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Abstract

In this paper we deal with the problem of designing control
logic for railway networks using Petri nets. We first use the
framework of supervisory control theory, taking into account
the presence of uncontrollable and unobservable transitions, to
derive a maximally permissive contro! policy that ensures safe-
ness. The corresponding controller takes the form of monitor
places, possibly with self-loops. In a second step. we inves-
tigate the liveness problem and present an heuristic technique
based on structural analysis that, whenever applicable, leads to
live models. As an example, we consider a segment of the rail-
way network in Sardinia, Italy,

1 Introduction

The specification, analysis and implementation of railway
control logic has ever been an important activity since trains
and railways were invented centuries ago, and failure of con-
trol logic can lead to railway accidents and loss of human life.
At present time, this activity is even more important because
railway networks are often large, the speed of trains and traffic
density is increasing, and activities within networks are taking
place concurrently and at geographically different locations. As
a result, the overall complexity of railway systems increases,
and hence greater demands are placed on the control logic of
these systems [13]. Note that the control of a railway network
can be divided into two distinct phases. The first one, at a lower
level, imposes the satisfaction of a series of safeness constraints
(collision avoidance) and liveness constraints (deadlock free-
ness). The second one, at a higher level, is concerned with the
problem of scheduling both the departures and the stops, so as
1o optimize the efficiency of the net. In this paper the attention
is uniquely devoted to the first phase.

We focus our attention on the modeling and control of rail-
way networks with Petri nets [17], that provide a powerful
framework for the analysis and control of distributed and con-
current systems. Some of the advantages of Petri nets as models
for discrete event control include [10]: graphical representa-
tion, solid foundations based in mathematics, the existence of
simulation and formal analysis techniques, and the existence of
computer tools for simulaton, analysis and control. The liter-
ature on modelling and analyzing railway systems using Petri
nets is not extensive and a good survey is given by Janczura in
[13]). The idea of applying Petri net theory goes back to Genrich
[71, then 1t was revisited in [2, 14] and in [12] where coloured
Petri nets have been used. Significant contributions in this field
are also due to Decknatel and Schnieder [4] and Di Febbraro
et al. [6] who used hybrid Petri nets to model transportation
systems.

The original contribution of our paper with respect to the
above mentioned.approaches, concerns three aspects.

Modeling. We show how it is possible to modei a rail-
way network using Petri nets with {un)controllable and/or
(un)observable transitions, following the paradigm of supervi-
sory control {18]. As an example, a controllable and observable
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transition is associated to the crossing of a section controlled by
a semaphore, where a traffic signal that may stop a train and a
sensor that detects the passing of the train is placed. The possi-
bility oftered by supervisory control to handle such primitives
as uncontroilable and unobservable events leads to a very sim-
ple model that can be directly exploited in the subsequent phase
of control synthesis. The use of Petri nets allows a modular rep-
resentation of railway networks where each of the composed
subnets corresponds to a station or a track.

Control. There exist several techniques for automatically
designing controllers for P/T nets with uncontrollable and/or
unobservable transitions [10]. In particular, we show how col-
lision avoidance constraints can be expressed as Generalized
Mutual Exclusion Constraints (GMECs) [8] and how the corre-
sponding controller takes the form of a set of monitor places
that can be computed using Moody’s parametrization [16].
However, it is well known that in general a monitor-based solu-
tion to a GMEC may not be maximally permissive. In a previ-
ous work [3], we showed that this is the case for constrainis re-
lated to the arrival and departure of a train from a station, where
the designed monitor controller is too restrictive and leads to a
local deadlock. In [5] we also showed that — although the
maximally permissive control policy corresponds to a set of le-
gal markings that is not convex and thus cannot be enforced by
a monitor place — the corresponding control structure is still
very simple and takes the form of a “monitor with self-loops”.
A nice feature of this approach is that the whole control prob-
lem can be divided into a certain number of sub—probiems, thus
making the proposed control procedure suitable even for large
dimensions cases.

Deadlock avoidance. While in our previous paper (5] the
focus was on the modeling and safeness-enforcing control, in
this paper we address the problem of glebal deadlock avoid-
ance and simulation. In fact, when all the previous modules
are put together, it may well be the case that the net reaches a
deadlock marking, i.e., a blocking state from which no further
evolution is possible. We provide a solution to this problem
applying siphon analysis to a simplified net (that we call skele-
ton) and adding new monitors that, controlling the net siphons
to prevent them from becoming empty, ensure liveness for this
system. To compute the liveness-enforcing monitors, we use
a very efficient linear algebraic technique that does not require
the exhaustive enumeration of all siphens, whose number may
be too large even for small nets such as the one we consider.
This technique is applied 10 the Petri net modetl of a short seg-
ment of the railway in Sardinia, Italy.

Finally, we show how it is possible to determine the max-
imum number of trains a given railway network can manage
effectively through numerical simulations.

As the scope of this paper is to show how several Petri nets
techniques, from monitor based supervisory control to siphon
analysis can be successfully applied to a real problem, we pre-
fer to keep the discussion at an informal level. References are
given, however, to more technical papers where all the used re-
sults are formally proven.
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2 Background

2.1 Generalities on Petri nets

In this section we recall the formalism used in the paper. For
more details on Petri nets we address to [17].

A Place/Transition net (P/T net) is a structure N =
(P, T, Pre, Post), where P is a set of m places; T is a set
of n transitions; Pre: PxT - Nand Post: PxT =+ N
are the pre— and post— incidence functions that specify the arcs;
C = Post — Pre is the incidence matrix.

A marking is a vector mn : P — N that assigns to each
place of a P/T net a non—negative integer number of tokens,
represented by black dots. In the following we denote as m;
the marking of place p;. A P/T system or net system (N, mg)
is a net N with an initial marking m, and its set of reachable
markings is denoted R(N, myg).

A non-nuli vector * € N™ such that ¥C = 0 is called
a P-semiflow (or P—invariant) of the net N. The support of
a P-semiflow is the set of places p; such that z; > 0. Let
X be a matrix where each column is a2 P~semiflow of N, and
denote Zx (N, mg) = {m € N™ | XT m = X7 my}. Then
R(N,mo) € Ix(N,mq).

A P/T net is called ordinary when all of its arc weights are
1's. A siphon of an ordinary net is a set of places S C P such
that: s *p € U,yes P*. A siphon is minimal if it is not the
superset of any other siphon. The number of tokens assigned to
the siphon S by a marking m is m{S) = ¥_ .. s mi. A siphon
¢an also be described by its characteristic vector 8 € {0,1}™
such that s; = 1if p; € S, else 5; = 0; thus m(S) = s¥m.

2.2 GMECs, monitors and controllability

The development of this subsection is kept very concise for
sake of brevity. Please, refer to [16] for a more complete dis-
cussion of this topic.

Assume we are given a set of legal markings £ C N, and
consider the basic control problem of designing a supervisor
that restricts the reachability set of the plant in closed loop to
£ R(N,my). Of particular interest are those PN state-based
control problems where the set of legal markings £ is expressed
by a set of n, linear inequality constraints called Generalized
Mutual Exciusion Constraints (GMECs).

Each GMEC is a couple (w, k) wherew : P = Zisamx 1
weight vector and k € Z. Given the net system (N, 7o), a
GMEC defines a set of markings that will be called legal mark-
ings: M(w,k) = {m € N™ | wTm < k}. The markings
that are not legal are called forbidden markings. A controlling
agent, called supervisor, must ensure that the forbidden mark-
ings will be not reached. So the set of legal markings under
control is M. (w, k) = M(w, k) N R(N,my).

In the presence of multipie constraints, all constraints can be
grouped and written in matrix form as

Wim <k (0

where W € Z™?: and k € Z™<. The set of legal markings is
MW k)= {meN"* | Wim < k}.

Each constraint requires the introduction of a new place (de-
noted as monitor place). To each monitor place, it corresponds
an additional row in the incidence matrix of the closed loop
system. In particular, let C. be the matrix that contains the arcs
connecting the monitor places to the transitions of the plant, and
(m.p) m. the (initial) marking of the monitors. The incidence
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Figure 1: Convention on transitions: ¢ controllable, o observable, nc
uncontrollable, no unobservable.
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matrix C € Z{m+r} %7 of the closed loop system is
-lg] o

and the marking vector v € Z™1"< and initial marking
are

m:[m"], m0=[’“?°], @)

e M0

where the subscript p has been used to denote the vaniables of
the plant.

In the case of controllable and observable transitions, Giua

et al. provided the following thecrem.
Theorem 1 ((8]) If k — WTmy > O then a Petri net con-
troller with incidence matrix C, = —WTC,, and initial mark-
ingmeg =k-—- WTmpo enforces constraint{1) when included
in the closed loop system (2) with marking (3).

The controller so constructed is maximally permissive, i.e. it
prevents only transitions firings that yield forbidden markings.
The controller net has n,. monitor places and no transition is
added.

It often occurs that certain transitions can not be disabled
by any control action (uncontrollable transitions) or their firing
can not be directly detected or measured (unobservable tran-
sitions). We adopt the convention reported in figure 1 to dis-
tinguish among controllable and/or uncontrollable, observable
and/or unobservable transitions.

An admissible monitor must satisfy two structural conditions
[15, £6] when uncontrotlable or unobservable transitions exist.
No arcs is allowed from a monitor to an uncontrollable tran-
sitton £, so that ¢ can never be disabled by the controller. An
unobservable transition must have the same number of input
and output arcs to/from a monitor — i.e. its only admissible
connection to a monitor is given by self-loops — so that its
firing does not change the state of the controfler and thus can
never be detected.

If the monitor constructed applying the previous theorem
does not satisfy these structural conditions, an appropriate set of
transformed constraints (more restrictive than the original ones)
needs to be determined so as to construct a Petri net controller.
A general technique to do this with little more than the integer
triangularization of a suitable matrix was presented in [15, 16].
An example of constraint transformation is given in section 4.

2.3 Constraints involving the firing vector

Certain control goals may involve the firing vector of a Petri
net as well as the tokens content of places [16]. A constraint of
this kind takes the form:

wim +vq; <k )

where v; € N, and ¢; € {0,1} is such that ¢; = 1 if ¢;
is enabled, otherwise ¢; = 0. Thus, constraint (4) implies
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Figure 2: A monitor with self-loop.

that wTm < k and that wansition t; should be enabled if
k—wTm > v;.

The corresponding control structure takes the form of a mon-
itor place with a self-loop. As an example, in figure 2 we have
shown the monitor with self-loop pys that enforces the con-
straint my + me + g1 < 1. Note that transition ¢; must be
controllable, transitions ¢» and ¢4 must be contrellable and ob-
servable, transitions t3 and ¢3 must be observable.

3 Modeling railway networks with Petri nets

In this section we show how Petri nets can be efficiently used
as a modeling tool for railway networks. In particular, we show
that the whole network can be seen as the compaosition of a cer-
tain number of elementary modules, namely tracks and stations.

3.1 The track model

An example of Petri net modeling a track is shown in fig-
ure 3. It consists of two series of places (p,,--+, ps and
P}, - ,ps) and transitions {1, --- , ¢4 and ¢}, --- | #}), each
one representative of the flow of trains in a certain direction.
Each couple of places p;, p} represents a segment of the track,
i.e. the marking of either p; or p} denotes the presence of a
train in the segment. Note that, in the case of a double track,
the two lines are independent and places p; and p! correspond
to parallel segments and can be marked simultaneously. On the
contrary, in the case of a single track two places, p; and pf,
are used to represent the same segment of the track that can be
crossed in both directions, but places can not be marked at the
same time. Note that during simulation a release delay is asso-
ciated 1o each transition, to represent the time a train requires
to run aleng that segment.

Transitions may be {un)controllable and/or {un)observable.

In this setting, a transition that is both controllable and observ-
able represents a semaphore (see transitions #3 and ¢} in fig-
ure 3), i.e., in that point of the net the presence of a train can be
detected and its transit can be forbidden. In all real situations a
semaphore is placed at the exit of a track, or equivalently at the
entrance of a station.
A transition that is observable but not controllable (see transi-
tions #;, t4, t} and t}), represents a sensor counting the number
of axles of the train, i.e., the number of cars passing through
that point.

The number of places used to represent the track depends
on the required precision. On one hand, we assume that the
Petri net is safe (such a condition will be imposed by the addi-
tion of appropriate monitor places), thus the number of places
is mainly limited by the required safeness distance, i.e., we as-
sume that the length of each segment is such that no more than
one train can be contained within it at any given time instant.
On the other hand, we take into account the presence of sensors
and semaphores that are modeled by appropriate transitions as
discussed above. Note that, even if these elements are only as-
sociated to one direction of flow, an equal number of uncontrol-
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Figure 3: The Petri nei model of a track.
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Figure 4: The Petri net model of a two-tracks station.

lable and unobservabie transitions should be added in the other
direction so as to keep the structure shown in figure 3.

3.2 The railway station model

The Petri net model of a two-tracks railway station is
sketched in figure 4, where double arrows have been used to
denote self-loops. The station is composed of two stretches,
whose models are analogous to that already presented in the
previous subsection.

The firing of controliable and observable transitions ¢4,
and #;,,4 2 represents the input of a train in the station, while the
firing of uncontrollable and unobservable transitions t,,;,; and
towt,2 TEPresents the output of a train from the station. Note that,
as in the case of the track model, a controllable and observable
transition is used to model a semaphore, while an observable
but uncontrellable transition is used to model an axles counter.

The two cycles pu,1,24,1, P10, tu,1 and Pu2,ta2,Pa2:tu2
model the peints, i.e., when places p, ; and p, » are marked,
trains are directed to the up-~track or may leave the up-track;
on the contrary, when places py; and pq 2 are marked, trains
are directed to the down—track or may leave the down-track.

Note that this model can be easily extended to an arbitrary
number of tracks. An example of a three—tracks railway station
may be found in [5].

4 The controller design for tracks and stations

In this paper we shall deal with the problem of designing a
Petri net supervisor for a railway network so as to ensure safe-
ness. In other words, the goal of the supervisor is that of guar-
anteeing that trains may flow through the net without colliding.

Safeness constraints can be written as GMECs that ensure
that each couple of places corresponding to the same segment of
a single—track (that may also belong to a station) are not marked
simuitaneously, and that each place never contains more than
one token at a time. As an example, a constraint of the form

m; +m; < 1 (5)
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Figure 5: Monitor place relative to the constraint m; + my < 1 as-
suming that all transitions are controllable and observable
(pas) and taking into account the uncontrotlabitity and un-
observability of transitions (p).

relative to a given segment of a track adjacent to a staticn (see
figure 5) ensures that places p; and p} are not marked at the
same time and each place never contains more than one token.

In accordance to the supervisory control theory briefly sum-
marized in section 2.2 each constraint requires the introduc-
tion of a monitor place. If all transitions were controllable and
observable, the monitor ensuring the satisfaction of (5) would
have been place pas in figure 5.

In the case of uncontrollable and/or unobservable transitions,
constraints need to be appropriately transformed. In fact, place
pas is not an admissible supervisor because it has arcs going to
uncontrollable transitions and arcs coming from unobservable
ones. If we move “upwards” the arcs going to uncontrollable
transitions until we reach controllable ones, and “downwards”
the arcs coming from unobservable transitions until we reach
observable ones, we obtain the monitor pf; in figure 5, that
corresponds to the more restrictive constraint

Mg +mi_,+mir+mi+migg +mi <l (6)

A formal algorithi for constraint transformation is given in
(15, 16].

Although we need to add a number of constraints equal to
the rumber of track segments (this number is about half the
number of places in the net), once all constraints have been
transformed one finds out that many of them are redundant and
can be discarded.

Constraints of this kind ensure safeness. Nevertheless, it can
be proved [5] that they reveal to be too restrictive when applied
to places refative to tracks within the stations, while they en-
sure a satisfactory behaviour of the net when imposed to places
modeling the intermediate tracks. A better solution to this prob-
lem consists in the introduction a new set of constraints also in-
volving the firing vector that regulate the input of trains in the
stations, and the points within them.

Let us consider a two—tracks railway station. The detailed
Petri net model is reported in figure 4. Nevertheless, when
imposing logical constraints, we do not need such a detailed
model, and it is enough to consider the Petri net in figure 6 that
is obtained from the previous one by simply grouping together
some places.

The set of constraints, most of which also involve the firing

Figure 6: The reduced Petri net model of a wa—tracks railway stasion
and the monitor place refative 1o constraint 7.a.

station a{| single || station p L double }, station ¥ || ginple [} station d
3-tracks || track 2-tracks || track 2-tracks || yrack 2-tracks
Figure 7: Scheme of the railway network.

vector, is:
(m1+m2+m3+m4$2 (ﬂ)
Qing2 T Mu2 +m2 <2 ()
Qing2 + g2 +my <2 (¢)
Guz+ma+my <2 (d)
{ az+mg+myg <2 (E§ Q)]

Qing,1 + My1 + My <2 (f
Qing,1 +Mmy1 +m3 < 2 {9)
qua +my +my <2 (k)
{ g2 +mi+may €2 )

where (a)-(c) and (f)~(g) regulate the input of trains in the sta-
tion, while (@), (¢), (h), (1) regulate the points.

These constraints can be forced by simply introducing ap-
propriate monitor places as illustrated in section 2.3. As an ex-
ample, in figure 6 we have reported the monitor place relative
to constraint 7.a.

5 Liveness constraints in a real network

We now consider the railway system sketched in figure 7,
that represents a short segment between the stations of Chilivani
and Olbia, in Sardinia, Italy. It consists of four stations, where
the first one is a three—tracks station while the others are two—
tracks stations. All intermediate tracks are single tracks, apart
from the second one where two trains may travel in opposite
directions simultaneously.

A skeleton Petri net model of the network (at this level of
abstraction all transitions can be considered as controllable and
observable) is shown in figure 8; here the monitors inside rect-
angles limit the number of trains within stations and tracks ac-
cording to each station or track capacity. The monitor place po
contains the maximum number B of trains that may be allowed
into the network.

It is easy to verify using this skeleton model that when differ-
ent modules are put together several blocking conditions may
occur. Consider the case in which two trains are in the station
B directed towards station « (place py contains two tokens) and
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one train has already left station o and is moving towards sta-
tion 3 (place p, contains one token). When such a marking is
reached places ps and pg are empty and the net reaches a partial
deadlock.

We present a technique, based on the analysis of the skele-
ton net, to determine a maximally permissive liveness enforcing
control policy.

We first observe that the skeleton net belongs to the class of
ES® PR nets (a subclass of ordinary PN’s) defined in [19]. To
ensure liveness of the model, we use a result presented in {19].
Proposition 2 Let (N, m) be a marked ES® PR net. If a tran-
sition t € T is dead for a reachable marking m, then there
exists a reachable marking w' and siphon S # © such that
m(S) = 0, i.e, all places in the siphon S are empty.

We then adopt a standard technique [19] to enforce liveness:
determine if there are siphons in the net that can become empty
and if so add a monitor o control them and prevent this. There
are two problems with this technique: first of all the new mon-
itors may create new siphons that may need to be controlled as
well; secondly, the addition of new monitors may lead to a net
that is not ordinary any more. However, for this particular ex-
ample, the procedure could be successfully applied to all cases
in which place py is initially marked with B < 7 tokens, in the
sense that by adding new monitors the net always remains or-
dinary and after a finite number of steps the net converges to a
structure where no siphon may become empty.

Note that the methodology presented in [11], that allows one
to transform non-ordinary nets into ordinary ones, may also be
used to continue deadlock analysis for a larger number of trains.

We sketch how we proceeded to compute the liveness-
enforcing monitors, using a linear algebraic technique based on
integer programming that does not require the exhaustive enu-
meration of all siphons, whose number is too large even for a
small net such as the one we consider. Although solving a linear
integer optmization problem is stili an NP complete problem (as
is siphon enumeration) we observed that in practice the integer
programming approach is much more efficient. This technique
is inspired by other linear algebraic approaches appeared in the
literature, in particular by the resuits of [3].

First of all we observe that the net in figure 8 has 9 semiflows
corresponding to the monitors places po, p2, Ps, - - -, P21 shown
as dashed circles; the places in the support of each semiflow are
shown within a rectangle, except for the semiflow correspond-
ing to place py whose support contains all places in the net.
Thus the reachable set of the net can be approximated as

R(N,mp) C Ix(N,mp) = {m e N" | XTm = &}

where each column of the the 23 x 9 matrix X contains a P-
semiflow and k = X7'mg is 29 x 1 vector whose components
represent the token content of each semiflow. Although we can-
not formally prove that R(N, mg) = Ix(N,my) if we can
enforce that no deadicck marking m € Tx (IV,m) is reach-
able, then no reachable marking may be a deadlock. Thus in the
following we use the previcus equation as a characterization of
marking rechability.

To determine if there are siphons that need to be controlled
one may use the follewing non-linear integer program:

r

min s$°'m

s.t. sgn(Pre’s) > sgn(PostTs) 8
XTm = k (8)
175> 1

where 8 € {0,1}™ and m € N™ are the unknowns, and
sgn(x) is a vector whose i-th component is I (resp., 0, -1) if
the i-th component of x is positive (resp., null, negative). The
equation sgn{Pre)Ts) > sgn(Post” s) ensures that s is the
characteristic vector of a siphon S, the second equation ensures
that m is reachable, and the equation 17's > 1 ensures that S is
not the empty set. Thus a solution (s, 8} of this program with
optimal value s7m = 0 corresponds to a reachable marking m
such that the siphon S with characteristic vector 8 is empty.

The non-linearity of the previous program is an undesirable
feature, that makes solving it a hard task. We convert it to an
equivalent (linear) integer program

min 17s

st. K \Prels> Post’s
X"Tm=k& ©)
Kss+m < Ksl
17s>1

where K1 = max{17Post(-,t} | t € T} and K, =
max{m(p) | p € P,m € R(N,my)} (for the net in figure 8
K, = 2 and K; = B). We claim (a formal proof can be found
in {1]) that the program (8) has an optimal solution (12, 3) such
that s7rn = 0 if and only if the program (9) has an admissible
solution. In fact, the first constraint in (9) is perfectly equiva-
lent to the first constraint in (8), while the new constraint in (9)
(the third one) ensures that for all p; € P, Kos; + m; < K»
holds, i.e., either s; = 1 and mn; = 0 or {exclusive or) s; = 0
and m; > 0. The objective function chosen for the program (9)
ensures that only minimal siphons are computed.

We started with a value of B = 3 and applied the previously
described approach to determine siphons to be controlled. As
such a siphon is found, we add a new monitor to the net to
prevent the siphon from becoming empty. Afier a few steps the
procedure converges to a live net. We increase the value of B
of one token and continue the procedure.

These are the GMEC’s corresponding to the liveness enforc-
ing monitors determined with the previous procedure as B goes
from1to 7.

my+mg <2 my+me £
my +me <3; mMag +mgn <35
my + Mg + Mz -+ Mag <55
Mg + Mg + Mz + Mg + Mye +Myp < 6
my + m7 + mg + Mg + Mmys + Mg < 6;

myy + Maz < 2;
m) +mg < 4;

(10}

When B = 8, the procedure finds empty siphons that cannot
be controlled by ordinary monitors; thus we have to stop.

Although we are able to ensure liveness of the model for a
number of trains up to 7, we will show in the following sub-
section that it is desirable to allow no more than 5 trains in the
network to bound the time it takes a train to go from one end
station to the other one,

5.1 Numerical simulations

In this subsection we present the results of some numerical
simulation performed via the software SIRPHYCO [9]. During
numerical simulations we associate a time delay to each transi-
tion, corresponding to the time a train requires to cross over a
given segment, or equivalently, in the case of the points mod-
els, it denotes the time required to change the enabled track.
More precisely, we assume stochastic transitions, with an ex-
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donble-truck single-track
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Figure 8: The skeleton Petri net model of the railway network in fig-
ure 7.

160, X r -
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tme units
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Figure 9: The results of the numerical simulation presented in sub-
section 5.1

ponentially distribute faw, thus the chosen time delays represent
average values.

We assume that one train starts moving from station o to sta-
tion § while r trains (with r > 0) are moving from station é to
a. We compute the traversal time of first train, i.e., the time
it spends within the net before reaching station & and leaving
the net. This traversal time grows with r, as shown in figure 9.
In particular, we observe that the traversal time significantly in-
creases for r > 4, i.e., we may conclude that B=r +1 =5
is the maximum number of trains the considered net can effec-
tively manage,

6 Conclusions and future works

In this paper we have investigated the problem of modelling
railway networks with Petri nets so as to apply supervisory
control to automatically design a controller that both ensures
safeness and liveness. Transitions have been assumed either
(un)controliable or (un)observable so as to represent sensors
and semaphores.

The procedure we have proposed is based on a modular rep-
resentation of the net, thus making it easily extensible to even
large dimensions problems. We used both generalized mutnal
exclusion constraints and constraints involving the firing vec-
tor, and the corresponding control structures take the form of
monitor places.

Our future work will be that of scheduling both the depar-
tures and the stops, 0 as to optimize the efficiency of the net.
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