Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

SOME TIME ANALYSISMETHODSFOR CONTINUOUSAND HYBRID PETRI NETS

|. Demongodin® and A. Giua®

(1) IRCCyN - UMRCNRSnN® 6597/ Ecole des Mines de Nantes - 1 rue de la noé - B.P.
92101 - 44321 Nantes Cedex 3, France. Email: Isabel.Demongodin@emn.fr.
(2) Dip. Ingegneria Elettrica ed Elettronica - Universitadi Cagliari - Piazza d Armi -
09123 Cagliari, Italy. Email: giua@diee.unica.it.

Abstract: Continuous and hybrid Petri nets can be seen as relaxation of discrete nets, in
which the firing of some or of al transitions is approximated with a fluid model. Severa
analysis techniques have been presented for studying these models, using either linear
programming and incidence matrix analysis, or graph theory approaches. In this paper
two of such approaches, one based on linear algebra and one based on graph theory, are
used to compute the steady-state firing speed and steady-state marking of continuous
weighted marked graphs. Copyright © 2002 IFAC
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1. INTRODUCTION

Petri nets (PNs) were firstly introduced (Murata,
1989) to describe and analyze discrete event systems.
Recently, however, severa attempts have been made
to extend the discrete PN formalism to aso
encompass hybrid systems, i.e., systems presenting
both time-driven and event-driven dynamics. The
first steps in this direction were taken by Alla and
David (1987) who introduced a continuous Petri net
(CPN) model and later a hybrid Petri net (HPN)
model (Le Ball et a., 1991). Since then, several HPN
models have been presented by different researchers.
A list of relevant references can be found on the web
(Biblio on HPN) and in a specia issue on HPN
recently published (Di Febbraro et al., 2001).

The particular HPN model we consider in this
paper can be defined as “HPN with continuous
places and transitions’ (Di Febbraro et a., 2000) and
is based on the origina model of Alla and David
(1998). In this class of models, the hybrid net
contains two types of places. discrete places,
containing tokens as in a discrete PN, and continuous
places, containing fluid, i.e., non negative red
quantities of marks. Thus, the marking of discrete
(continuous) places represents the  discrete
(continuous) part of the state. The time-driven
dynamics are represented by continuous transitions.
Assigning a firing speed to a continuous transition
can be seen as the counterpart of assigning a time
delay to the transitions of a standard discrete PN
model. When al nodes are discrete, such a model
reduces to a classical timed Petri net; when all nodes
are continuous it reduces to a continuous net (Alla
and David, 1998). HPN models inherit al the
advantages of PN models such as the ahility to
capture concurrency, synchronization and conflicts.

The study of structural properties of untimed
models such as liveness and boundedness through

the concept of invariants is thus possible; see Recalde
and Silva (2000) for a discussion on this. Severd
procedures have been proposed to analyze qudlitative
and quantitative properties of such a timed model:
timed hybrid automata (Allam and Alla, 1998), graph
theory (Mostefaoui et a., 2000), dioid algebra (see
Komenda et a., 2001), linear methods (Balduzzi et
al., 2001), and of course simulation.

This paper aims to compare two complementary
approaches for the analysis of timed properties: (a)
the use of linear programming; (b) the graph theory
algorithms that apply to particular subclasses of PNs
such as continuous weighted marked graphs. The
linear programming approach for the analysis and
control of HPNs that we describe in this paper is
taken from Balduzzi et a. (2000). An origina results
of the present paper, presented in section 3, consists
in applying this approach to the computation of the
steady-state behavior (in terms of firing speeds) of
continuous weighted marked graphs. In section 4, we
present another approach, based on graph theory, to
determine the steady-state (in terms of both firing
speeds and marking) of neutral continuous weighted
marked graph --- modeling flow systems (chemical
process for example) or high throughput production
systems (packaging lines for instance).

2. CONTINUOUS AND HYBRID PETRI NETS

2.1. Definitions

We define a hybrid Petri net (Alla and David, 1998),
as a sructure  HP=(P,T,I,0ht,M(0)
where: P={py,---, pm} is a finite set of m places;
T={t,,-,t,}is a finite set of n transtions,
[:P"T®A and O:P " T® A are the input and
output incidence mappings, h:PET® {C, D}
defines the set of continuous nodes (h(x) =C) and
discrete nodes (h(x) =D); t :T® A™: associates a



delay d; to a discrete transition (drawn as a black
box), and a maxima speed V; to a continuous
trangtions (drawn a an empty  box);
M (0) = [my (0) M (0)]" is the initial marking.
Continuous places (drawvn with double circles),
contain non negative rea vaues as markings, while
discrete places contain non negative integer values as
markings.

We denote P ={p;,---, pyy} the set of the m'
continuous places and Tc ={t;,--,t,;} the set of the
n' continuous transitions, while we let Py =P- R
and Tp =T - Tc. The marking at time q will be
denoted M (@) =[my@) - mm(@)]", whileMc
(resp., Mp) is the redtriction of M to the
continuous (resp., discrete) places. We denote °t i
(resp., tj) the set of input (resp., output) places of
transition t; and “p; (resp., p’) the set of input
(resp., output) transitions of place p; . The incidence
matrix of thenetisW =0- 1.

A discrete transition tT Tp is enabled a a
marking M if for al pT°t: m 3 1(p;,t). An
enabled transition may fire yielding the marking
M ¢=M +W(xt) . Note that the firing of a discrete
trangition may change the marking of both discrete
and continuous places.

To every continuous transition 61T, is
associated an instantaneous firing speed (IFS)
v,@)- It represents the quantity of markings by time
unit that fires the continuous transition. Whatever the
evolution, the instantaneous firing speed of t; is lower
or equal to its maximal firing speed, i.e. v, (q) £V,
For a constant maxima speed aseumpnon the
instantaneous firing speed has a piecewise constant
behavior between events. As will be clear in the
following, two types of events may change an IFS
vector: external events, i.e., discrete transition
firings, and internal events, i.e., the fact that a place
becomes empty thus changing the enabling state of
its output transitions.

An empty place can be fed, i.e., supplied, by an
input transition, which is enabled. Thus, as a flow
can pass through an unmarked continuous place, this
place can deliver a flow to its output transitions.
Conseguently, a continuous transition 1 T, is
enabled at time g if and only if dl its mput discrete
places (p, 1 P, ) have amarking at least equal to the
weight m,(q) 2 I(p,,t;)and al its input continuous
places p; satisfy the following condition:

Either m(g) >0 or p; isfed.
If al input continuous places of t; have a not null
marking, tj is called strongly enabled else t;is
caled weakly enabled. Finaly, transition t; is not
enabled if one of its empty input placesis not fed.

The enabling state of a continuous transition
t; T T, defines its admissible instantaneous firing
speed

If t;isnot enabled then v; =0.

If t; is strongly enabled, then it may fire with

any firing speed v; i [O,V;].

If t; isweakly enabled then it may fire with any

f|r|ng speed v i [OV] in fact, it cannot

remove more fluid from any empty input

continuous place p than the quantity fed into p.

There are two ways of computing an IFS vector.
If we consider an autonomous mode of operation,
the IFS vector is “chosen” by the net: in this case
it is common to consider a maximal firing speed
policy --- it is the continuous counterpart of the
“earliest firing policy” for discrete nets --- in
which the firing of each transition is as high as
possible. Note, however, that whenever there
exists a conflict (an empty place whose inputting
flow must be assigned to severa output
transitions) a conflict resolution policy, such as
priority rules, must be specified.
On the other hand, we may consider a mode of
operation in which an IFS vector is chosen by the
plant operator, i.e., it is a continuous control input
to the plant. This more general approach is
discussed in section 3.
In particular, if we disregard the discrete evolution
(i.e, we consider purely continuous nets or we
assume the discrete marking does not change),
regardless of how the IFS vector has been computed,
if we denote vj(q) the IFS a time q of a
continuous transition t i the continuous evolution of
a CPN is such that the marking m(@) of a
continuous place p,T Pc varies according to:

M@) = qu(q’ = & W(p.) @) 21)

Whenever g isnot necesgary, it will be omitted.

2.2. Special structure of marked graphs

A marked graph (MG), also called event graph, is a
PN where each place has exactly one input and one
output transition and the weight associated to each
arc is equal to 1. A marked graph in which a non
negative real weight different from one can be
associated to an arc is caled a weighted marked
graph (WMG). We use the acronym CWMG
(HWMG) to denote a continuous (hybrid) WMG.

Let us now introduce a definition following
(Balduzzi et d., 2000).

Definition 2.1. A HPN is continuous-conflict-free
(CCF) at a marking M if each empty place has at
most one enabled output transition. s
At the light of this definition, we observe that marked
graphs are structurally conflict free structures, in the
sense that the fluid entering a place can only be
removed by the firing of its unique output transition.

Finally, when there exists an oriented directed
path, which connects any node (place or transition),
to any other node of the graph, the PN is said to be
strongly connected.

Based on these assumptions on the structure of
the continuous Petri net model, section 4 will present
the main results in terms of steady-state speed vector
and marking.

3. ANALYSIS VIA LINEAR PROGRAMMING

In this section we discuss the use of linear
programming as a tool for the analysis and control of
HPN, following Balduzzi et al. (2000).



First of al, we dightly generalize the framework
presented in section 2, by assuming that to each
continuous transition t; is assigned not only a
maximal firing speed V; but a minimal firing speed
Vg as well. As an example, considering a fluid
analogy in which transitions can be seen as valves
alowing the passage of fluids, a minima firing
speed greater than zero should be assigned to a
transition that models a valve that cannot be
completely turned off.

Secondly, in this section we do not assume that
the continuous evolution of the HPN is autonomous
or given by a pre-assigned evolution law. On the
contrary, we take an IFS vector vV to be a continuous
control input that is applied to the plant, and the
choice of a suitable (or optima) IFS is the control
problem we want to solve.

3.1. Admissible IFSvectors

Definition 3.1. Given an HPN, let M be its present
marking, Tl Tc be the set of continuous
transitions enabled at M, and P, ={p 1 Re|m =0}
be the set of empty continuous places. Any
admissible IFS vector V=[v; - Vg is a
feasible solution of the following linear set denoted
S(M) :

i Vi-vi20 1T (@)

% vi-vgio "yl T (a9

i vi=0 "t Te (b 39
Tn .
%5W(p,tj)>§/]30 "pl Pe (C)

j=1

y
The meaning of these equations is rather simple.
Equations (a) and (&) represent the constraint
imposed on Vv by the maxima and minimal firing
speeds and hold for all enabled transitions. Equations
(b) specify that the firing speed of non enabled
transitions must be zero (note that the constraint
imposed by the maxima and minima firing speed
only apply to enabled transitions, i.e., a disabled
transition may have a null IFS even if its minimal
firing speed is greater than zero). Finally, equations
(c) specify that the net flow entering an empty
continuous place must be greater of equal to zero
(negative markings are not allowed).

Note that the constraint set (3.1) may have no
admissible solutions. However, the following
elementary result holds.

Definition 3.2. A HPN is said to be mfsfree at a
marking M if the constraint set (3.1) contains no
equation of the type (a). y
Proposition 3.3. If a HPN is mfsfree, the set of
admissible solutions of (3.1) is non-empty.

Proof: In this case V=0 is obviously an admissible
solution. y
It is important to observe that the constraint set
S(M) given by (3.1) may change as the marking of
both discrete and continuous places changes. In fact,
the discrete marking specifies the set of enabled and
disabled continuous transitions, while the continuous
marking specifies the set of empty continuous places.

In particular, if we disregard the discrete
evolution (i.e., we consider purely continuous nets or
we assume the discrete marking does not change) the
constraint set S(M) changes whenever a place
becomes empty. Thus, we can give the following
definition.

Definition 3.4. Given a HPN with set of enabled
continuous trangitions T, | Te, we say that an
admissible IFS vector V:Tvl o vy |T isasteady-
state IFS if the marking M ¢ is non-decreasing, i.e.,
for all continuous places pl Pg:

.

_z‘;’ll\N(p,tj)wj 320

J:
In particular, we say that a steady-state IFS is
stationary if the marking M is constant, i.e., for all
continuous places pi Pg:

o

j=1

Clearly, stationary IFS vectors correspond to
dynamics where the both the continuous marking and
the constraint set S(M) remain constant, while more
generally steady-state IFS vectors correspond to
dynamics where the continuous marking may
increase but, because no continuous place may
become empty, the constraint set S(M) remains
constant. We can state the following result.
Proposition 3.5. Given a HPN with set of enabled
continuous transitions T, | T, an IFS vector V is
a steady-state IFS vector if and only if it satisfies
(3.1).cwith Po=P¢.

Furthermore a steady-state vector v is stationary if
and only if equations (3.1).c hold with equality for all
p| Pc.

3.2. Computation of an optimal I1FS vector

We now consider the following control problem:
“given aset S(M) choose one among al admissible
firing vectors’. To this end, we introduce an
objective function f(V) and solve the following
optimization problem:
max f (V)
st. V1 S(M)
The solution to this optimization problem is the
desired solution of the control problem.
Let us briefly discuss different cases of practical
interest in which this framework may be useful.
1. Maximize the overdl flow, i.e., the tota sum of
the IFSs. This can be done choosing a function

f (V) :érj"zlvj :

2. Maximize the throughput, i.e., the sum of the
IFSs of those transitions that can be considered as
“outputs’ of the plant. This can be done choosing
afunction f(V) =4 jiqV; , where Qisthe set of
indices of all “output transitions”.

3. Minimize the fluid stored in a subset of place P4,
i.e.,, minimize the derivative of the marking of all
places pl P¢. This can be done choosing a

function f(V) =- & 5 ped T W(P,1) %}, i€, we

maximize the sum over places in P¢ of the flow
outputting (because of the minus sign) the places.



It is important to remark that the use of linear agebra
makes it possible to use sengtivity analysis for
evaluating how changes in the plant parameters may
affect the solutions of these optimization problems (
see Balduzzi et al., 2000).

3.3. Computation of a steady state IFS

The previoudly described formalism can aso be
applied to the computation of a steady-state IFS and
steady-state marking for continuous Petri nets. In the
genera case, a CPN may admit more that one steady-
state IFS vector; furthermore both steady-state IFS
vector and steady-state marking may depend on the
evolution of the net starting from the initial marking.
For sake of simplicity, we consider, as in the next
section, the case of CWMG, although the approach
can be applied to more general classes of nets. In the
case of CCF nets, the IFS of each transition may be
maximized independently of al other ones (Balduzzi
et al., 2000), thus the maximal firing speed policy, in
which the firing of each transition is as high as
possible, corresponds to choosing an objective
function (V) =&a",v; .

Assuming a maximal firing speed policy is used,
a steady-state |IFSiis the solution of:

T max &",v;
: st. V] - Vj 30 " tJT Te (a)
i vi-vgso 1T (a9
i Wl
i Vj =0 tj | Te (b)
i o -
i .alVV(p:tj)Wj :0 pl Pc O
7 i=

(32

where the set of enabled transitions depends on the
initial marking.

Proposition 3.6. For CCF nets with no minimal
firing speeds, system (3.2) has a solution and this
solution is unique.

Proof: If there are no minimal firing speeds, the
constraint set of equations (3.2) is mfsfree and it
admits at least a solution (see Proposition 3.3).
Furthermore, for CCF nets (Balduzzi et a., 2000;
theorem 13) showed that the solution of (3.2) is

v Z[VI v:,]r where each v’j is the optimal
solution of

max v

st. viS

where S is the set of solutions of the constraint set
of (3.2), and thus this solution is clearly unique. y
Note, however, that this solution may be the null
vector.

To compute the steady-state marking it is
necessary to study the continuous evolution of the
system, applying (3.1) from the initial marking, and
adding new constraints as soon as a place becomes
empty and a simple algorithm to do this is given in
(Balduzzi et a., 2001). Although this problem will
not be discussed in the paper, some comments about
this can be found in the next subsection where two
examples are discussed.

3.4 Examples

Consider the continuous WMG in Figure 3.1.a where
V€=V4£=0. For this examples (3.2) rewrites as:

imax v +vp
}st. v E]L Vo £3;
{ -2+ 3 0 W- V3 0

whose unique solution is V' = [0 0]-r . In this case,

in fact, the circuit is absorbing and in steady state all
trangitions are dead (regardless of the initial
marking). Note that the steady-marking in this

example is M (¥) = [0 OIr and does not depend on
theinitial marking M (0) = [xl xz]T :

Figure 3.1. Two CWMG.

Consider the continuous WMG in Figure 3.1.b where
VE=V4£=V£=0. For this example, (3.2) rewrites as;

imax v +vp+vg

ist. WEL VW E3

! v3 £2; -2y +Vvr 3 0
::: Vi-05vp30; -vo+v33(;
i Vo-Vv33 0

whose unique solution is ¥* =1 2 2] . Note that

the steady-marking in this case depends on the initia
marking.

4. ANALY SIS OF CONTINUOUS WEIGHTED
MARKED GRAPH VIA GRAPH THEORY

4.1. Notations

Given a CWMG N with m places and n transitions,
we denoter 1 j; :<tj,p1,~--,pr,ti>: a path from
transition t; to transition t. For place p; we denote
(see Figure 4.1) w =0O(p;,ty)) the weight of its
unique input arc and u; =1(p;,tyG)) the weight of its
unigue output arc.

O
LY0) i tum
Figure 4.1. Notations on CWMG

According to the classification given in (Teruel et al.,
1992), a circuit g =<t1,pl,---,pn>, is either
neutral, G(g) =1, or absorbing, G(g)<1, or
finally, generating, G(g) >1. Itsgainis

G@= O

W
pilg Ui



Under the assumption that the CWMG is strongly
connected, it can be decomposed into elementary
circuits. Following (Mostefaoui et a., 2000), it is
possible to classify the graph according to the
previous cases on circuits.

Definition 4.1. A strongly connected CWMG, Nis:
neutral if and only if all its circuits are neutral,
absorbing if and only if there exists an absorbing
circuit,
generating if and only if there exists at least one
generating circuit and none absorbing circuit. y

Clearly, it has been established that a strongly

connected CWMG is live if and only if dl its

elementary circuits are generating or neutral and
there exists at least one place p; in each circuit with

a not null marking (m(0)2 0). In other terms, an

absorbing graph reaches a deadlock situation. Thus,

a the steady state, the IFS vector is the null vector

and dl places are empty. Consequently, in the rest of

this paper, we will focus on neutral cases, whose are
live. Some results on generating circuits can be

found in Mostefaoui et al. (2000).

Now, if we assume that the continuous evolution

of the CWMG is autonomous, i.e., we consider a

maximal firing speed policy, in which the firing of

each continuous transition is as high as possible, for
these graphs, the fundamenta equations (2.1), can be
simplified as follows.

M (@) = W Vi) @)- Ui vy @) -
The IFS of aweakly enabled transition t; is:

v minQv/;, min ¢V,
J(Q) ‘g\/ p||PJ(q§ (|
whereP; () :{piT ( tj)|m(q)—0} denotestheset of
the input continuous places of t; that are empty at
timeq .

From these definitions, the following property
has been established for the neutral case.
Property 4.2. In a neutral CWMG (supposed live),
the IFSfunction is non-increasing in time, i.e.:

"1 TV, @) £v,@,). ifg, >q,.

4.2. Seady-state IFSvector of a neutral CWMG

As previoudly defined in section 3, steady-state IFS
vectors correspond to  dynamics where the
continuous marking may increase while the IFS
vector remains constant. We present in this section, a
method based on graph theory to determine the exact
value of the firing speed vector at the steady state for
CWMG (see (Mostefaoui et a, 2001) for proofs).

In the case of neutral CWMG, this vector is
obtained independently of the value of its initial
marking and without establishing the evolution
graph.

Theorem 4.3. At the stationary state, the final IFS
vector vV of a strongly connected continuous neutral
weighted marked graph (supposed live) is given by:

Vj =V and

* Z|
TR ST
]

where the bottleneck transition t; verifies

Vio oo 89

—= min

Zj gl Tcgzk o
and z, is the k" component of the T-semiflow Z,
solution of WxZ =0, where W is the incidence
matrix of the net. y
It is important to observe that the final speed vector,
V' is independent of the initial marking, i.e., at the
steady dtate, the IFS of a neutral CWMG (supposed
live) is unique whatever the initial marking and can
be reached from any initia marking such that the
CWMG islive.

4.3. Seady-state marking of a neutral CWMG

In the previous subsection we saw that the final IFS
vector can directly be computed from the structure of
the graph, thus determining which transition is
strongly, weakly or not enabled. In neutral CWMG,
however, the marking is also constant at the steady
state and we show now how it can computed.
Let N be a neutral CWMG with m places and n
transmons In the following, these notations are used.

TB the set of bottlenecks tran jtions of N at the

final state, i.e. TB 6l T /v =V

TB . the set of transitions of N which are not

bottleneck, and which have more than one input

place,i.e. Tg =141 Tc/ (t,)‘>1andtll TB%

Gji : the set of elementary paths r from

transtlon t; totransition t; .

G: the set of elementary paths I ;; from a

transition of Tg to the given transition t which

do not contain another transition of TB

For ;1 Tg and pid (), G(P,) isthe set of

paths r ;1 G which contains place p, .
Definition 4.4. For path r i, we define its weighted
marking N(r ji,q) as the maximal number of marks
that can arrive in the last place if t; and t; are not

fired after time q . Itisgiven by:
2 m( Pk, ~ W
N(rjig)=u. & m(px.q) o] .
pk! rji Uk Tir ./I s=(Pk)° Up
pp S %rsi‘l rji

where p, =T l-i(;o(tj).

Example. For r j3 :<tj . P11, P2.to, p3,t3>, the
weighted marking is:

gam wp W3 My W3 mg0
€Uz U3 Uz Uz usp
Theorem 4.5. In a neutral CWMG (supposed live),

the final marking m: of place P, at the stationary
state is given by:

N(r ji,q) =us!

iyl Tg,

0
W,
me o) i)
/I ts=(p)° Up
1
1!' | I’“

min (¢

”}*= mm (N(r ji-do)) = k:
Pl rji Uk b

]I T G
plTs

ft1 T, " p 1 “ft).
*=  min  (N(ri,dp)- U. min
r il G'(pr) jRRonT il G
Ps=r ji C°(ti)

(u—ls.Nv i.90)



If ti l (TB ETg ), " pr i o(ti): m*:o
Proof: see (Mostefaoui et al., 2001)

4.4 Example

Let us consider the previous example of a fluid
system (see Figure 3.1b). This continuous PN is a
neutral CWMG composed by two neutral elementary

cireuits'g, = (t,, P, t,, py) ad g, =(t;, Pa.ty, Py -
Thevector z=[1 2 2[" isaT-semiflow. Applying
theorem 4.3, transitions t; and 1, are identified as
bottleneck transitions, and the fina firing speed
vectoris V' =1 2 2

We  deduce TE: ={t1:t3}, Tg** :{tz},
G= {rn’ } r11291"’31:<t31ps’tz’p11t1>'
Gé:{ 127 } o= <1’ P,.t, >,I’32:<t3,p3,t2>,
G= { 13,I’33} <t1vp2v 21 Past > M3 =0;
By theorem 4.5:

For place P :

m*1=_min (N(r j1,d0))= min(N(r 12,60), N(r 31,60))
rgl g

N(r 31’q0):u1_m_|_ n13( O) 71

g =X X
U Us U, ﬂ
N(r11.d0) = Ul-gml(%) nhu(j o) Vu\/_lL;_ 2X2+%;

m*1 =min(2.xo + X, X + X3) -
For place p: Gz'(pz) ={ o
12.%) N(r5,00) 0,
Us ﬂ

N(r 12‘q0) u2 mlng

N(r,.9,) = uz.gsenz(qo)%: X,
2

4,)0

_ oy E@m(00)0_
N(r 5,00) =Ug g =7 2=
(r 32 qO) u3g u3 ﬂ X3
m* =X, - 0.5min(2.x,,x,) -
For place p3: Gz'(ps):{rsz}v

- &N(r 1o, N(r 32,00) 0
mg* = N(r 32,00)- u3.mm§ ( Llé QO)’ ( iz QO):,
g

mg* = X3 - min(2.xo, X3)
For place py:

m*g = min (N(r 13,CI0))= min(N(r 13,90), N(r 33.00))
risl &

5
N(r13,q0) = U4-§w + mZ(QO)-Mi: Xg+2.Xp

w2 UWg

N(r 33,dp) = u4.§m + ms(%)

w,
4"><4+><3
U3 Usg

m*4 = min(xg + X4,2.X2 + Xg) .
Finaly, if 2X5 3 X3 then

M) =[x +X3 Xp-05x3 0 x4+x3|T, else

M(¥):[Xl+2X2 0 X3 - 2X2 X4 +2X2]T

5. CONCLUSIONS

The determination of the steady state, in terms of
final marking and firing speed vectors is one of the
main properties on Petri nets which characterises the
timed dynamic behavior of hybrid systems. This
paper gives two efficient methods based on linear
programming and graph theory to compute the steady
state. The linear programming approach is more
genera (can be applied not only to neutral weighted
marked graphs but to a larger class of nets) but does
not lead to an immediate computation of the steady-
state marking. The graph theory approach leads to a
closed form solution and allows one to aso compute
the steady-state marking but can only be presently
applied to restricted structure of neutral weighted
marked graphs.

REFERENCES

Alla, H., and R. David, (1987), Continuous Petri Nets.
Proc. 8th Int. Work. on Appl. and Theory of Petri Nets,
(Zaragoza, Spain), pp. 275-94.

Alla, H., and R. David, (1998), Continuous and Hybrid
Petri  Nets. Journal of Circuits, Systems, and
Computers. vol. 8. n° 1, pp. 159-88.

Allam, M., and H. Alla, (1998), From hybrid Petri nets to
hybrid automata, European Journal of Automation, vol.
32, n° 9-10, p.1165-85.

Balduzzi, F., A. Giua, and G. Menga, (2000), First-Order
Hybrid Petri Nets. a Model for Optimization and
Control," |EEE Trans. on Robotics & Automation, vol.
16, n° 4, pp. 382-99.

Baduzzi, F., A. Giua, and C. Seatzu, (2001), Modelling
and Simulation of Manufacturing Systems Using First-
Order Hybrid Petri Nets. Int. J. Product. Research, val.
39, n° 2, pp. 255-82.

Biblio on HPN, Bibliography on Hybrid Petri Nets.
http://www.diee.unica.it/~hpn.

Di Febbraro, A., A. Giua, and G. Menga, eds. (2001).
Specia Issue on Hybrid Petri Nets. Discrete Event
Dynamic Systems, vol. 11, n° 1& 2.

Komenda, J, A. El Moudni, and N. Zerhouni, (2001).
Input-output relation and time-optimal control of a
class of hybrid Petri nets using (min, +) semiring.
Discrete Event Dynamic Systems, vol. 11, n° 1, pp. 59-
75.

LeBail, J., H. Alla, and R. David, (1991). Hybrid Petri nets.
European Control Conference (Grenoble, France),
pp.1472—7.

Mostefaoui, M., |I. Demongodin, and N. Sauer, (2000).
Steady state of flow systems. Automation of Mixed
Processes ADPM2000 (Dortmund, Germany), pp. 357-
62.

Mostefaoui, M., |I. Demongodin, and N. Sauer, (2001).
Find Marking of Continuous Neutral Weighted
Marked Graphs, Proc. Int. Symp. on Intelligent
Control, Mexico, pp.211-8.

Murata, T., (1989). Petri Nets. Properties, Anaysis and
Applications, Proc. |IEEE, vol. 77, n° 4, pp. 541-80.
Recalde, L., and M. Silva, (2000). PN Fluidification
revisited: Semantics and Steady State. Automation of
Mixed Systems ADPM2000 (Dortmund, Germany), pp.

279-86.

Teruel, E., P. Chrzastowski-Wachtel, JM. Colom, and M.
Silva (1992). On Weighted T-System. Lecture Notesin
Computer Science. Proc. 3™ Int. Conf. on Application
of Petri nets (Sheffield, UK) vol. 616, pp. 348-67.



