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Piazza d’Armi, 09123 Cagliari, Italy

{giua,seatzu}@diee.unica.it

Abstract

For continuous-time switched affine systems, this paper proposes an approach for solving infinite-
horizon optimal control problems where the decision variables are the switching instants and the
sequence of operating modes. The procedure iterates between a “master” procedure that finds an op-
timal switching sequence of modes, and a “slave” procedure that finds the optimal switching instants.
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1 Introduction

Switched systems are a particular class of hybrid systems that switch between many operating modes,
where each mode is governed by its own characteristic dynamical law [8]. Typically, mode transitions
are triggered by variables crossing specific thresholds (state events), by the elapse of certain time periods
(time events), or by external inputs (input events). The problem of determining optimal control laws
for this class of hybrid systems has been widely investigated in the last years and many results can be
found in the control and computer science literature. For continuous-time hybrid systems, most of the
literature is focused on the study of necessary conditions for a trajectory to be optimal [15], and on
the computation of optimal/suboptimal solutions by means of dynamic programming or the maximum
principle [6, 7, 11, 12, 16, 19].

The hybrid optimal control problem becomes less complex when the dynamics is expressed in discrete-
time or as discrete-events [1, 5]. In such a case, the main source of complexity is the combinatorial
number of possible switching sequences. By combining reachability analysis and quadratic optimization,
in [2] we proposed a technique that rules out switching sequences that are either not optimal or simply not
compatible with the evolution of the dynamical system. An algorithm to optimize switching sequences
that has an arbitrary degree of suboptimality was presented in [13].

In the continuous-time case, and in particular for switched linear systems composed by stable au-
tonomous dynamics, by assuming that the switching sequence is preassigned (and, therefore, that the
only decision variables to be optimized are the switching instants), in [9, 10] we proved an important
result: the control law is a state-feedback and there exists a numerically viable procedure to compute the
switching regions Ck,N , i.e., the points of the state space where the k-th switch of a sequence of length
N should occur.

In this paper we solve the optimal control problem for continuous-time switched affine systems in which
both the switching instants and the switching sequence are decision variables. The procedure exploits a
synergy of discrete-time and continuous-time techniques, by alternating between a “master” procedure
that finds an optimal switching sequence and a “slave” procedure that finds the optimal switching instants.
A few simple heuristics can be added to the algorithm to improve its performance. Although the final
optimal switching policy is computed for a given initial state, as a by-product of the algorithm it has a
state-feedback nature, which is only valid however for “small” perturbations of the initial state such that
the optimal switching sequence does not change. A related approach that optimizes hybrid processes
by combining mixed-integer linear programming (MILP) to obtain a candidate switching sequence and
dynamic simulation was proposed in [14]. A two-stage procedure which exploits the derivatives of the
optimal cost with respect to the switching instants was proposed in [19].

Although we formally prove that the algorithm always converges to a local minimum, the global mini-
mum is not always reached. We run the algorithm on a large number of random tests and observed that
it converges extremely quickly to the global optimum on most of the problems.

The paper extends previous results appeared in [3] by allowing arbitrary affine dynamics (non-asymptotically
stable transition matrices and constant perturbation terms).



A different solution to the same optimal control problem has been proposed by the authors in [4], that is
inspired by dynamic programming and is based on the construction of switching tables. In such a case the
global optimum is guaranteed and the procedure always provides a closed loop solution. Nevertheless,
the computational complexity of the off-line part is significantly larger. A detailed comparison among
the two approaches is given in [4].

2 Problem Formulation

In this paper we consider the following class of hybrid systems

ẋ(t) = Ai(t)x(t) + fi(t), i(t) ∈ S (1)

that we denote as switched affine systems, where x(t) ∈ Rn, i(t) ∈ S is the control variable, and
S , {1, 2, . . . , s} is a finite set of integers, each one associated with an affine dynamics.

For such a class of hybrid systems we want to solve the following optimal control problem

V ∗
N , min

I,T

{
F (I, T ) ,

∫ ∞

0
x′(t)Qi(t)x(t)dt

}

s.t. ẋ(t) = Ai(t)x(t) + fi(t)

x(0) = x0

i(t) = ik for τk−1 ≤ t < τk

ik ∈ S, k = 1, . . . , N + 1

τ0 = 0, τN+1 = +∞
τk ∈ R≥0 ∀k = 1, . . . , N

(2)

where N is the maximum allowed number of switches (fixed a priori), T , {τ1, . . . , τN} is a finite
sequence of switching times, I , {i1, . . . , iN+1} is a finite sequence of switching indices, and x0 is the
initial state of the system. We assume that Qi is a positive definite weight matrix associated with the i-th
dynamics, for all i ∈ S . We denote by i∗(t), t ∈ [0,+∞), i∗(t) = i∗k for τ∗k−1 ≤ t < τ∗k the switching
trajectory solving (2), and I∗, T ∗ the corresponding optimal sequences.

In order to make the problem solvable with finite cost V ∗
N , we assume the following:

Assumption 1. There exists at least one index i ∈ S such that Ai is strictly Hurwitz and fi = 0.

The optimal control problem may be easily generalized. One may assume that whenever at time τk a
switch from ik to ik+1 occurs, the state should jump from x(τ−k ) to x(τ+k ) = Mkx(τ

−
k ) as in [10]. One

may also assume that a cost is associated to each switch as in [9]. However, to avoid heavy notation in
this paper we only restrict to the basic framework (2).



The optimal control problem (2) may also be rewritten as:

min
I,T

{
N+1∑
k=1

x′k−1Q̄ik(k)xk−1 + c̄ik(k)xk−1 + ᾱik(k)

}

s.t. xk = Āik(k)xk−1 + f̄ik , k = 1, . . . , N + 1

x0 = x(0)

(3)

where

Āi(k) , e(τk−τk−1)Ai ,

f̄i(k) ,
∫ τk

τk−1

e(τk−t)Aidt
(4)

and Q̄i(k), c̄i(k), ᾱi(k) can be obtained by simple integration and linear algebra 1.

Consider a decomposition of (3) into the following “master” and “slave” subproblems:
Problem 1 (Master). For a fixed sequence of switched times τ̄1, . . . , τ̄N , solve the optimal control prob-
lem (3) with respect to i1, . . . , iN+1. Denote by

{i1, . . . , iN+1} = fM (τ̄1, . . . , τ̄N ) (5)

and VM (τ̄1, . . . , τ̄N ) the optimizing index sequence and optimal value, respectively.
Problem 2 (Slave). For a fixed sequence of switching indices ı̄1, . . . , ı̄N+1, solve the optimal control
problem (3) with respect to τ1, . . . , τN . Denote by

{τ1, . . . , τN} = fS (̄ı1, . . . , ı̄N+1) (6)

and VS (̄ı1, . . . , ı̄N+1) the optimizing timing sequence and optimal value, respectively.

1In [3] we assumed Ai asymptotically stable and simply expressed Q̄i(k) = Zi − Ā′
i(k)ZiĀi(k), where Zi is the unique

solution of the Lyapunov equation A′
iZi + ZiAi = −Qi. The same computation is valid when the eigenvalues of Ai are all

unstable. On the other hand, in this paper we are not making any assumptions on the eigenvalues of Ai, and moreover we have
the affine terms fi. We can still compute Q̄i(k) by using direct integration. Indeed, if for simplicity we assume that Ai is
diagonalizable, Ai = T−1

i ΛiTi, Λi = Diag{λ1
i , . . . , λ

n
i }, and fi = 0, we obtain∫ τk

τk−1
x′(t)Qikx(t)dt =

x′
k−1 T

′
ik

(∫ τk

τk−1

eΛik
t(T−1

ik
)′QikT

−1
ik

eΛik
tdt

)
Tik︸ ︷︷ ︸

Q̄ik

xk−1.

The case of Ai not diagonalizable and fi ̸= 0 is similar.



3 Master Algorithm

For a fixed sequence of switched times τ̄1, . . . , τ̄N , the master algorithm solves the optimal control
problem (3) with respect to i1, . . . , iN+1. It is a purely combinatorial problem that can be rephrased as:

min
ik∈S

{
N+1∑
k=1

x′k−1Q̄ik(k)xk−1 + c̄ik(k)xk−1 + ᾱik(k)

}

s.t. xk = Āik(k)xk−1 + fik(k), k = 1, . . . , N + 1

x0 = x(0).

(7)

Problem (7) can be efficiently solved via Mixed-Integer Quadratic Programming (MIQP) (see e.g. [17]
or the free Matlab solver available at http://control.ethz.ch/˜hybrid/miqp). To this end,
we need to introduce binary variables γki ∈ {0, 1} and continuous variables zki ∈ Rn, i ∈ S, k =

1, . . . , N + 1, where

[γki = 1] ↔ [i(k) = i], (8a)

∀k = 1, . . . , N + 1, ∀i ∈ S (8b)

zk+1
i = (Āi(k)xk−1 + f̄i(k))γ

k
i , (8c)

∀k = 1, . . . , N, ∀i ∈ S (8d)

z1i = x0γ
1
i , ∀i ∈ S (8e)

xk =

s∑
i=1

zk+1
i , ∀k = 0, . . . , N (8f)

s⊕
i=1

γki = 1, ∀k = 1, . . . , N + 1 (8g)⊕
i∈Sas

γN+1
i = 1, (8h)

where the exclusive-or constraint (8g) follows by the fact that only one dynamics can be active in each
interval k, and in (8h) Sas is the set of indices i ∈ S such that Ai is strictly Hurwitz and fi = 0, so that
the last dynamics to be asymptotically stable and linear.

Constraints (8d)-(8e) can be transformed into the following set of mixed-integer linear inequalities by
using the so-called “big-M” technique (see e.g. [5, 18] for details):

zki ≤ Mγki , ∀k = 1, . . . , N + 1 (9a)

−zki ≤ Mγki , ∀k = 1, . . . , N + 1 (9b)

zk+1
i ≤ Āi(k)xk−1 + f̄i(k) +M(1− γki ), (9c)

∀k = 1, . . . , N (9d)

−zk+1
i ≤ −Āi(k)xk−1 − f̄i(k) +M(1− γki ), (9e)

∀k = 1, . . . , N (9f)

z1i ≤ x0 +M(1− γ1i ) (9g)

−z1i ≤ −x0 +M(1− γ1i ) (9h)



for all i ∈ S, where M ∈ Rn is an upper bound on the state vector x (more precisely, the j-th component
M j of M is an upper bound on |xj |, where xj is the j-th component of the state vector), and therefore
an upper bound on x0 and on Ai(k)xk−1 + f̄i(k) = xk, for all k = 2, . . . , N +1, i ∈ S. Usually M can
be estimated on the basis of physical considerations on the hybrid system. Constraints (8g)–(8h) can be
instead expressed as

s∑
i=1

γki = 1, ∀k = 1, . . . , N + 1

γN+1
i = 0, ∀i ̸∈ Sas.

(10)

Summing up, the master problem (7) is equivalent to the MIQP

min
xk, γ

k
i , z

k
i

k = 1, . . . , N + 1

i = 1, . . . , s

N+1∑
k=1

s∑
i=1

[
(zki )

′Q̄i(k)z
k
i +

c̄i(k)z
k
i + ᾱi(k)γ

i
k

]
s.t. (8f), (9), (10).

(11)

4 Slave Algorithm

For a fixed sequence of switching indices ı̄1, . . . , ı̄N+1, the slave algorithm solves the optimal control
problem (3) with respect to τ1, . . . , τN .

A solution to this problem where the switching sequence is pre-assigned and the system dynamics are all
asymptotically stable and linear, was already presented in [10]. In particular, in [10] it was shown that
the optimal control law turns out to be a “homogeneous feedback”, in the sense that for all k ≤ N : (a) it
is possible to identify a region Ck,N of the state space such that the k–th switch should occur if and only
if we are within this region; (b) this region is homogeneous, i.e., if x ∈ Ck,N , then λx ∈ Ck,N , for all real
numbers λ.

We have also provided an algorithmic way to construct the regions. In fact, we observed that it is suffi-
cient to determine which points on the unitary semi–sphere belong to a region to completely determine
the region itself (because it is a homogeneous space). In [10] we have also shown that these switching
regions can be computed starting from the last one.

Here, we first show that all these results can be easily extended to the case of linear systems whose dy-
namics may also be unstable, with the only requirement that there exists at least one admissible dynamics
that is strictly Hurwitz. In such a case the residual cost from the k-th to the N -th switch, given a state x,
may be written as:

Fk(x, δk, δk+1, . . . , δN ) =
∑N+1

j=k x′j−1Q̄ij (j)xj−1 (12)



where δj = τj − τj−1 is the j–th switching interval and xk−1 = x.

The analytical expressions of Q̄ij ’s are not reported here for brevity, but they can be easily computed by
following the same reasoning of footnote 1 at page 4. Moreover, the last system dynamics will always
be chosen stable, thus Q̄iN+1(N + 1) = ZiN+1 where ZiN+1 is the unique solution to the Lyapunov
equation A′

iN+1
ZiN+1 + ZiN+1AiN+1 = −QiN+1(N + 1). The other Q̄ij ’s only depend on the j-th

system dynamics and on the values of δr for r = j + 1, · · · , N . Thus, we may conclude that Fk is a
quadratic function of x.

As in [10], we may also define the corresponding k-th optimal switching interval as:

δ∗k(x) = arg min
δk∈R+

0

Fk(x, δk, δ
∗
k+1(xk), . . . , δ

∗
N (xN−1))

where xj = eAjδ
∗
j (xj−1)xj−1. Finally we obtain

Ck,N = {x | δ∗k(x) = 0} k = 1, . . . , N. (13)

We also observe that for all λ ∈ R, all k ∈ N and all x ∈ Rn: δ∗k(λx) = δ∗k(x). Thus, by repeating the
same reasoning of [10], we can conclude that the regions are still homogeneous. This implies that we
may use the same procedure of [10] for the computation of the switching regions: we choose a suitable
discretization step and for each point x on the unitary semi–sphere, determine if it belongs to CN,N ,
CN−1,N , etc., also computing step by step the corresponding values of the remaining cost. The output of
this procedure is the set of switching regions. To determine the optimal switching instants, the evolution
of the system is simulated starting from the initial state x0, by switching as soon as the next switching
region is reached.

Let us finally consider the most general case of affine dynamics. The previous approach (homogeneous
regions) remains valid, because we can rewrite the original affine dynamics as a linear dynamics by
augmenting the state space from Rn to Rn+1:

d

dt

[
x(t)

x̃(t)

]
=

[
Ai(t)x(t) fi(t)

0 0

][
x(t)

x̃(t)

]
.

Note that the (n+ 1)-th state variable x̃(t) is a fictitious variable that is not taken account in the compu-
tation of the cost function. This implies that Assumption 1 should only hold for the original system and
not for the augmented one.

5 Master-Slave Algorithm

The proposed master-slave algorithm is structured as follows:
Algorithm 1.



1. Initialize T (0) ← {τ1, . . . , τN} (e.g., τk are randomly or uniformly distributed), k =

1, I(0) = {−1, . . . ,−1}; Let ϵ > 0 a given tolerance;

2. Solve the master problem I(k)← fM (T (k − 1));

3. If |F (T (k − 1), I(k))− F (T (k − 1), I(k − 1))| ≤ ϵ set T (k)← T (k − 1) and go to 7.

4. Solve the slave problem T (k)← fS(I(k));

5. k ← k + 1;

6. Go to 2.;

7. Set {τ1, . . . , τN} ← T (k), {i1, . . . , iN+1} ← I(k);

8. End
Proposition 1 ([3]). Algorithm 1 stops after a finite number of steps Nstop.
Definition 1. The optimal control problem (2) is said switch-degenerate if there exist a sequence T and
I1 ̸= I2 such that F (I1, T ) = F (I2, T ).
Definition 2. The optimal control problem (2) is said time-degenerate if there exist a sequence I and
T1 ̸= T2 such that F (I, T1) = F (I, T2).

The following Proposition 2 proves that Algorithm 1 cannot cycle over the same switching sequences,
and I(k) ̸= I(j) for all j ̸= k, j, k ∈ {1, . . . , Nstop − 1}:
Proposition 2. Let ϵ = 0 and assume problem (2) is not switch-degenerate. Let step 3. be modified as
follows

3’. If I(k) = I(k − 1) go to 7.;

Then Algorithm 1 stops after a finite number of steps Nstop.

Proof. See [3].

We remark that although Algorithm 1 converges to a solution (I, T ) after a finite number Nstop of steps,
such a solution may not be the optimal one, as it may be a local minimum where both the master and the
slave problems do not give any further improvement. Note that the global solution can be computed by
enumeration by solving a slave problem for all possible sN switching sequences I .

Algorithm 1 computes the optimal switching policy for a given initial state. On the other hand, for small
enough perturbations of the initial state such that the optimal switching sequence does not change, the
optimal time-switching policy is immediately available as a by-product of the slave algorithm, because
of its state-feedback nature.

We finally remark that Algorithm 1 may be formulated by optimizing with respect to T first, for a given
initialization of the switching sequence I . The advantage of switching between the master and slave
procedures depends on the information available a priori about the optimal solution. For instance when
the algorithm is solved repeatedly for subsequent values of the state vector (such as in a receding horizon
scheme), it may be useful to use the previous switching sequence as a warm start and optimize with
respect to T first.

5.1 Degeneracies

We remark the following about degeneracies:



step τ1 τ2 τ3 i1 i2 i3 i4 F(I,Τ )
1 M 0.290 0.498 0.672 1 3 3 3 1.44619
1 S 0.280 0.290 0.300 1 3 3 3 1.44615
2 M 0.280 0.290 0.300 1 2 3 3 1.44459
2 S 0.180 0.240 0.240 1 2 3 3 1.44026
3 M 0.180 0.240 0.240 1 2 3 3 1.44026

Table 1: Detailed results of Example 1.

1. Time-degeneracy: ik = ik−1 implies that the switching instant τk is undetermined (multiple solu-
tions for T )

2. Switch-degeneracy: τk = τk−1 implies that the switching index ik is undetermined (multiple
solutions for I)

We will show in the next section how degeneracy can be handled.

6 Numerical Examples

Example 1

Let us consider a second order linear system whose dynamics may be chosen within a finite set {A1, A2, A3}.
In particular, we assume A1 =

[−5.179 −1.414
1 0

]
, A2 =

[−10.115 −3.082
2 0

]
, A3 =

[−2.414 −1.414
1 0

]
. We as-

sociate to each dynamics a weight matrix: Q1 = diag{1, 1}, Q2 = diag{8, 2}, Q3 = [ 1 0.5
0.5 1 ]. We also

assume that only three switches are possible, thus N = 3 and the control variable i(t) may only take
values from the finite set of integers S = {1, 2, 3}. Let the initial state vector be x0 = [ 11 ].

We apply the master–slave algorithm to determine the optimal index sequence. The initial timing se-
quence is T0 = {0.290, 0.498, 0.672} (randomly generated).

The master–slave algorithm finds out that the optimizing index sequence is I∗ = {1, 2, 3, 3} and the
optimal cost value is V ∗

3 = 1.44026. Note that in this case only two switches are required to get the
optimal cost value.

Detailed intermediate results are reported in Table 1, where we may also observe that the procedure
converges after only 3 steps. This also implies that the most burdensome part of the algorithm, i.e., the
slave problem, was only solved twice.

The correctness of the solution has been validated through an exhaustive inspection of all admissible
index sequences. More precisely, for each admissible index sequence we have computed the optimizing
timing sequence and the corresponding cost value through the slave algorithm. In such a way we verified
that V ∗

3 = 1.44026 is indeed a global minimum. Obviously, being only two the switches required to
optimize the cost value, the minimum cost may also be obtained by using other index sequences. As an
example, if we consider I = {3, 1, 2, 3} and T = {0, 0.180, 0.240}, this solution is optimal as well.

In Figure 1 we have reported the switching regions Cj,3, j = 1, 2, 3, when the index sequence is the
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Figure 1: The switching regions for the system in Example 1 when the initial state is x0 = [1 1]′ and the
index sequence is the optimal one: (a) C1,3, (b) C2,3, (c) C3,3. (d) The system evolution from the initial
state x0 = [1 1]′.



step τ1 τ2 τ3 i1 i2 i3 i4 F(I,Τ )
1 M 0.001 0.005 0.010 2 2 2 3 5.63017
1 S 0.000 0.000 0.009 2 2 2 3 5.63017
2 M 0.000 0.000 0.009 1 1 2 3 5.63017
2 S 0.000 0.089 0.143 1 1 2 3 1.42998
3 M 0.000 0.089 0.143 1 1 2 3 1.42998

Table 2: Detailed results of Example 2 when the master-slave algorithm is applied in its original form.

optimal one. The blue (darker) region represents the set of states where the system still evolves with the
same dynamics, while the red (lighter) region represents the set of states where the system switches to
the next dynamics. Clearly, in C3,3 we have no partitioning because it corresponds to a non–effective
switch, being i(3) = i(4) = 3.

Finally, in the bottom right of Figure 1 we show the system evolution from the chosen initial state
x0 = [1 1]′.

On the basis of several random tests we performed, we observed that the convergence of the algorithm
to a global minimum is heavily influenced by two factors. Firstly, the initial switching times sequence
should be such that τk > τk−1: in fact, if τk = τk+1 for some k, only a suboptimal solution — that
corresponds to a minor number of switches — is usually computed. Secondly, the first switching time
should not be greater than two or three times the maximum time constant associated to each dynamics:
if this is not the case, only degenerate solutions with no switch are usually found.

Example 2

We present here an heuristics that in many cases improves the performance of the algorithm. Let us
consider a second order linear system whose dynamics may be chosen within a finite set {A1, A2, A3}.
In particular, we assume: A1 =

[
1 −10

100 1

]
, A2 =

[
1 −100
10 1

]
, A3 =

[−0.1 0
0 −0.1

]
and f1 = f2 = f3 = 0.

Note that A1 and A2 are unstable matrices while A3 is strictly Hurwitz, thus Assumption 1 is verified.
We associate the same weighting matrix to each dynamics: Q1 = Q2 = Q3 = [ 1 0

0 1 ]. We also assume
that N = 3 and the control variable i(t) may only take values from the finite set of integers S = {1, 2, 3}.
The initial state vector is x0 = [ 11 ].

We take as initial timing sequence T0 = {0.001, 0.005, 0.010} and apply the master-slave algorithm to
determine the optimal index sequence. The provided solution is I = {1, 1, 2, 3} and the corresponding
performance index is V3 = 1.42998. Detailed results are reported in Table 2. Nevertheless, this solution
is not optimal and this may be easily verified through an exhaustive inspection of all admissible switching
sequences.

A careful examination of the solution suggests the presence of time-degeneracy, being I = {1, 1, 2, 3} a
switching sequence that corresponds to only two switches. Thus, when it is used by the slave algorithm,
it may only compute a suboptimal solution.

A simple heuristic solution to this problem — that is effective in this case, as well as in many other
numerical examples we have examined — consists of modifying the switching sequence computed via
the master algorithm that corresponds to a number of switches that is less that N before running the slave



step τ1 τ2 τ3 i1 i2 i3 i4 F(I,Τ )
1 M 0.001 0.005 0.010 2 2 2 3 5.63017
1 S 0.000 0.089 0.143 3 1 2 3 1.42998
2 M 0.000 0.089 0.143 1 1 2 3 1.42998
2 S 0.009 0.062 0.116 2 1 2 3 0.12569
3 M 0.009 0.062 0.116 2 1 2 3 0.12569

Table 3: Detailed results of Example 2 when the master-slave algorithm is applied in its modified form.

algorithm. In particular, we suggest to arbitrarily change the index sequence so that the original sequence
is still contained in the new one but two consecutive indices should never be the same.

Using such an heuristics, the results of the master–slave algorithm we obtain the results reported in
Table 3. In particular, we observe that at the first step of the whole procedure, the slave algorithm does
not examine the switching sequence firstly computed by the master algorithm, but computes the optimal
timing sequence corresponding to a new sequence I = {3, 1, 2, 3}, that has been randomly generated
by arbitrarily modifying the first index so as to avoid time-degeneracy. At this step, the value of the
performance index decreases but the optimum is not computed yet. The same reasoning is repeated at
the third step and in this case the optimal value of the cost is found and the procedure stops. The results
of an exhaustive search show that the computed solution is optimal thus revealing the effectiveness of
the modified procedure.

Although this heuristics is not always effective, it often improves the performance of the algorithm while
it may never make it worse. Its only drawback is that, to avoid cycling, it is necessary to add a stopping
condition that detects loops.

Finally, in Figure 2 we have reported the switching regions Cj,3, j = 1, 2, 3, when the switching sequence
is the optimal one. The color notation is the same as in the previous example. In the bottom right of
Figure 2 we showed the system evolution from the chosen initial state x0 = [ 11 ].

7 Conclusions and Possible Extensions

In this paper we have proposed a master-slave algorithm for solving infinite-horizon linear quadratic opti-
mal control problems for autonomous continuous-time switched affine systems, where both the switching
instants and the sequence of operating modes must be determined.

An easy way of extending the approach described in this paper to non-autonomous switched linear sys-
tems ẋ(t) = Aix(t) + Biu(t) is to set u(t) = Kix(t), where Ki is the LQR gain. Clearly, this would
provide only a suboptimal solution to the original LQR problem for the switched linear system. The idea
can be also extended similarly to non-autonomous switched affine systems.

The algorithm can be also easily extended to the case where the switching is not arbitrary, but is driven
by a finite-state machine excited by exogenous discrete inputs. In this case, the reachable set of the
automaton due to the discrete inputs and initial discrete state can be easily embedded in the MIQP master
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Figure 2: The switching regions for the system in Example 2 when the initial state is x0 = [1 1]′ and the
index sequence is the optimal one: (a) C1,3, (b) C2,3, (c) C3,3. (d) The system evolution for x0 = [1 1]′.



problem to restrict the set of possible switching sequences.
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