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Abstract

In this paper we discuss the problem of estimating the marking
of a Place/Transition net based on event observation, assuming
that the net structure is known while the initial marking is not
known. We consider different observability properties, some of
which are new and some of which have already been defined by
the authors in previous works, where a characterization based
on the net language was also given to prove that they are decid-
able. Checking for language inclusion is difficult, thus in this
paper we introduce a useful analysis tool, calledobserver cov-
erability graph, that represents both the set of reachable mark-
ings of a net system and the corresponding estimate error. We
also show that the graph provides either semi–decision or de-
cision conditions for the considered properties.

1 Introduction

Observability is a fundamental property that has received a lot
of attention in the framework of time–driven systems, given the
importance of reconstructing plant states that cannot be mea-
sured. Although less popular in the case of discrete–event sys-
tems, the issue of state estimation has been discussed in the lit-
erature. For systems represented by finite automata, Ramadge
[7] was the first to show how an observer could be designed
for a partially observed system. Other authors further explored
this issue and we can recall the work of Caineset al. [1, 2]
and Özveren and Willsky [6] on the design of observers for
automata, and the related results of Kumaret al. [5] in the
framework of supervisory predicate control problems.

The main drawback of the automata based approach is the re-
quirement that the set of consistent states — i.e., the set of
states in which the systems may presently be given the ob-
served behavior — must explicitly be enumerated. This was
the main motivation that led some researchers to explore the
observability properties of other models than automata, and in
particular Petri nets have been considered.

As far as we know, the first approach to the design of observers
for Petri net models was presented by one of us in [3]. In that
work a general framework was introduced that was further ex-
plored in [4], and on which the results presented in this paper
are also founded. This framework provides a useful paradigm
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that can be applied to different settings, from discrete event
control, to failure diagnosis and error recovery. The main ad-
vantage of the approach introduced in [3] is that it allows one
to compute an estimate of the marking (i.e., of the state), while
the special structure of Petri nets permits to determine, using
linear algebraic tools, if a given marking is consistent without
the explicit enumeration of the (possibly infinite) consistent set.

A related approach was also used by Meda and Ramı́rez [8],
who used Interpreted Petri nets to model the system and the
observer. Ramirezet al. in [10] showed that observability de-
fined as in [8] is equivalent to observability in [3], and provided
algorithms to construct an observer for binary Interpreted Petri
nets when the observability property is verified.

In this paper we consider the marking estimation problem pre-
sented in [3] where an algorithm was given to estimate the ac-
tual marking of the net based on the observation of a word of
events (i.e., transition firings), under the assumption that the
net structure is known while the initial marking is not known.
The estimate is always a lower bound of the actual marking.
The system that computes the estimate is called an observer.

The error function between the actual marking and the estimate
was shown in [3] to be a monotonically non-increasing function
of the observed word length. Observed words that lead to a
null error are said to be “complete”. Complete observers are
the discrete-event counterpart of asymptotic observers for time-
driven systems.

In [4] we defined several observability properties and showed
that they are decidable. In particular we considered two main
properties.Marking observability(MO) means that there ex-
ists at least one word that is complete, whilestrong marking
observability(SMO) means that all words can be completed in
a finite number of steps into a complete word. We also set up
a hierarchy considering the possibility that the two properties
are satisfied by a netN starting from an initial markingM0, by
a netN starting from any markingM reachable from an ini-
tial markingM0 (uniform observability) or by a netN starting
from any marking inNm (structural observability) wherem is
the number of places of the net [4].

A characterization based on the net language for both mark-
ing and strong marking observability was given in [3], where it
was proven that these properties are decidable. In [4] the de-
cidability of (strong) uniform and (strong) structural marking
observability has been proved by reducing them to other deci-
sion problems (e.g., home–space properties, marking reacha-
bility, existence of repetitive sequences), that can be checked



using algorithms well known from the literature.

In this paper we first extend the notion of completeness and
observability with respect to a single place. This is useful be-
cause sometimes one is only interested in reconstructing the
marking of a subset of places. We also introduce a useful tool
to prove some of the above properties without resorting to the
study of the net language. This tool is theobserver coverability
graph (OCG), and can be seen as an extension of the classical
coverability graph of Place/Transition nets for the analysis of
observability properties. The OCG represents both the set of
reachable markings of a net system and the error of the esti-
mate computed in accordance with the estimation algorithm in
[3]. More precisely, each node of the OCG contains a vector
covering a marking of the net and a vector that keeps track of
the estimation error on each place of the net.

The main results of this paper are two. Firstly, we give a pro-
cedure for the construction of this graph, and show that it is
always finite. Secondly, we show that the OCG provides sim-
ple semi–decision (i.e., only sufficient) conditions for the com-
pleteness of a word and for the marking observability of a net
system, and necessary and sufficient conditions for the strong
marking observability of a net system.

This framework provides a useful paradigm that can be applied
to different settings, from discrete event control, to failure di-
agnosis and error recovery. The assumption that only event
occurrences, i.e., transition firings, may be observed — while
the plant state, i.e., the marking, cannot — is common in dis-
crete event control. The assumption that the state of the plant
is not known (or is only partially known) is natural during error
recovery. Consider for instance the case of a plant remotely
controlled: if the communication fails the state may evolve
and when the communication is re–established the state will
be at best partially known. In a manufacturing environment,
one may consider the case in which resources (i.e., tokens) en-
ter unobserved, or in which we know how many resources have
entered the system but not their exact location.

2 Background

In this section we first recall some basic terminology on Petri
nets, then we recall some preliminary concepts already pre-
sented in [3].

2.1 Petri nets

In this subsection we recall the Petri net formalism used in
this paper. For a more comprehensive introduction to Petri
nets see [9]. APlace/Transition net(P/T net) is a structure
N = (P, T, Pre, Post), whereP is a set ofm places; T
is a set ofn transitions; Pre : P × T → N and Post :
P × T → N are thepre- and post-incidence functionsthat
specify the arcs. Theincidence matrixof the net is defined as
C(p, t) = Post(p, t)− Pre(p, t).

A marking is a vectorM : P → N that assigns to each place
of a P/T net a non-negative number of tokens, represented by
black dots. AP/T systemor net system〈N,M0〉 is a netN with
an initial markingM0.

A transition t is enabled atM if M ≥ Pre(·, t) (where

Pre(·, t) denotes the column ofPre corresponding to transi-
tion t) and may fire yielding the markingM ′ = M + C(·, t).
We write M [w〉 M ′ to denote that the enabled sequence of
transitionsw may fire atM yielding M ′; we use the nota-
tion M ′ = w(M) andM = w−1(M ′). Moreover, we denote
w(M0) = Mw. Finally, we denote asw0 the sequence of null
length. The set of all sequences firable in〈N,M0〉 is denoted
L(N,M0) (this is also called the prefix-closed free language of
the net).

Let w = tα1 , tα2 , · · · , tαk
be a sequence inL(N,M0). The

sequencewi = tα1 , · · · , tαi with i ∈ N andi < k is a prefix of
w of lengthi and we writewi 4 w.

A markingM is reachablein 〈N,M0〉 iff there exists a firing
sequencew such thatM0 [w〉 M . The set of all markings
reachable fromM0 defines the reachability set of〈N,M0〉 and
is denotedR(N,M0).

A repetitivesequencew is such thatM [w〉M ′ with M ′ ≥ M .
Then∀ i ≥ 1, wi is enabled atM .

Finally, we denote~0m (~1m) am× 1 vector of zeros (ones).

2.2 Estimate and error

The aim of this subsection is that of recalling some preliminary
concepts already presented in [3]. The proofs of all proposi-
tions are omitted and can be found in [3].

Firstly, we recall an algorithm for estimating the state of a net
system〈N,M0〉 whose marking cannot be directly observed
under the following assumptions.

A1) The structure of the netN = (P, T, Pre, Post) is known,
while the initial markingM0 is not.

A2) The event occurrences (i.e., the transition firings) can be
observed.

After the wordw has been observed we define the setM(w) of
w consistent markings as the set of all markings in which the
system may be given the observed behaviour.

Definition 1. Given an observed wordw, the set ofw consis-
tent markingsisM(w) = {M | ∃M ′ ∈ Nm,M ′[w〉M}.

Given an evolution of the netMw0 [tα1〉Mw1 [tα2〉 · · ·, we use
the following algorithm to compute the estimateµwi

of each
actual markingMwi based on the observation of the word of
eventswi = tα1 , tα2 , · · · , tαi .

Algorithm 2 ([3] M. Estimation with Event Observation).
1. Let the initial estimate beµw0 = ~0m.
2. Let i = 1.
3. Wait until tαi fires.
4. Update the estimateµwi−1 to µ′wi

with µ′wi
(p) =

max{µwi−1(p), P re(p, tαi)}.
5. Let µwi = µ′wi

+ C(·, tαi).
6. Let i = i + 1.
7. Goto 3. �

Note that in step4. of the algorithm we update the previously
computed estimateµwi−1 , since the firing oftαi

implies that
Mwi−1 ≥ Pre(·, tαi). In the following we will always denote



the estimate computed by this algorithm after having observed
the wordw asµw.

Let us observe that the knowledge of the actual estimate and of
the structure of the net, also enables us to compute an estimate
of the initial marking asµ0,w = w−1(µw).

The estimate computed by Algorithm 2 is a lower bound on the
actual marking of the net.

Proposition 3 ([3]). Let w = tα1tα2 · · · ∈ L(N,M0) be an
observed string andwi its prefix of lengthi. Then∀i, holds
µwi ≤ µ′wi+1

≤ Mwi .

In [3] it has been given an easy characterization of the set of
consistent markings in terms of estimate.

Theorem 4 ([3]). Given an observed wordw ∈ L(N,M0) and
the estimated markingµw computed by Algorithm 2, the set of
w consistent markingsisM(w) = {M ∈ Nm | M ≥ µw}.

In [4] we have also defined a meaningful measure of the place
estimation error, as the token difference between a marking and
its estimate in a given place.

Definition 5 ([4]). Let us consider a placep ∈ P and an ob-
served wordw ∈ L(N,M0). Let Mw and µw be the corre-
sponding marking and its estimate. Theplace estimation error
in p is ep(Mw, µw) = Mw(p)−µw(p) and its update after the
firing of t is ep(Mw, µ′wt) = Mw(p)− µ′wt(p).

Analogously, it is possible [3] to define a measure of the esti-
mation error, as the token difference between a marking and its
estimate.

Definition 6 ([3]). Given a markingMw and its estimateµw,
the estimation erroris e(Mw, µw) =

∑
p∈P ep(Mw, µw) =

~1 T
m · (Mw − µw) and its update after the firing oft is

e(Mw, µ′wt) = ~1 T
m · (Mw − µ′wt).

Note that the place estimation error is a monotonically non-
increasing function of the observed word length.

Proposition 7 ([4]). Let w = tα1tα2 · · · ∈
L(N,M0) be an observed word andwi its pre-
fix of length i. Then ∀i and ∀p: ep(Mwi , µwi) ≥
ep(Mwi , µ

′
wi+1

) = ep(Mwi+1 , µwi+1), andep(Mwi , µ
′
wi+1

) =
min

{
ep(Mwi , µwi),Mwi − Pre(p, tαi+1)

}
.

Thus, it follows that also the estimation error is a monotonically
non-increasing function of the observed word length.

Proposition 8 ([3]). Let w = tα1tα2 · · · ∈ L(N,M0) be an
observed word,wi the prefix ofw of lengthi, andµwi andµ′wi

the estimate and the updated estimate ofMwi
. Then∀i:

e(Mwi
, µwi

) ≥ e(Mwi
, µ′wi+1

) = e(Mwi+1 , µwi+1).
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Figure 1:A net system that is not MO, but whose places are MO.

3 Properties of estimates

It is natural to ask under which conditions the estimated mark-
ing computed by algorithm 2 converges to the actual marking.
This motivated us to define the following properties.

Definition 9. Given a net system〈N,M0〉, and a placep ∈ P ,
we say thatw ∈ L(N,M0) is

– p-completeif ep(Mw, µw) = 0, i.e., ifµw(p) = Mw(p);

– marking completeif e(Mw, µw) = 0.

Thus a marking complete word allows one to reconstruct the
actual marking of the net.

Based on this, we can define these properties of a place and of
a net system.

Definition 10. Given a net system〈N,M0〉, a placep ∈ P is:

— marking observable(MO) if there exists ap-complete word
w ∈ L(N,M0);

— strongly marking observable(SMO) inkp steps (wherekp

depends on the placep) if:
(i) ∀w ∈ L(N,M0) such that|w| ≥ kp, w is p-complete;
(ii) ∀w ∈ L(N,M0) such that|w| < kp, eitherw isp-complete
or ∃ t ∈ T such thatM0[wt〉.

Definition 11 ([4]). A net system〈N,M0〉 is:

—marking observable (MO)if there exists a marking complete
w ∈ L(N,M0);

—strongly marking observable (SMO)in k steps if:
(i) ∀w ∈ L(N,M0) such that|w| ≥ k, w is marking complete,
(ii) ∀w ∈ L(N,M0) such that|w| < k, eitherw is marking
complete or∃ t ∈ T such thatM0[wt〉.

The following implications hold:

— ∀p, p is MO ⇐= 〈N,M0〉 is MO

— ∀p, p is SMO ⇐⇒ 〈N,M0〉 is SMO.

Note that the first one only holds in one sense. In fact, even if
all places are observable, this does not imply that there exists
one sequence that reconstructs the marking of all places.

Example 12. Let us consider the net system〈N,M0〉 in fig-
ure 1. All places are MO but the net system is not MO. In fact,
if t1 fires, we reconstruct the marking of placesp1 andp2, but
the net reaches a dead marking, thus making it impossible to
reconstruct the marking of placep3. Analogously, the firing
of t2 enables us to reconstruct the actual marking of placesp2

andp3, but it produces a deadlock, thus not enabling the recon-
struction of the marking inp1. �



4 Observer coverability graph

In this section we show how to construct anobserver cover-
ability treeand the correspondingobserver coverability graph
(OCG) to represent both the set of reachable markings of a net
system and the error of the estimate computed in accordance
with algorithm 2. More precisely, each node of the OCG con-
tains a vectorM covering a marking of the net and an upper
bound error vectoru ∈ Nm.

Algorithm 13 (Observer coverability tree).
1. Let u0 = M0. Label the initial node(M0/u0) as the root

and tag it ”new”.

2. If ”new” nodes exist, select a new node(M/u) and:

2.1. If (M/u) is identical to a node labeled ”old” then
tag(M/u) “old” and go to step 2.

2.2. If no transitions are enabled atM , tag(M/u) ”dead”
and go to step 2.

2.3. For each transitiont enabled atM do the following:

2.3.1. ∀ p ∈ P , if M(p) = ω then letM̃(p) = M(p)
andũ(p) = u(p),
else letM̃(p) = M(p) + C(p, t) and ũ(p) =
min{u(p), M(p)− Pre(p, t)};

2.3.2. on the path from the root to(M/u) if there ex-
ists a markingM ≤ M̃ andM̃ 6= M , i.e., M
is covered byM̃ , then letM̃(p) = ω for eachp
such thatM̃(p) > M(p);

2.3.3. introduce(M̃/ũ) as a node, draw an arc with
label t from (M/u) to (M̃/ũ), and tag(M̃/ũ)
”new”.

2.4 Tag(M/u) “old” and go to step 2. �

Note that its construction follows the well known rules of a
coverability tree for a P/T net [9]. Also, we note that the error
bound vectoru is set to the actual error for the root node and
then it is updated as we add new nodes. Note, however, that
whenever we reach a marking whose componentM(p) is ω,
the error boundu(p) is not updated any more (see step 2.3.1).

The observer coverability graph of a Petri net〈N,M0〉 is a
labeled directed graphG = (V,E). Its node setV is the set
of all distinct labeled nodes in the observer coverability tree,
and each arc inE is labeled with a transitiont to represent a
firing such thatδ((M/u), t) = (M ′/u′), where(M/u) and
(M ′/u′) are inV . Note that in the OCG all tags used in the
construction of the observer coverability tree are omitted. We
will also represent the initial marking by a round corner box,
while a thick box represents a marking whose estimation error
bound vector isu = ~0m.

Example 14. Let us consider the net systems in figure 2 and
their OCG. Since both the nets are unbounded, in both casesω
appears. The OCG of a bounded net is reported in figure 3.�

Let us demonstrate that the OCG of a P/T net is finite.
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Figure 2: Unbounded Petri nets and their observer coverability
graphs.

Property 15. Let G be the OCG of〈N,M0〉. The number of
nodes inG is bounded byv = v′ ·

∏
p∈P (M0(p) + 1) where

v′ is the number of nodes in the usual coverability graph of
〈N,M0〉.

Proof: By virtue of algorithm 13 the initial error bound vec-
tor is equal to the initial estimate, i.e.,u0 = M0. Moreover,
by proposition 8 the place estimation error is a monotonically
non-increasing function of the observed word length, thus the
estimation error in the generic placep may assume at most
M0(p)+1 different values. It follows that the number of nodes
in G is limited by the number of nodesv′ in the coverability
graph times

∏
p∈P (M0(p) + 1).

5 Properties analysis

In this section we use the OCG as a tool to prove the properties
presented in section 3. Let us first state the following proposi-
tion.

Proposition 16. Let G be the OCG of〈N,M0〉. Givenw ∈
L(N,M0), consider the node(M/u) reached on the graph ex-
ecutingw, i.e., let(M/u) = δ((M0/u0), w). It holds that:

(i) the place estimation error isep(Mw, µw) ∈ [`(p), u(p)]
whereu(p) is the component ofu corresponding to placep
and

`(p) =
{

u(p) if M(p) 6= ω
0 if M(p) = ω
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Figure 3:A bounded Petri net and its observer coverability graph.

(ii) the error ise(Mw, µw) ∈
[∑

p∈P `(p),
∑

p∈P u(p)
]
.

Proof: We prove this by induction on the length ofw.

(i) Whenw ≡ w0, i.e., w is a word of null length,(M/u) =
(M0/u0), andep(Mw0 , µw0) = M0(p)−0 = M0(p) ≡ u0(p).

Assume that the property (i) holds for a wordw′ ∈ L(N,M0)
and letδ((M0/u0), w′) = (M ′/u′). Let t be an enabled transi-
tion atMw′ andw = w′t: in the OCG there will be a transition
δ((M ′/u′), t) = (M/u). We can consider two cases.

If M(p) 6= ω, then Mw′(p) = M ′(p) 6= ω and
ep(Mw, µw) = min{ep(Mw′ , µw′), Mw′(p) − Pre(p, t)} =
min{u′(p), M ′(p)−Pre(p, t)} = u(p) where the first equality
derives from proposition 7, the second one from the induction
hypothesis, and the third one from step 2.3.1 of algorithm 13.

If M(p) = ω, then ep(Mw, µw) = min{ep(Mw′ , µw′),
Mw′(p)− Pre(p, t)} ≤ ep(Mw′ , µw′) ≤ u′(p) = u(p) where
the last inequality derives from the induction hypothesis, and
the last equality from step 2.3.1 of algorithm 13.

(ii) Immediately follows from the previous item.

Example 17. Let us consider again the net system in fig-
ure 2.a and its OCG. The estimation error relative to the node
labeled with(ω/1) may be either null or unitary. If we con-
siderw = t1t2t2 thenep(Mw, µw) = 0, thus on the OCG we
read an upper bound of the estimation error. On the contrary,
ep(Mw, µw) = 1 is the exact estimation error for all wordsw
such that∀w′ 4 w, |w′|t1 ≥ |w|t2 .

Now, let us consider the net system in figure 2.b. Here, every
node with labelM(p1) = ω is also characterized byu(p1) = 0,
i.e., the upper bound on the place estimation error inp1 is null.
Therefore, in this case in each node of the OCG we can read
the actual place estimation error inp1.

Finally, in the example in figure 3 noω appears inG being the
net bounded, thus in each nodeu is the exact estimation error
vector. �

5.1 Word completeness

A necessary and sufficient condition for completeness of a
word was given in [3] in terms of languages.

Proposition 18 ([3]). A wordw ∈ L(N,M0) is marking com-
pleteiff ∀M0 < M0 : w 6∈ L(N,M0).

Example 19. Let us consider the net system in figure 3. The
word w = t2 is not marking complete sincet2 ∈ L(N,M0)
with M0 = [1 0 0] < M0 = [2 0 0]. On the contrary, the
word w = t2t2 is marking complete. It can be proved with
both theorem 18 and the OCG. �

A simpler semi–decision procedure for completeness can be
given using the OCG.

Proposition 20. Let us consider a net system〈N,M0〉 and its
OCGG. Let (M/u) be the node inG reached executingw ∈
L(N,M0), i.e., (M/u) = δ((M0/u0), w) and let us consider
a placep ∈ P .

(i) If u(p) = 0, thenw is p-complete.

(ii) If M(p) 6= ω andu(p) 6= 0, thenw is notp-complete.

Proof: It follows from proposition 16.

Corollary 21. Let us consider a net system〈N,M0〉 and its
OCGG. Let (M/u) be the node inG reached executingw ∈
L(N,M0), i.e.,(M/u) = δ((M0/u0), w).

(i) If ∀ p ∈ P , u(p) = 0, thenw is marking complete.

(ii) If ∃ p ∈ P such thatM(p) 6= ω andu(p) 6= 0, thenw is
not marking complete. �

Example 22. Note that the OCG provides necessary and suffi-
cient conditions for the completeness of a word only in the case
of bounded P/T nets, whenω does not appear in the graph. On
the contrary, it only provides two distinct sufficient or neces-
sary conditions for the completeness of a word in the case of
unbounded nets. As an example, let us consider the net system
in figure 2.a. If we considerw = t1t2t2, w is complete but this
is not deducible from the OCG. �

5.2 Observability

A necessary and sufficient condition for marking observability
was given in [3].

Proposition 23 ([3]). The net system〈N,M0〉 is marking ob-
servableiff L(N,M0) )

⋃
M0<M0

L(N,M0).

Checking for language inclusion is difficult thus we look for
simpler decision procedures. In particular the OCG provides
a simpler semi-decision (i.e., only sufficient) condition for the
marking observability.

Proposition 24. Let us consider a net system〈N,M0〉 and its
OCGG. A placep is marking observableif there exists a node
in G such thatu(p) = 0.

Proof: It follows from the definition of marking observability
and from proposition 20.

Corollary 25. Let us consider a net system〈N,M0〉 and its
OCG G. The system ismarking observableif there exists a
node inG such thatu = ~0m. �



5.3 Strong observability

The OCG provides necessary and sufficient conditions for
strong marking observability. Let us first demonstrate, as an
intermediate result, that the repeated firing of a repetitive se-
quence does not decrease the place estimation error.

Lemma 26. Let 〈N,M0〉 be a net system and let us assume
that there exists a firing sequencew′ that enables a repetitive
sequencew, i.e., M0[w′〉Mw′ [w〉Mw′w with Mw′w ≥ Mw′ .
Then for all p ∈ P and ∀ i > 1, ep(Mw′wi , µw′wi) =
ep(Mw′w, µw′w).

Proof: While observing a sequencew, the error may decrease
only during step 4 of algorithm 2, i.e., when we compute the
updating estimate.

Let t be the first transition in the sequencew. If t fires after
w′wi, in step 4 of algorithm 2 we haveµ′w′wit ≥ Pre(·, t).
Using proposition 7 it is easy to show that for alli ≥ 1 holds
(Mw′wi+1 − µw′wi+1) ≤ (Mw′wi − µ′w′wit), thusµw′wi+1 ≥
(Mw′wi+1 −Mw′wi) + µ′w′wit ≥ µ′w′wit ≥ Pre(·, t). There-
fore,µ′w′wi+1t = µw′wi+1 , i.e., the estimate is not updated and
the error for each place remains constant each timew is re-
peated after it has fired once.

Proposition 27. Let us consider a net system〈N,M0〉 and its
OCG G. A placep ∈ P is strongly marking observablein
kp steps iff the error bound vector is such thatu(p) = 0 for
each node(M/u) in G such that: (a) the node(M/u) is in a
cycle; (b) the node(M/u) is dead. Moreover, if (a) and (b)
are satisfied, it is possible to computekp as the length1 of the
longest path that leads from the root to a node withu(p) > 0.

Proof: (if) By proposition 15, the number of nodes inG is finite
and equal tov. Thus any wordw of length greater or equal to
v must pass through a cycle inG, hencew is p-complete by
assumption (a). Any word of length less thatv that leads to
a dead marking is alsop-complete, by assumption (b). This
is sufficient to show that the place is SMO inkp steps with
kp ≤ v. The actual value ofkp may be computed as suggested
in the statement.

(only if) We show this by contradiction, proving that if any
of the two conditions are violated the place cannot be SMO.
Clearly, if condition (b) is violated, the place is not strongly
marking observable by definition. Now, let assume that (a) is
violated. We consider two subcases.

(i) Assume there exists a node(M/u) along a cycleγ of G
with M(p) 6= ω andu(p) > 0. Then there existsw′ such that
Mw′ = M andep(Mw′ , µw′) = u(p) > 0. The cycleγ corre-
sponds to a wordw such thatMw′ [w〉Mw′ , i.e., by Lemma 26
the infinite length sequencew′wi may be fired for alli > 0
without reducing the estimation error and the place is not SMO.

(ii) Assume there exists a node(M/u) with M(p) = ω and
u(p) > 0 (we do not even need to assume it is along a cycle).
Then consider the path along the observer coverability tree that
reaches(M/u) from (M0/u0) and let(M̃, ũ) be the first node
we encounter along this path withM(p) = ω. Then, at step
2.3.2 of algorithm 13, we have identified a markingM such

1The length of a path is given by the number of edges along the path.

that M0[w′〉M [w〉Mw′w and Mw′w ≥ Mw′ (M̃ is obtained
from Mw′w by changing inω the components greater that the
corresponding components ofM ). Also, ep(Mw′w, µw′w) =
ũ(p) ≥ u(p) > 0. Thus, by Lemma 26 the infinite length
sequencew′wi may be fired for alli > 0 without reducing the
estimation error and the place is not SMO.

Corollary 28. Let us consider a net system〈N,M0〉 and its
OCGG. The system isstrongly marking observablein k steps
iff the error bound vector isu = ~0m for each node(M/u) in G
such that: (a) the node(M/u) is in a cycle; (b) the node(M/u)
is dead. Moreover, if (a) and (b) are satisfied, it is possible to
computek as the length of the longest path that leads from the
root to a node withu 6= ~0m. �

Example 29. All net systems in figures 2–3 are marking ob-
servable but not strongly marking observable. On the contrary,
one example of strong marking observability (in one step) can
be obtained if we consider the net in figure 3 with initial mark-
ing M0 = [1 0 0]T . �

6 Conclusions

In this paper we dealt with the problem of estimating the mark-
ing of a Place/Transition net based on event observation. Words
of events that allow one to reconstruct the marking of the net
are called complete. We focused our attention on two main
properties:marking observabilityandstrong marking observ-
ability and introduced a useful analysis tool to prove the above
properties: theobserver coverability graph. This graph con-
tains both the set of reachable markings of a net system and the
corresponding estimate error and we showed that it provides
simple decision or semi–decision conditions.
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