results obtained with
the approach discussed in the previous section with
those obtained using the software Lekin. We consider a
working area consisting of four buildings (see figure 5)
that have to be restored.

external area

Fig. 5. Working area.

Each sub-area may be considered as a different job,
i.e., we define: J1 (management office), J2 (warehouse},
J3 (assembly line), J4 (canteen), and 'J5 (external
area).

Each machine may be considered as a team involved
in a specific operation: M1 (cleaning team), M2 {infor-
matic team, €.g., LAN net installation), M3 (telephony
team), M4 (restoring team), M5 (equipment transport
and assembly team).

We assume that each job can be processed by only
one machine at a time and each machine can process
only one job at a time. Moreover, we assume that for
each job the first operation is M1, i.e., each area should
be cleaned before any other operation is performed on
it. Finally, the equipment transport and assembly work
cannot be performed before the restoring is finished, i.e.,
M4 must always follow M5.

Numerical data are summarized as follows. Table 6
shows the order in which the operations (M1 to M5)
should be processed on different jobs, and the corre-
sponding processing times. Also due dates are reported,
while release times are set to 0.

Set-up times are shown in figure 7 and denote the
time a certain team requires to move its equipment from
a sub-area, where an operation has been just finished,
to another one where the next operation should be per-
formed. We assume that each set-up operation can only
be executed if both the machine and the job are avail-
able. Note that in the first line of each table (referred
to as the zero line) we have reported the time a machine

i Machine, pove dus b

g"ls(MI.ls) (M3,20) (M2,18) (M4,35) (M5,10) 100
32 (ML16) (M4,10) (M35) (M28) 100
;L‘: (M1,22) (M2,14) (M4,22) (M336) 100
iu;(w,m (M4,8) (M5,12) (M3.14) 100
FI8H(M128) (M321) (MS18) (M2,15) 100

Fig. 6. Pruces'sin;,? times and due dates.

requires before starting to process a given job in the case
that this job is the first one to be executed.

Many scheduling problems have been considered with
different objective functions. Each one required the so-
Iution of a MILP of the form (3) where the set of con-
straints (that are not reported here for brevity’s sake)
always keeps the same. The software Lindo has been
used to solve them. Numerical results are summarized
in the first table of figure 8 where the most significant
parameters are given depending on the objective func-
tions. Computational times are also reported.

Finally, the same job-shop problems have also been
solved using the software Lekin and different heuris-
tic methods have been adopted. In particular, we
have used algorithms of three types: general algorithms
with a shifting bottleneck nature (GR/Cmax, GR/Trmax,
GR/Y C, GR/Y.T), algorithms with two objective
functions (SB/Tmax), and algorithms based on prior-
ity rules (EDD, FCFS, LPT, SPT). More details on
them can be found in [3]. Numerical results are reported
in the second table in figure 8 where the same charac-
teristic parameters are computed for all the objective
functions.

Comparing the results obtained with the two ap-
proaches, we can immediately observe that when our
goal is that of minimizing either the total tardiness or
the total completion time, the approach based oxn linear
programming provides a better solution. On the con-
trary, when our goal is that of minimizing either the
makespan or the maximum tardiness, some heuristic
algorithms also provide the optimal solution. Finally,
we may observe that in every case the computational
time required by heuristic approaches is significantly less
than that required for the solution of the MILP.

VII. CONCLUSIONS

In this paper we have derived an criginal model of job-
shop scheduling problems. In particular, we have shown
how it is possible to write down an mixed integer-linear
program with unknown binary variables that keep into
account the exact order in which operations are per-
formed. The main advantage of the proposed approach
is that it can be used to solve job-shop scheduling prob-
lems with set-up times.

REFERENCES

[1] M. Ballicu, Job shop scheduling: a comparison between
exact and heuristic methods, Laurea Thesis, DIEE, Uni-
versity of Cagliari, Italy, 2001.

[2] P. Brandimarte, A. Viila, Ad d models for
facturing sysiems management, CRC Press, 1995.

1 1

A3 Restoring

. a3
] 1 1 1 1

a 7031 8

n; 7 52
3 P 4
J5 1 1 1 J4 8 2 4

| T T a-d 1 1
i 4 5 1 n s 12
e) 8 301 nios 6 1
4 501 1 4 : 12 6 !
350 1 11 L3 1 1 1

Fig. 7. Set-up times.

objective function O, S0 S0 F,,, Timesec)

IT 188 670 170 88 4380
Cout 164 706 206 64 3120
G 201 612 194 101 4500
To. 164 742 247 64 1800

riwluli\.c wmethod Cooy Toaw TC 5T Tine

GR/C 164 64 702 204 1
GRTuan 164 64 702 204 1
GRZIC 204 104 623 205
GRET 190 90 675 191 I
SB/Ty,, 190 90 675 191 1
EDD 211 11t 778 283 1
ECFS 217 117 759 287 1
LPT 179 7% 783 283 |
SPT 204 104 623 205 1

Fig. 8. The results of different job-shop scheduling problems
obtained by solving an MILP (first table) and using the
software Lekin {second table).

{3] M. Pinedo, X. Chao, Operations scheduling with appli-
cations in manufaciuring and services, Irwin McGraw-
Hill, 1998.

[4] E. Demirkol, S. Mehta, R. Uzsoy, “Benchmarks for shop
acheduling problems,” European Journal of Operational
Research, Vol. 109, No. 1, pp. 137-141, August 1988.

[5]) S. French, Sequencing and scheduling: an introduc-
tion to the mathematics of the job shop, Ellis Horwood,
Chichester, UK, 1982.

[6] R.L.Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnoy
Kan, Optimization and approzimation in determinisiic
sequencing: a survey, Annals of Discrete Mathematics
5, pp. 287-326, 1979.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

