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Abstract

The paper deals with the optimal control of switched piece-wise linear autonomous systems,
where the objective is that of minimizing a performance index over an infinite time horizon. We as-
sume that the switching sequence has a finite length and is pre–assigned, while the unknown switch-
ing times are the optimization parameters. We also assume that at each switch a jump in the state
space may occur and that a cost may be associated to each switch.

The optimal control for this class of systems takes the form of a state feedback, i.e., it is possible
to identify a region of the state space such that an optimal switch should occur if and only if the
present state belongs to this region. We show how such a region can be computed with a numerical
procedure and show that, in the particular case in which the switching costs is null, the region is
homogeneous.
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1 Introduction

Switched systems are a particular class of hybrid systems consisting of a number of subsystems (that may
also be infinite) and a switching law that indicates the active subsystem at each time instant. Examples
of switched systems may be found in many application fields, such as chemical processes, transportation
systems, electrical circuits, and so on.

The problem of determining optimal control laws for this class of hybrid systems has been widely in-
vestigated in the last years and many results can be found in the control and computer science literature
[2, 4, 5, 7, 11]. Many of these works propose control procedures that are based on the discretization of
state space into grids and use search methods to find optimal open-loop solutions. Approaches of this
kind may often reveal difficult to apply in real cases because of the computational complexity and may
also result to be not accurate enough. We also mention the contribution given by Riedinger et al. in
[7, 8, 9] where very general sufficient conditions for optimal control problems of switched systems are
given in terms of hamiltonian function.

In this paper we restrict our attention to the case of switched systems whose subsystems are linear and
autonomous. We also assume that the switching sequence is finite and pre–assigned. Thus, our problem
is that of determining the optimal switching times τj , j = 1, · · · , n, at which the hybrid system switches
between autonomous linear dynamics of the type ẋ = Ajx, where the sequence Aj , j = 1, · · · , n is
known. We also generalize this framework by assuming that whenever at time τj a switch from Aj to
Aj+1 occurs, the state should jump from x(τ−j ) to x(τ+j ) = M jx(τ

−
j ).

In general, assume that the initial and final times are τ0 = 0 and τn+1 = ∞ and that k out of the n
allowed switches occur (i.e., occur in a finite amount of time). Given a choice of switching times

0 = τ0 ≤ τ1 ≤ · · · ≤ τk < τk+1 = · · · = τn = τn+1 = +∞

we consider a performance index of the form:

F (τ1, · · · , τn) =
∫∞
0 xT (t)Qx(t) dt+

∑k
j=1Hj ,

i.e., the performance index is composed of a cost associated to the continuous evolution and of a cost
associated to the switches. In particular,

• Q is a positive definite matrix that weights the continuous state;

• Hj is the cost of the j−th switch.

The control problem we investigate consists in determining the optimal switching times so as to minimize
the performance index F .

We make the following assumptions:

1. Each matrix Aj is stable, thus the switched system is stable regardless of the choice of switching
times for any finite n.
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2. Each system is autonomous, i.e., we do not need to compute a continuous control. The only control
input for this system is the controlled switch/jump. Also switch and jump are coupled, in the sense
that the j-th jump and the j-th switch are triggered by the same event and occur at the same time.

3. We assume that a finite constant cost is associated to a each switch that occur in a finite time.
Saying that only k out of the n switches occur in finite time is equivalent to saying that only the
first k out of the n allowed switches occur: i.e., only a prefix of the switching sequence may be
executed if convenient.

The results we present show that the optimal control law turns out to be a “state–feedback”, in the sense
that for all j ≤ n it is possible to identify a region Cj,n of the state space such that the j-th switch should
occur if and only if we are within this region. Furthermore if the switching costs are all null, this region
is homogeneous, i.e., if x ∈ Cj,n then λx ∈ Cj,n, for all real numbers λ.

The original features of our approach can be summarized as follows. Firstly, our derivation is based
on the analytical derivation of the cost functional rather than the hamiltonian. Secondly, we are able to
show that in this particular case the optimal control is a state feedback (and not an open-loop control).
Thirdly, we are able to compute with a simple numerical procedure not only necessary but also sufficient
conditions for optimality.

One limitation of the present approach is the fact that the switching sequence is pre-assigned. In effect,
preliminary results that are not discussed here, show that our approach can easily be generalized to
consider a (possibly infinite) set of legal sequences provided that they can all be generated by a finite
state automaton over the alphabet A. We observe, however, that there exist significant problems of
practical relevance where the present framework (pre-assigned sequence) may be successfully applied.
Consider, as an example, an active filtering problem where by connecting or disconnecting a capacitor
one aims to reduce the distortion of an output signal. Such a problem can be framed as a pre-assigned
sequence of switches A→ Ã→ A→ · · · , where ẋ(t) = Ax(t) is the dynamics of the system with the
capacitor connected and ẋ(t) = Ãx(t) is the dynamics of the system with the capacitor disconnected.

It may be possible to extend the results we present here to the cases — considered in the literature already
mentioned — where the subsystem dynamics are not all stable but there exists a stabilizing switching
sequence; this is a topic for future work.

The paper is structured as follows. In Section 2 we state the class of systems considered and the op-
timization problem we want to solve. In Section 3 we show that when a finite number of switches are
allowed, the optimal control is a feedback law and we present a constructive technique to determine the
switching regions. In Section 4 a complete example is discussed.

2 The System with Switching Conditions

2.1 System Dynamics

Given the switching times 0 = τ0 ≤ τ1 ≤ · · · ≤ τn ≤ τn+1 = ∞, the N × N stable matrices
A1, · · · ,An+1 ∈ A and the switching matrices M1, · · · ,Mn, consider the linear system whose dy-
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namics are given by 

ẋ(t) = Ajx(t),

for τj−1 < t < τj ,

x(τ+k ) = MkMk−1 · · ·M jx(τ
−
j ),

for τj−1 < τj = · · · = τk < τk+1,

x(0) = x0.

(1)

Then we define the evolution matrices U(t, τ) (t > τ ≥ 0) by

x(t−) = U(t, τ)x(τ+).

Then, obviously, for τj−1 < τj = · · · = τk < τk+1,

U(τ+k , τ) = MkMk−1 · · ·M jU(τj , τ),

and
U(t, τ−j ) = U(t, τk)MkMk−1 · · ·M j .

One easily verifies that, denoted δj = τj − τj−1 (j = 1, · · · , n),

U(t, τ) = eAn+1(t−τn)Mne
AnδnMn−1 · · ·M je

Aj(τj−τ) (2)

whenever τj−1 ≤ τ < τj ≤ τj+1 ≤ · · · ≤ τn < t ≤ τn+1.

2.2 Optimization problem

Given a positive definite N ×N matrix Q, we define the cost functional

F (τ1, · · · , τn) =
∫ τ1
0 xT (t)Qx(t) dt

+
∑n

j=1

(∫ τj+1

τj
xT (t)Qx(t) dt+ hj(τj)

) (3)

where hj(τj) = Hj — here Hj is a constant — if τj < +∞, and hj(τj) = 0 otherwise. Note that
τj < +∞ means that the j−th switch occurs after a finite amount of time, while τj = +∞ means that
the j−th does not occur, thus its cost is not considered.

Clearly, using the convention U(+∞, τ) = 0 and since∫ τj

τj−1

eA
T
j (t−τj−1)QeAj(t−τj−1)dt =

[
eA

T
j tZje

Ajt
]0
τj−τj−1

(4)

where Zj are the unique solutions of the Lyapunov equations

AT
j Zj +ZjAj = −Q,
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we get
F (τ1, · · · , τn)

=
∫ τ1
0 xT0 U(t, 0)TQU(t, 0)x0 dt

+
∑n

j=1

[∫ τj+1

τj
xT0 U(t, 0)TQU(t, 0)x0 dt+ hj(τj)

]
= xT0

∫ τ1
0 eA

T
1 tQeA1t dt x0

+
∑n

j=1 x
T
0 U(τj , 0)

TMT
j

·
∫ τj+1

τj
eA

T
j (t−τj)QeAj(t−τj) dtM jU(τj , 0)x0

= xT0 Z1x0 +
(∑n

j=1 hj(τj)

+ xT0 U(τj , 0)
T
[
MT

j Zj+1M j −Zj

]
U(τj , 0)x0

)
= xT0 Z1x0 +

(∑n
j=1 hj(τj)

+ xT (τ−j )
[
MT

j Zj+1M j −Zj

]
x(τ−j )

)
.

(5)

3 State–feedback control law

In this section we show that the optimal control law for the optimization problem described in the pre-
vious section takes the form of a state–feedback, i.e., to determine if a switch from Aj to Aj+1 should
occur it is only necessary to look at the current system state x. Thus, the optimization problem can be
solved computing a set of state space regions Cj,n: if the system dynamics is Aj we will switch as soon
as the state reaches a point in the region Cj,n, for j = 1, . . . , n.

This is an important result because it is well now that a state–feedback control law has many advantages
over an open–loop control, including the fact that the computation of the control law can be done off–
line as opposed to being performed on–line. On–line computations are burdensome, especially if a
disturbance acting on the system may cause the system state to deviate from its expected value.

To prove this result, we also show constructively how the regions Cj,n can be computed. We first show
how the region Cn,n for the last switch can be determined. Secondly we show how inductively the region
Cj,n can be computed if the region Cj+1,n is known.

3.1 Computation of the region for the last switch

Let us assume that after n− 1 switches the current system dynamics is that corresponding to matrix An

and the current state vector is y with ‖y‖ = 1.

The optimal remaining cost starting from y will consist of two terms: a term due to the time–driven
evolution, plus (if the n−th switch occurs) the switching cost Hn.

If no switch occurs and the system evolves with dynamics An the remaining cost starting from y is only
due to the time–driven evolution and is

T ∗n,0(y) = yTZny (6)
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Figure 1: Different cases of Tn,1(y, %).

where the fist subscript n denotes the current dynamics, and the second subscript 0 denotes the fact that
no more switch occurs. We also define, with a notation that will be clarified in the sequel,

%n,0(y) = +∞.

If the system evolves with dynamics An for a time % and then a switch to An+1 occurs, the remaining
cost starting from y only due to the time–driven evolution (disregarding the switching cost) is

Tn,1(y, %) = yTZny

+yT eA
T
n%[MT

nZn+1Mn −Zn]e
An%y,

(7)

where the fist subscript n denotes the current dynamics, and the second subscript 1 denotes the fact that
we allow up to 1 more switches.

Let us denote the value of % that minimize (7) as

%n,1(y) = argmin
%
Tn,1(y, %), (8)

and denote the minimum of (7) as

T ∗n,1(y) = Tn,1(y, %n,1(y)). (9)

Three cases may occur, as shown in Figure 1.

Cases a) and b) are such that %n,1(y) < +∞ i.e., we can obtain an optimal discount on the cost of the
time–driven evolution switching after %n,1(y) and the optimal discount is

γn,1(y) = T ∗n,0(y)− T ∗n,1(y). (10)

Case c) is such that %n,1(y) = +∞ and thus

T ∗n,0(y) = T ∗n,1(y)

i.e., there is no advantage in executing the n−th switch.

Let us define
En,0 = 0, and En,1 = Hn.
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Taking also into account the switching cost, the optimal remaining cost starting from y is

Fn(y) = min
k=0,1

{T ∗n,k(y) + En,k}.

and the optimal remaining number of switches is

kn(y) = arg min
k=0,1

{
T ∗n,k(y) + En,k

}
. (11)

Thus the optimal switch should occur after a delay

δn(y) = %n,kn(y)(y).

Let us now consider any other vector x such that x = λy, with λ ∈ R. We can compute for this new
vector the equivalent of (6) and (7), i.e.,

T ∗n,0(x) = xTZnx = λ2T ∗n,0(y) (12)

and
Tn,1(x, %) = xTZnx

+xT eA
T
n%[MT

nZn+1Mn −Zn]e
An%x

= λ2Tn,1(y, %),

(13)

Equation (13) is minimized by

%n,1(x) = argmin
%
Tn,1(x, %) = %n,1(y), (14)

and its minimal value is

T ∗n,1(x) = Tn,1(x, %n,1(x)) = Tn,1(x, %n,1(y)) = λ2T ∗n,1(y). (15)

If we also take into account the switching cost, the optimal remaining cost starting from x is

Fn(x) = min
k=0,1

{T ∗n,k(x) + En,k}

= min
k=0,1

{λ2T ∗n,k(y) + En,k},
(16)

the optimal remaining number of switches starting from x is

kn(x) = arg min
k=0,1

{
T ∗n,k(x) + En,k

}
= arg min

k=0,1

{
λ2T ∗n,k(y) + En,k

}
,

(17)

and the optimal n−th switch should occur after a delay

δn(x) = %n,kn(x)(x) ∈ {%n,k(y) | k = 0, 1}. (18)

Finally, we can say that a vector x = λy belongs to Cn,n if and only if δn(x) = 0, because in this case
the optimal remaining cost can be obtained switching as soon as we reach x with no delay. According
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to the previous discussion, this occurs if and only if %n,1(y) = 0 (i.e., Tn,1(y, %) has the shape shown in
Figure 1.a) and |λ| ≥ (Hn/γn,1(y))

0.5.

Note that to compute the switching region Cn,n and to determine the optimal remaining cost Fn(x), we
only need to compute the value %n,1(y) with a one-parameter optimization (see equations (7) and (8))
for all y on the unitary semi-sphere. The corresponding values of T ∗n,0(y) and T ∗n,1(y) can be obtained
applying equations (6) and (9), while to determine if a vector x = λy belongs to Cn,n and to compute
the corresponding optimal remaining cost we only need to apply equations (16), (17) and (18).

3.2 Computation of the regions for the intermediate switches

We now generalize the previous approach to determine the switching regions Cj,n, for j = 1, . . . n− 1.

Assume that:

• we have already computed region Cj+1,n;

• for each vector y on the unitary semi-sphere we know the optimal cost T ∗j+1,k(y) for the remaining
time–driven evolution that starts from y with dynamics Aj+1 and allows k more switches (with
k = 0, . . . , n− j);

• for all k = 0, . . . , n− j it holds T ∗j+1,k(λy) = λ2Tj+1,k(y).

Let us assume that after j − 1 switches the current system dynamics is that corresponding to matrix Aj

and the current state vector is x = λy with ‖y‖ = 1.

If no switch occurs and the system evolves with dynamics Aj the remaining cost starting from x = λy

is
T ∗j,0(x) = xTZjx = λ2yTZjy = λ2T ∗j,0(y). (19)

We also define
%j,0(y) = +∞.

If the system evolves with dynamics Aj for a time %, then a switch to Aj+1 occurs, and then the future
evolution is such that only k− 1 ≤ n− j additional switches occurs, the optimal remaining cost starting
from x due to the time–driven evolution (disregarding the switching costs) is

Tj,k(λy, %)

= xT [Zj − eA
T
j %Zje

Aj%]x+ Tj+1,k−1(M je
Aj%x)

= λ2yT [Zj − eA
T
j %Zje

Aj%]y + λ2Tj+1,k−1(M je
Aj%y)

= λ2Tj,k(y, %),

(20)

for all k = 1, . . . , n− j + 1.

Thus for all y on the unitary semi-sphere we compute, solving n − j + 1 one-parameter optimization
problems, the value of % that minimize (20) with λ = 1 for all values of k = 1, . . . , n− j + 1:

%j,k(y) = argmin
%
Tj,k(y, %), (21)
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and denote the corresponding minimum as

T ∗j,k(y) = Tj,k(y, %j,k(y)). (22)

Let us define
Ej,0 = 0

and for k = 1, . . . , n− j + 1,

Ej,k =
k∑
i=1

Hj+i−1.

Taking also into account the switching cost, the optimal remaining cost starting from x is

Fj(x) = min
k=0,...,n−j+1

{λ2T ∗j,k(y) + Ej,k}, (23)

the optimal remaining number of switches is

kj(x) = arg min
k=0,...,n−j+1

{λ2T ∗j,k(y) + Ej,k} (24)

and the optimal switch should occur after a delay

δj(x) = %j,kj(x)(x) ∈ {%j,k(y) | k = 0, · · · , n− j + 1}. (25)

Finally, we can say that a vector x = λy belongs to Cj,n if and only if δj(x) = 0.

3.3 Structure of the switching regions

We now discuss the form that the switching regions may take.

Let us first state a trivial fact.
Fact 1. For all x ∈ RN , j = 1, . . . , n and k = 0, . . . , n− j holds

T ∗j,k+1(x) ≤ T ∗j,k(x).

Proof. This can be easily shown by induction on j. The result is true for j = n and k = 0, 1, by
equations (12) and (13) (base step). Assume the result holds for j + 1; then it also holds for j given
equations (19) and (20) (induction step). �

Let us now consider the case of null switching costs.
Proposition 2. Consider the case in which Hj = 0 for all j = 1, . . . , n. Then for all j = 1, . . . , n and
all λ ∈ R:

y ∈ Cj,n =⇒ λy ∈ Cj,n

i.e., the regions Cj,n are homogeneous.
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Proof. Thanks to Fact 1, it is immediate to see that if all costs are null kj(x) = kj(y) = n− j + 1 and
δj(x) = δj(y). Thus δj(y) = 0 =⇒ δj(x) = 0. �

In the cases of non-null switching costs, the value of kj(λy) and correspondingly of δj(λy) may depend
on λ. However, for any y on the unitary semi-sphere we can define

k̃j(y) = min{k | T ∗j,k(y) = T ∗j,n−j+1(y)}.

It is immediate to see that there exists a λ̃j(y) ≥ 0 such that

kj(λy) = k̃j(y)

for all λ ∈ R with |λ| ≥ λ̃j(y).

We can thus state the following result.
Proposition 3. For all j = 1, . . . , n, and all λ ∈ R with |λ| ≥ λ̃j(y):

λ̃j(y)y ∈ Cj,n =⇒ λy ∈ Cj,n.

4 Numerical simulations

In this section we present the results of some numerical simulations. In particular, we consider a second
order system whose dynamics may only switch between two matrices A(1) and A(2). We also assume
that only three switches are possible (n = 3) and the initial system dynamics is A(1). Thus, the sequence
of switching is A(1) → A(2) → A(1) → A(2), where

A(1) =

[
−1 1

−18 −5

]
, A(2) =

[
1 −5
1 −3

]
.

Note that A(1) and A(2) are stable non–commuting matrices, i.e., A(1)A(2) 6= A(2)A(1). We also
assume that all M j are equal to the identity matrix.

We consider two different cases. We firstly assume that no cost is associated to switches. Secondly, we
associate a constant cost to each switch.

4.1 First case

The switching regions Cj,n, j = 1, 2, 3, are shown in figure 2 where the following color notation has been
used: the lighter region represents the set of states where the system switches to the next dynamics, while
the darker region represents the set of states where the system still evolves with the same dynamics.

In the bottom right of figure 2 we have shown the system evolution in the case of x0 = [−0.2, 0.6].

The switching times are τ1 = 0.61, τ2 = 1.34 and τ3 = 1.49, and the optimal cost is F (τ1, τ2, τ3) =

0.19.

10



 

Figure 2: The switching regions Cj,n, j = 1, 2, 3 in the case of no cost associated to switches, and the
system evolution for x0 = [−0.2, 0.6].

 Figure 3: The switching regions Cj,n, j = 1, 2, 3 in the case of non–null costs associated to switches, and
the system evolution for x0 = [1.3, 1.4].
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Figure 4: The switching regions C3,3 for different values of the cost H3 ∈ {0.1, 0.5, 2}.

4.2 Second case

Now, let us assume that non–null costs are associated to switches. In particular, let us assume that
H1 = H3 = 0.3 and H2 = 0.1.

The switching regions Cj,n, j = 1, 2, 3, are shown in figure 3 where we used the same color notation as
above, i.e., the lighter region represents the set of states where the system switches to the next dynamics,
and the darker region represents the set of states where the system still evolves with the same dynamics.

In the bottom right of figure 3 we have shown the system evolution in the case of x0 = [1.3, 1.4].
In this case, the switching times are τ1 = 0.014, τ2 = 0.5 and τ3 = +∞, and the optimal cost is
F (τ1, τ2, τ3) = 0.75.

Let us finally observe that if we assume that the initial state is the same as in the previous case, i.e.,
x0 = [−0.2, 0.6], the system evolution is not affected by costs, and is the same as that shown in figure 3.

4.3 Modification of the regions

To show how the switching region Cj,n may change asHj varies, we have also computed for this example
the regions C3,3 for different values of H3 ∈ {0.1, 0.5, 2}.

These regions are shown in figure 4, where larger regions correspond to smaller values of H3.

5 Conclusions

We have considered a special class of switched systems where the switching sequence is finitb and pre-
assigned, and each subsystem is stable and autonomous.

We showed that the optimal control for this class takes the form of a state feedback, j.e., it is possible to
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identify a region of the state space such that an optimal switch should occur if and only if the present state
belongs to this region. Such a region can be efficiently computed with an off–line numerical procedure.
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