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Abstract: Continuous and hybrid Petri nets can be seen as relaxation of discrete nets, in 
which the firing of some or of all transitions is approximated with a fluid model. Several 
analysis techniques have been presented for studying these models, using either linear 
programming and incidence matrix analysis, or graph theory approaches. In this paper 
two of such approaches, one based on linear algebra and one based on graph theory, are 
used to compute the steady-state firing speed and steady-state marking of continuous 
weighted marked graphs. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 

Petri nets (PNs) were firstly introduced (Murata, 
1989) to describe and analyze discrete event systems. 
Recently, however, several attempts have been made 
to extend the discrete PN formalism to also 
encompass hybrid systems, i.e., systems presenting 
both time-driven and event-driven dynamics. The 
first steps in this direction were taken by Alla and 
David (1987) who introduced a continuous Petri net 
(CPN) model  and later a hybrid Petri net (HPN) 
model (Le Bail et al., 1991). Since then, several HPN 
models have been presented by different researchers. 
A list of relevant references can be found on the web 
(Biblio on HPN) and in a special issue on HPN 
recently published (Di Febbraro et al., 2001).  
 The particular HPN model we consider in this 
paper can be defined as “HPN with continuous 
places and transitions” (Di Febbraro et al., 2000) and 
is based on the original model of Alla and David 
(1998). In this class of models, the hybrid net 
contains two types of places: discrete places, 
containing tokens as in a discrete PN, and continuous 
places, containing fluid, i.e., non negative real 
quantities of marks. Thus, the marking of discrete 
(continuous) places represents the discrete 
(continuous) part of the state. The time-driven 
dynamics are represented by continuous transitions. 
Assigning a firing speed to a continuous transition 
can be seen as the counterpart of assigning a time 
delay to the transitions of a standard discrete PN 
model. When all nodes are discrete, such a model 
reduces to a classical timed Petri net; when all nodes 
are continuous it reduces to a continuous net (Alla 
and David, 1998). HPN models inherit all the 
advantages of PN models such as the ability to 
capture concurrency, synchronization and conflicts.  
 The study of structural properties of untimed 
models such as liveness and boundedness through 

the concept of invariants is thus possible; see Recalde 
and Silva (2000) for a discussion on this. Several 
procedures have been proposed to analyze qualitative 
and quantitative properties of such a timed model: 
timed hybrid automata (Allam and Alla, 1998), graph 
theory (Mostefaoui et al., 2000), dioid algebra (see 
Komenda et al., 2001), linear methods (Balduzzi et 
al., 2001), and of course simulation. 
 This paper aims to compare two complementary 
approaches for the analysis of timed properties: (a) 
the use of linear programming; (b) the graph theory 
algorithms that apply to particular subclasses of PNs 
such as continuous weighted marked graphs. The 
linear programming approach for the analysis and 
control  of HPNs that we describe in this paper is 
taken from Balduzzi et al. (2000). An original results 
of the present paper, presented in section 3, consists 
in applying this approach to the computation of the 
steady-state behavior (in terms of firing speeds) of 
continuous weighted marked graphs. In section 4, we 
present another approach, based on graph theory,  to 
determine the steady-state (in terms of both firing 
speeds and marking) of neutral continuous weighted 
marked graph --- modeling flow systems (chemical 
process for example) or high throughput production 
systems (packaging lines for instance).  
 

2. CONTINUOUS AND HYBRID PETRI NETS 
 

2.1. Definitions 

We define a hybrid Petri net (Alla and David, 1998), 
as a structure )0(,,,,,, MhOITPHP τ=  
where: { }mppP ,,1 L=  is a finite set of m places; 

{ }nttT ,,1 L= is a finite set of n transitions; 
ℵ→×TPI :  and ℵ→×TPO :  are the input and 

output incidence mappings; { }DCTPh ,: →∪  
defines the set of continuous nodes ( Cxh =)( ) and 
discrete nodes ( Dxh =)( ); +ℜ→T:τ : associates a 
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delay id  to a discrete transition (drawn as a black 
box), and a maximal speed iV  to a continuous 
transitions (drawn as an empty box); 

[ ]TmmmM )0()0()0( 1 L=  is the initial marking. 
Continuous places (drawn with double circles), 
contain non negative real values as markings, while 
discrete places contain non negative integer values as 
markings.  
 We denote { }'1 ,, mC ppP L=  the set of the 'm  
continuous places and { }'1 ,, nC ttT L=  the set of the 

'n  continuous transitions, while we let CD PPP −=  
and CD TTT −= . The marking at time θ  will be 
denoted [ ]TmmmM )()()( 1 θθθ L= , while CM  
(resp., DM )  is the restriction of M  to the 
continuous  (resp., discrete) places. We denote jto  
(resp., o

jt ) the set of input (resp., output) places of 
transition jt  and ipo  (resp., o

ip ) the set of input 
(resp., output) transitions of place ip . The incidence 
matrix of the net is .IOW −=  
 A discrete transition DTt ∈  is enabled at a 
marking M if for all tpi

o∈ : ).,( tpIm ii ≥  An 
enabled transition may fire yielding the marking 

),( tWMM ⋅+=′ . Note that the firing of a discrete 
transition may change the marking of both discrete 
and continuous places. 
 To every continuous transition 

Cj Tt ∈  is 
associated an instantaneous firing speed (IFS), 

)(θjv . It represents the quantity of markings by time 
unit that fires the continuous transition. Whatever the 
evolution, the instantaneous firing speed of tj is lower 
or equal to its maximal firing speed, i.e. 

jj Vv ≤)(θ . 
For a constant maximal speed assumption, the 
instantaneous firing speed has a piecewise constant 
behavior between events. As will be clear in the 
following, two types of events may change an IFS 
vector: external events, i.e., discrete transition 
firings, and internal events, i.e., the fact that a place 
becomes empty thus changing the enabling state of 
its output transitions. 
 An empty place can be fed, i.e., supplied, by an 
input transition, which is enabled. Thus, as a flow 
can pass through an unmarked continuous place, this 
place can deliver a flow to its output transitions. 
Consequently, a continuous transition 

Cj Tt ∈  is 
enabled at time θ  if and only if all its input discrete 
places (

Dd Pp ∈ ) have a marking at least equal to the 
weight ),()( jdd tpIm ≥θ and all its input continuous 
places pi satisfy the following condition:  
  Either 0)( >θim  or ip  is fed. 
If all input continuous places of jt  have a not null 
marking, jt  is called strongly enabled else jt is 
called weakly enabled. Finally, transition jt  is not 
enabled if one of its empty input places is not fed. 
 The enabling state of a continuous transition 

Cj Tt ∈  defines its admissible instantaneous firing 
speed:  
• If jt is not enabled then 0=jv . 
• If jt  is strongly enabled, then it may fire with 

any firing speed ],0[ jj Vv ∈ . 
• If jt  is weakly enabled, then it may fire with any 

firing speed ]
~

,0[ jj Vv ∈ ; in fact, it cannot 
remove more fluid from any empty input 
continuous place p than the quantity fed into p. 

There are two ways of computing an IFS vector. 
• If we consider an autonomous mode of operation, 

the IFS vector is “chosen” by the net: in this case 
it is common to consider a maximal firing speed 
policy --- it is the continuous counterpart of the 
“earliest firing policy” for discrete nets --- in 
which the firing of each transition is as high as 
possible. Note, however, that whenever there 
exists a conflict (an empty place whose inputting 
flow must be assigned to several output 
transitions) a conflict resolution policy, such as 
priority rules, must be specified.  

• On the other hand, we may consider a mode of 
operation in which an IFS vector is chosen by the 
plant operator, i.e., it is a continuous control input 
to the plant. This more general approach is 
discussed in section 3. 

In particular, if we disregard the discrete evolution 
(i.e., we consider purely continuous nets or we 
assume the discrete marking does not change), 
regardless of how the IFS vector has been computed, 
if we denote )(θjv  the IFS at time θ  of a 
continuous transition jt , the continuous evolution of 
a CPN is such that the marking )(θim  of a 
continuous place Ci Pp ∈  varies according to: 

∑ ⋅==
=

'

1
)(),(

d

)(d
)(

n

j
jji

i
i vtpW

m
m θ

θ
θ

θ&                 (2.1) 

Whenever θ  is not necessary, it will be omitted. 
 
2.2. Special structure of marked graphs 

A marked graph (MG), also called event graph, is a 
PN where each place has exactly one input and one 
output transition and the weight associated to each 
arc is equal to 1. A marked graph in which a non 
negative real weight different from one can be 
associated to an arc is called a weighted marked 
graph (WMG). We use the acronym CWMG 
(HWMG) to denote a continuous (hybrid) WMG.  
 Let us now introduce a definition following 
(Balduzzi et al., 2000). 
Definition 2.1. A HPN is continuous-conflict-free 
(CCF) at a marking M if each empty place has at 
most one enabled output transition.  ÿ 
At the light of this definition, we observe that marked 
graphs are structurally conflict free structures, in the 
sense that the fluid entering a place can only be 
removed by the firing of its unique output transition.  
 Finally, when there exists an oriented directed 
path, which connects any node (place or transition), 
to any other node of the graph, the PN is said to be 
strongly connected. 
 Based on these assumptions on the structure of 
the continuous Petri net model, section 4 will present 
the main results in terms of steady-state speed vector 
and marking. 
 

3. ANALYSIS  VIA LINEAR PROGRAMMING 
 
In this section we discuss the use of linear 
programming as a tool for the analysis and control of 
HPN, following Balduzzi et al. (2000). 



     

 First of all, we slightly generalize the framework 
presented in section 2, by assuming that to each 
continuous transition jt  is assigned not only a 
maximal firing speed jV  but a minimal firing speed 

jV ′  as well. As an example, considering a fluid 
analogy in which transitions can be seen as valves 
allowing the passage of fluids, a minimal firing 
speed greater than zero should be assigned to a 
transition that models a valve that cannot be 
completely turned off. 
 Secondly, in this section we do not assume that 
the continuous evolution of the HPN is autonomous 
or given by a pre-assigned evolution law. On the 
contrary, we take an IFS vector v

r
 to be a continuous 

control input that is applied to the plant, and the 
choice of a suitable (or optimal) IFS is the control 
problem we want to solve. 
 
3.1. Admissible IFS vectors 

Definition 3.1. Given an HPN, let M be its present 
marking, CTT ⊆ε  be the set of continuous 
transitions enabled at M, and { }0=∈= iCi mPpPε  
be the set of empty continuous places. Any 
admissible IFS vector [ ]Tnvvv '1 L

r
=  is a 

feasible solution of the following linear set denoted 
)(MS  : 














∈∀∑ ≥⋅

∉∀=
′∈∀≥′−

∈∀≥−

=
)(0),(

)(0
)(0
)(0

'

1
cPpvtpW

bTtv
aTtVv
aTtvV

n

j
jj

jj

jjj

jjj

ε

ε

ε

ε

    (3.1) 

ÿ 
The meaning of these equations is rather simple. 
Equations (a) and (a’) represent the constraint 
imposed on v

r
 by the maximal and minimal firing 

speeds and hold for all enabled transitions. Equations 
(b) specify that the firing speed of non enabled 
transitions must be zero (note that the constraint 
imposed by the maximal and minimal firing speed 
only apply to enabled transitions, i.e., a disabled 
transition may have a null IFS even if its minimal 
firing speed is greater than zero). Finally, equations 
(c) specify that the net flow entering an empty 
continuous place must be greater of equal to zero 
(negative markings are not allowed). 
 Note that the constraint set (3.1) may have no 
admissible solutions. However, the following 
elementary result holds. 
Definition 3.2. A HPN is said to be mfs-free at a 
marking M if the constraint set (3.1) contains no 
equation of the type (a’).  ÿ 
Proposition 3.3. If a HPN is mfs-free, the set of 
admissible solutions of (3.1) is non-empty.  
Proof: In this case 0

rr
=v  is obviously an admissible 

solution.  ÿ 
It is important to observe that the constraint set 

)(MS given by (3.1) may change as the marking of 
both discrete and continuous places changes. In fact, 
the discrete marking specifies the set of enabled and 
disabled continuous transitions, while the continuous 
marking specifies the set of empty continuous places.  

 In particular, if we disregard the discrete 
evolution (i.e., we consider purely continuous nets or 
we assume the discrete marking does not change) the 
constraint set )(MS  changes whenever a place 
becomes empty. Thus, we can give the following 
definition. 
Definition 3.4. Given a HPN with set of enabled 
continuous transitions CTT ⊆ε , we say that an 
admissible IFS vector [ ]Tnvvv '1 L

r
=  is a steady-

state IFS if the marking CM  is non-decreasing, i.e., 
for all continuous places CPp ∈ : 

0),(
'

1
≥∑ ⋅

=

n

j
jj vtpW  

In particular, we say that a steady-state IFS is 
stationary if the marking CM  is constant, i.e., for all 
continuous places CPp ∈ : 

0),(
'

1
=∑ ⋅

=

n

j
jj vtpW  

 Clearly, stationary IFS vectors correspond to 
dynamics where the both the continuous marking and 
the constraint set )(MS  remain constant, while more 
generally steady-state IFS vectors correspond to 
dynamics where the continuous marking may 
increase but, because no continuous place may 
become empty, the constraint set )(MS  remains 
constant. We can state the following result. 
Proposition 3.5. Given a HPN with set of enabled 
continuous transitions CTT ⊆ε , an IFS vector v

r
 is 

a steady-state IFS vector if and only if it satisfies 
(3.1).c with CPP =ε . 
Furthermore a steady-state vector v

r
 is stationary if 

and only if equations (3.1).c hold with equality for all 

CPp ∈ . 
 
3.2. Computation of an optimal IFS vector 

We now consider the following control problem: 
“given a set )(MS  choose one among all admissible 
firing vectors”. To this end, we introduce an 
objective function )(vf

r
 and solve the following 

optimization problem: 

)(..
)(max
Mvts

vf
S∈

r
r

 

 The solution to this optimization problem is the 
desired solution of the control problem. 
 Let us briefly discuss different cases of practical 
interest in which this framework may be  useful.  
1. Maximize the overall flow, i.e., the total sum of 

the IFSs. This can be done choosing a function 

∑= =
'

1)( n
j jvvf

r
.  

2. Maximize the throughput, i.e., the sum of the 
IFSs of those transitions that can be considered as 
“outputs” of the plant. This can be done choosing 
a function ∑= Θ∈j jvvf )(

r
, where Θ is the set of 

indices of all “output transitions”. 
3. Minimize the fluid stored in a subset of place P′ , 

i.e., minimize the derivative of the marking of all 
places Pp ′∈ . This can be done choosing a 

function jPp
n
j vtpWvf ⋅∑ ∑−= ′∈ =
'
1 ),()(

r
, i.e., we 

maximize the sum over places in P′  of the flow 
outputting (because of the minus sign) the places. 



     

It is important to remark that the use of linear algebra 
makes it possible to use sensitivity analysis for 
evaluating how changes in the plant parameters may 
affect the solutions of these optimization problems ( 
see Balduzzi et al., 2000). 
 
3.3. Computation of a steady state IFS  

The previously described formalism can also be 
applied to the computation of a steady-state IFS and 
steady-state marking for continuous Petri nets. In the 
general case, a CPN may admit more that one steady-
state IFS vector; furthermore both steady-state IFS 
vector and steady-state marking may depend on the 
evolution of the net starting from the initial marking. 
For sake of simplicity, we consider, as in the next 
section, the case of CWMG, although the approach 
can be applied to more general classes of nets. In the 
case of CCF nets, the IFS of each transition may be 
maximized independently of all other ones (Balduzzi 
et al., 2000), thus the maximal firing speed policy, in 
which the firing of each transition is as high as 
possible, corresponds to choosing an objective 
function ∑= =

'
1)( n

j jvvf
r

.  

 Assuming a maximal firing speed policy is used, 
a steady-state IFS is the solution of: 















∈∀∑ ≥⋅

∉∀=
′∈∀≥′−

∈∀≥−
∑

=

=

)(0),(

)(0
)(0
)(0..

max

'

1

'
1

cPpvtpW

bTtv
aTtVv
aTtvVts

v

C
n

j
jj

jj

jjj

jjj

n
j j

ε

ε

ε

 
(3.2) 

where the set of enabled transitions depends on the 
initial marking.  
Proposition 3.6. For CCF nets with no minimal 
firing speeds, system (3.2) has a solution and this 
solution is unique. 
Proof: If there are no minimal firing speeds, the 
constraint set of equations (3.2) is mfs-free and it 
admits at least a solution (see Proposition 3.3). 
Furthermore, for CCF nets (Balduzzi et al., 2000; 
theorem 13) showed that the solution of (3.2) is 

[ ]Tnvvv *
'

*
1

* L
r

=  where each *
jv  is the optimal 

solution of 

Svts

v j
ˆ..

max

∈
r  

where Ŝ  is the set of solutions of the constraint set 
of (3.2), and thus this solution is clearly unique. ÿ 
Note, however, that this solution may be the null 
vector. 
 To compute the steady-state marking it is 
necessary to study the continuous evolution of the 
system, applying (3.1) from the initial marking, and 
adding new constraints as soon as a place becomes 
empty and a simple algorithm to do this is given in 
(Balduzzi et al., 2001). Although this problem will 
not be discussed in the paper, some comments about 
this can be found in the next subsection where two 
examples are discussed. 
 

3.4 Examples 

Consider the continuous WMG in Figure 3.1.a where 
021 =′=′ VV . For this examples (3.2) rewrites as: 









≥−≥+−
≤≤

+

;0;02

;3;1..

max

2121

21

21

vvvv

vvts

vv

 

whose unique solution is [ ]Tv 00* =
r

. In this case, 
in fact, the circuit is absorbing and in steady state all 
transitions are dead (regardless of the initial 
marking). Note that the steady-marking in this 

example is [ ]TM 00)( =∞ and does not depend on 

the initial marking [ ]TxxM 21)0( = . 

p1 p2

t2

t1

V2 =3

V1 =1x1 x2

2 t2

t1

V2 =3

V1 =1

2
p1 p2

t3

V3 =2

x1 x2

p3 p4

x3 x4

0.5

(a) (b)

 

Figure 3.1. Two CWMG. 

 
Consider the continuous WMG in Figure 3.1.b where 

0321 =′=′=′ VVV . For this example, (3.2) rewrites as: 














≥−
≥+−≥−
≥+−≤

≤≤
++

;0
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3221
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vv
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whose unique solution is [ ]Tv 221* =
r

. Note that 
the steady-marking in this case depends on the initial 
marking.  

 

4. ANALYSIS OF CONTINUOUS WEIGHTED 
MARKED GRAPH VIA GRAPH THEORY 

 
4.1. Notations 

Given a CWMG N with m places and n transitions, 
we denote: irjji tppt ,,,, 1 L=ρ : a path from 
transition tj to transition ti. For place pi we denote 
(see Figure 4.1) ),( )(iwii tpOw = the weight of its 
unique input arc and ),( )(iuii tpIu =  the weight of its 
unique output arc. 

tw(i) pi tu(i)

wi ui

 

Figure 4.1. Notations on CWMG 

According to the classification given in (Teruel et al., 
1992), a circuit nppt ,,, 11 L=γ , is either 
neutral, 1)( =γG , or absorbing, 1)( <γG , or 
finally, generating, 1)( >γG . Its gain is:  

∏=
∈γ

γ
ip i

i

u

w
G )( . 



     

Under the assumption that the CWMG is strongly 
connected, it can be decomposed into elementary 
circuits. Following (Mostefaoui et al., 2000), it is 
possible to classify the graph according to the 
previous cases on circuits.  
Definition 4.1. A strongly connected CWMG, N is: 
• neutral if and only if all its circuits are neutral,  
• absorbing if and only if there exists an absorbing 

circuit, 
•  generating if and only if there exists at least one 

generating circuit and none absorbing circuit. ÿ 
Clearly, it has been established that a strongly 
connected CWMG is live if and only if all its 
elementary circuits are generating or neutral and 
there exists at least one place ip  in each circuit with 
a not null marking ( 0)0( ≥im ). In other terms, an 
absorbing graph reaches a deadlock situation. Thus, 
at the steady state, the IFS vector is the null vector 
and all places are empty. Consequently, in the rest of 
this paper, we will focus on neutral cases, whose are 
live. Some results on generating circuits can be 
found in Mostefaoui et al. (2000). 
 Now, if we assume that the continuous evolution 
of the CWMG is autonomous, i.e., we consider a 
maximal firing speed policy, in which the firing of 
each continuous transition is as high as possible, for 
these graphs, the fundamental equations (2.1), can be 
simplified as follows.  

)(.)(.)( )()( θθθ iuiiwii vuvwm −=& . 

The IFS of a weakly enabled transition jt  is:  

( ) ( ) 

















=

∈
θθ

θ
)(

)(
.min,min iw

i

i

Pp
jj v

u

w
Vv

ji

 

where { }0)()()( =∈= θθ ijij mtpP o  denotes the set of 
the input continuous places of jt  that are empty at 
timeθ . 
 From these definitions, the following property 
has been established for the neutral case. 
Property 4.2. In a neutral CWMG (supposed live), 
the IFS function is non-increasing in time, i.e.: 

1212 ),()(, θθθθ >≤∈∀ ifvvTt jjCj . 

 
4.2. Steady-state IFS vector of a neutral CWMG 

As previously defined in section 3, steady-state IFS 
vectors correspond to dynamics where the 
continuous marking may increase while the IFS 
vector remains constant. We present in this section, a 
method based on graph theory to determine the exact 
value of the firing speed vector at the steady state for 
CWMG (see (Mostefaoui et al, 2001) for proofs).  
 In the case of neutral CWMG, this vector is 
obtained independently of the value of its initial 
marking and without establishing the evolution 
graph.  
Theorem 4.3. At the stationary state, the final IFS 
vector *v

r
 of a strongly connected continuous neutral 

weighted marked graph (supposed live) is given by: 

jj Vv =*    and    jk
z

z
Vv

j

k
jk ≠∀= ,*  

where the bottleneck transition jt  verifies  









=

∈ kz
kV

Tktjz

jV

C
min ,  

and kz  is the kth component of the T-semiflow z
r

, 
solution of  0

rr
=⋅ zW , where W is the incidence 

matrix of the net.  ÿ 
It is important to observe that the final speed vector, 

*v
r

 is independent of the initial marking, i.e., at the 
steady state, the IFS of a neutral CWMG (supposed 
live) is unique whatever the initial marking and can 
be reached from any initial marking such that the 
CWMG is live.  
 
4.3. Steady-state marking of a neutral CWMG 

In the previous subsection we saw that the final IFS 
vector can directly be computed from the structure of 
the graph, thus determining which transition is 
strongly, weakly or not enabled. In neutral CWMG, 
however, the marking is also constant at the steady 
state and we show now how it can computed.  
Let N be a neutral CWMG with m places and n 
transitions. In the following, these notations are used. 
• *

BT : the set of bottlenecks transitions of N at the 
final state, i.e. { }iiCiB VvTtT =∈= ** /  

• **
BT : the set of transitions of N which are not 

bottleneck, and which have more than one input 
place, i.e. 





 ∉>∈= ° *** 1)(/ BiiCiB TtandtTtT  

• jiΓ : the set of elementary paths jiρ  from 
transition jt  to transition it . 

• iΓ : the set of elementary paths jiρ  from a 
transition of *

BT to the given transition it , which 
do not contain another transition of *

BT . 
• For *

Bi Tt ∈  and ( )ik tp °∈ , )('
ki pΓ  is the set of 

paths iji Γ∈ρ  which contains place kp . 
Definition 4.4. For path jiρ , we define its weighted 
marking ),( θρ jiN as the maximal number of marks 
that can arrive in the last place if jt  and it  are not 
fired after time θ . It is given by: 
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where )( jjir tp °∩= ρ . 

Example. For 3322113 ,,,,,, tptptpt jj =ρ , the 
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Theorem 4.5. In a neutral CWMG (supposed live), 
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Proof: see (Mostefaoui et al., 2001) 
 
4.4 Example 

Let us consider the previous example of a fluid 
system (see Figure 3.1b). This continuous PN is a 
neutral CWMG composed by two neutral elementary 
circuits:

12211 ,,, ptpt=γ  and 
42332 ,,, ptpt=γ . 

The vector [ ]Tz 221=  is a T-semiflow. Applying 
theorem 4.3, transitions 1t  and 3t  are identified as 
bottleneck transitions, and the final firing speed 
vector is: [ ]Tv 221* =

r
. 
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Finally, if 322 xx ≥  then 

[ ]TxxxxxxM 343231 05.0)( +−+=∞ , else 

[ ]TxxxxxxM 242321 2202)( +−+=∞ . 
 

 

5. CONCLUSIONS 
 
The determination of the steady state, in terms of 
final marking and firing speed vectors is one of the 
main properties on Petri nets which characterises the 
timed dynamic behavior of hybrid systems. This 
paper gives two efficient methods based on linear 
programming and graph theory to compute the steady 
state. The linear programming approach is more 
general (can be applied not only to neutral weighted 
marked graphs but to a larger class of nets) but does 
not lead to an immediate computation of the steady-
state marking. The graph theory approach leads to a  
closed form solution and allows one to also compute 
the steady-state marking but can only be presently 
applied to restricted structure of neutral weighted 
marked graphs.  
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