
Optimal control of switched autonomous linear systems

Alessandro Giua (*), Carla Seatzu (*), Cornelis Van Der Mee (**)
(*) Dip. di Ing. Elettrica ed Elettronica, (**) Dip. di Matematica — Università di Cagliari, Italy
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Abstract

The paper deals with the optimal control of switched piece-wise linear autonomous systems,
where the objective is that of minimizing a quadratic performance index over an infinite time horizon.
We assume that the switching sequence and the corresponding jump matrices sequence is known,
while the unknown switching times are the optimization parameters. The optimal control for this
class of systems, assuming a switching sequence of finite length, takes the form of a homogeneous
state feedback, i.e., it is possible to identify a homogeneous region of the state space such that an
optimal switch should occur if and only if the present state belongs to this region; we show how
such a region can be computed with a numerical procedure. As the number of allowed switches goes
to infinity, we study the stability of the system and discuss some preliminary results related to the
convergence of the state feedback law.
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1 Introduction

Switched systems are a particular class of hybrid systems [1] consisting of a certain number of subsys-
tems (that may also be infinite) and a switching law that indicates the active subsystem at each time
instant. Examples of switched systems may be found in many application fields, such as chemical pro-
cesses, transportation systems, electrical circuit systems, and so on.

The problem of determining optimal control laws for this class of hybrid systems has been widely in-
vestigated in the last years and many results can be found in the control and computer science literature
[2, 5, 7, 10]. Many of these works propose control procedures that are based on the discretization of state
space into grids and use search methods to find optimal open-loop solutions. We also mention the con-
tribution given by Riedinger et al. in [7, 8] where very general sufficient conditions for optimal control
problems of switched systems are given in terms of hamiltonian function.

In this paper we restrict our attention to the case of switched systems whose subsystems are linear and
autonomous. We assume that we have a pre-assigned switching sequence between autonomous linear
dynamics of the type ẋ(t) = Ajx(t), where the sequence Aj , j = 1, 2, · · · is known but the switching
times τj are unknown. We also generalize this framework by assuming that whenever at time τj a switch
from Aj to Aj+1 occurs, the state should jump from x(τ−j ) to x(τ+j ) = M jx(τ

−
j ). We make the

following assumptions:

a) Each matrix Aj is stable, thus an optimal choice of the τj’s will ensure the stability of the switched
system under some hypothesis on the structure of the allowed jumps (we prove this).

b) Each system is autonomous, i.e., we do not need to compute a continuous control. The only control
input for this system is the controlled switch/jump. Also switch and jump are coupled, in the sense that
the j-th jump and the j-th switch are triggered by the same event and occur at the same time.

c) We assume that no cost is associated to a switch.

The control problem consists in determining the optimal switching times τj , j = 1, 2, · · · , so as to
minimize a quadratic performance index of the form:

F (τ1, τ2, · · · ) =
∫ ∞

0
xT (t)Qx(t) dt

where Q is a positive definite matrix.

When only a finite number n of switches may take place, the results we presented in [4] show that the
optimal control law turns out to be a “homogeneous feedback”, in the sense that for all j ≤ n: (a) it is
possible to identify a region Cj,n of the state space such that the j-th switch should occur if and only if
we are within this region; (b) this region is homogeneous, i.e., if x ∈ Cj,n then λx ∈ Cj,n, for all real
numbers λ. In [4], we also considered the case in which a cost is associated to each switching and studied
how the regions are correspondingly modified. The original features of our approach can be summarized
as follows. Firstly, our derivation is based on the analytical derivation of the cost functional rather than
the hamiltonian. Secondly, we are able to show that in this particular case the optimal control is a state
feedback (and not an open-loop control). Thirdly, we are able to compute with a simple numerical
procedure not only necessary but also sufficient conditions for optimality.

In this paper, we consider the case in which the number of allowed switches n goes to infinity. In this
case, stability issues become important because the stability of each subsystem is neither a sufficient nor
a necessary condition for the stability of the overall system; this topic has been studied in the literature

2



[3, 6, 9]. We show that the switched system controlled with the proposed procedure is stable in the sense
of Lyapunov because of the optimality of the control law if we assume that the number of subsystems
A = {Aj | j ≥ 1} is finite and the jump matrices M j satisfy a not very restrictive condition.

However, a different type of instability, zenoness, may appear if we allow consecutive switching times
τj = τj+1 = · · · = τj+r to take the same value. To rule out this case, we propose in this paper a modified
procedure that finds the optimal control law under the constraint that τj − τj−1 ≥ δ > 0, j = 1, 2, · · ·
(spacing condition). Even for the modified procedure we prove the stability of the controlled systems
under possibly infinite switchings.

Finally, we also study the convergence properties of the switching regions for an infinite number of
switches. The preliminary results presented in the paper do not give a constructive algorithm to determine
the regions.

One limitation of the present approach is the fact that the switching sequence is pre-assigned. In effect,
preliminary results that are not discussed here, show that our approach can easily be generalized to
consider a (possibly infinite) set of legal sequences provided that they can all be generated by a finite
state automaton over the alphabet A. We observe, however, that there exist significant problems of
practical relevance where the present framework (pre-assigned sequence) may be successfully applied.
Consider, as an example, an active filtering problem where by connecting or disconnecting a capacitor
one aims to reduce the distortion of an output signal. Such a problem can be framed as a pre-assigned
sequence of switches A → Ã → A → · · · , where ẋ(t) = Ax(t) is the dynamics of the system with the
capacitor connected and ẋ(t) = Ãx(t) is the dynamics of the system with the capacitor disconnected.

It may be possible to extend the results we present here to the cases — considered in the literature already
mentioned — where the subsystem dynamics are not all stable but there exists a stabilizing switching
sequence; this is a topic for future work.

2 The System with Switching Conditions

2.1 System Dynamics

Given the switching times 0 = τ0 ≤ τ1 ≤ · · · ≤ τn ≤ τn+1 = ∞, the N × N stable matrices
A1, · · · ,An+1 ∈ A and the switching matrices M1, · · · ,Mn, consider the linear system whose dy-
namics are given by 

ẋ(t) = Ajx(t), τj−1 < t < τj ,

x(τ+k ) = MkMk−1 · · ·M jx(τ
−
j ),

for τj−1 < τj = · · · = τk < τk+1,

x(0) = x0.

(1)

Then we define the evolution matrices U(t, τ) (t > τ ≥ 0) by

x(t−) = U(t, τ)x(τ+).

Then, obviously, for τj−1 < τj = · · · = τk < τk+1:

U(τ+k , τ) = MkMk−1 · · ·M jU(τj , τ),

and
U(t, τ−j ) = U(t, τk)MkMk−1 · · ·M j .
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Let us define δj = τj − τj−1 (j = 1, · · · , n). One easily verifies that

U(t, τ) = eAk+1(t−τk)Mke
Akδk · · ·

· · ·M j+1e
Aj+1δj+1M je

Aj(τj−τ)
(2)

whenever τj−1 ≤ τ < τj ≤ τj+1 ≤ · · · ≤ τk < t ≤ τk+1.

2.2 Optimization problem

Given a positive definite N ×N matrix Q, we define the cost functional

F (τ1, · · · , τn) =
∫ ∞

0
xT (t)Qx(t) dt. (3)

Clearly, using the convention U(+∞, τ) = 0 and since∫ τj

τj−1

eA
T
j (t−τj−1)QeAj(t−τj−1)dt =

[
eA

T
j tZje

Ajt
]0
δj

(4)

where Zj are the unique solutions of the Lyapunov equations

AT
j Zj +ZjAj = −Q,

we get
F (τ1, · · · , τn) = xT

0 Z1x0

+
∑n

j=1 xT (τ−j )
[
MT

j Zj+1M j −Zj

]
x(τ−j ).

(5)

Using the relations

∂x(τ−k )

∂τj
=


0, k < j

Ajx(τ
−
j ), k = j

U(τk, τj) [−Aj+1M j +M jAj ]x(τ
−
j ), k > j,

we obtain
∂

∂τj
F (τ1, · · · , τn) = xT (τ−j )Gj,nx(τ

−
j ), (6)

where
Gj,n = AT

j

[
MT

j Zj+1M j −Zj

]
+
[
MT

j Zj+1M j −Zj

]
Aj

+
[
−MT

j A
T
j+1 +AT

j M
T
j

]
Hj,n

+Hj,n [−Aj+1M j +M jAj ]

(7)

and

Hj,n =

n∑
i=j+1

U(τi, τj)
T
[
MT

i Zi+1M i −Zi

]
U(τi, τj)

=

n∑
i=j+1

eA
T
j+1δj+1MT

j+1 · · ·MT
i−1e

AT
i δi×

×
[
MT

i Zi+1M i −Zi

]
eAiδiM i−1 · · ·M j+1e

Aj+1δj+1

for j = 1, · · · , n− 1 and Hn,n = 0.
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3 State-feedback control law

From eq. (6) it follows that an optimal j−th switch may only occur in the region of the state space defined
by

C̃j,n = {x ∈ RN | xTGj,nx ≥ 0} (8)

that includes the points where a delay in the switching time leads to an increase in the cost functional.
Thus we assume that the following law is used to enforce the j-th switch:

• if the (j − 1)-th switch leads to a state xj−1 ̸∈ C̃j,n the state will evolve until a point xj on the
boundary of C̃j,n is reached and the j-th switch will occur there;

• if the (j−1)-th switch leads to a state xj−1 internal to C̃j,n, the j-th switch will occur immediately,
i.e., xj = xj−1.

Now, we first observe that while for the n-th (i.e., the last) switch, Gn,n is a matrix of constants, from eq.
(7) it follows that for all j < n the value of Gj,n(δj+1, · · · , δn) depends on the future intervals between
switching times. Therefore, we define for j = 1, · · · , n the function: ∆j : RN → [0,∞] where

∆j(x) = min{δ ∈ [0,∞] | eAjδx ∈ C̃j,n}, (9)

is the length of the shortest time interval necessary to reach — starting from x and with dynamics given
by Aj — a point on C̃j,n. Two limit cases are possible: ∆j(x) = 0 if x ∈ C̃j,n, while ∆j(x) = ∞ if
C̃j,n is not reached in finite time.

The corresponding switching law can thus be described in terms of the following switching regions
(j < n):

C̃n,n = {x ∈ RN | xTGn,n x ≥ 0},

C̃j,n = {x ∈ RN | ∃ δj+1 · · · , δn, such that :
δj+1 = ∆j+1(x);

δj+2 = ∆j+2(M j+1e
Aj+1δj+1x);

· · ·
δn = ∆n(Mn−1e

An−1δn−1 · · ·M j+1e
Aj+1δj+1x);

xTGj,n(δj+1, · · · , δn) x ≥ 0}.

(10)

An important result follows immediately.
Proposition 3.1. The regions C̃j,n (j = 1, · · · , n) are homogeneous spaces, i.e., x ∈ C̃j,n =⇒ (∀λ ∈
R) λx ∈ C̃j,n.

Proof. We prove this by induction on j. Clearly C̃n,n is homogeneous, because Gn,n is a constant matrix
(base step). Assume now that all C̃i,n (i = j + 1, · · · , n) are homogeneous. This clearly implies, given
the characterization of (9), that the function ∆i (i = j + 1, · · · , n) are such that ∆i(x) = ∆i(λx) for
all 0 ̸= λ ∈ R. This in turn implies that C̃j,n is homogeneous (induction step). We conclude that C̃j,n is
a homogeneous space for all j = 1, · · · , n.

Note that this characterization provides an algorithmic way to construct the regions. We observe that
it is sufficient to determine which points on the unitary semi-sphere belong to a region to completely
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determine the region (because it is a homogeneous space). Thus, we choose a suitable discretization
step and for each point x on the unitary semi-sphere we determine if it belongs to C̃n,n, C̃n−1,n, etc.,
also computing step by step the corresponding values of ∆n(x), ∆n−1(x), etc. This procedure may be
burdensome but can be applied off-line. The on-line controller, on the contrary, will simply need to test
if the actual state vector belongs to the next switching region.

At this point, we observe that this is a necessary condition for optimality, but in general it is not sufficient.
To overcome this restriction, we show how a new set of linear regions can be computed, such that if every
switch occurs as soon as they are reached, then optimality is guaranteed. In the rest of the paper they are
denoted as Cj,n, j = 1, · · · , n.

Once again, these switching regions have to be computed starting from the last one. More precisely, let
us first define the residual cost from the k-th to n-th switch, given the initial state x, as:

Fk(x, δk, δk+1, · · · , δn) = xTZkx

+
∑n

j=k x
T
j [M

T
j Zj+1M j −Zj ]xj

(11)

with xj = eAjδjxj−1 and xk−1 = x. We also define the corresponding k-th optimal switching interval
as:

δ∗k(x) = arg min
δk∈R+

0

Fk(x, δk, δ
∗
k+1(xk), · · · , δ∗n(xn−1))

where xj = eAjδ
∗
j (xj−1)xj−1. Finally we can write that

Cj,n = {x | δ∗j (x) = 0} (j = 1, · · · , n) (12)

Note that, as in the previous case, the computation of these regions is performed off-line, starting from
Cn,n and going backwards.

To conclude, we formally prove an important result.
Proposition 3.2. The regions Cj,n (j = 1, · · · , n) are homogeneous spaces, i.e., x ∈ Cj,n =⇒ (∀λ ∈
R) λx ∈ C̃j,n.

Proof. It is enough to show that for λ ∈ R, all k ∈ N and all x ∈ RN : δ∗k(λx) = δ∗k(x). Following the
same reasoning of Proposition 3.1, this follows immediately from the definition of δ∗ and the expression
of Fk given in (11) that is quadratic in x.

3.1 Example

Let us consider a second order system whose dynamics may only switch between two matrices A(1) and
A(2). We also assume that only three switchings are possible (n = 3) and the initial system dynamics is
A(1). Thus, the sequence of switching is A(1) → A(2) → A(1) → A(2), where

A(1) =

[
−1 1

−18 −5

]
, A(2) =

[
1 −5

1 −3

]
.

Note that A(1) and A(2) are stable non–commuting matrices, i.e., A(1)A(2) ̸= A(2)A(1). We also
assume that all M j are equal to the identity matrix.

The switching regions Cj,n, j = 1, 2, 3, are shown in figure 1 where the following color notation has been
used: the red (lighter) region represents the set of states where the system switches to the next dynamics,
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Figure 1: The switching regions Cj,3, j = 1, 2, 3 for the system in the example and the system evolution
for x0 = [−0.2, 0.6].

while the blue (darker) region represents the set of states where the system still evolves with the same
dynamics.

In the bottom right of figure 1 we have shown the system evolution in the case of x0 = [−0.2, 0.6]. The
switching times are τ1 = 0.61, τ2 = 1.34 and τ3 = 1.49, and the optimal cost is F (τ1, τ2, τ3) = 0.19.

4 A stability result

In this section we consider the case in which n = ∞, i.e., the number of allowed switches goes to
infinity. As well known from the literature, if a system switches an infinite number of times among a
finite number of stable dynamics, then the resulting system is not guaranteed to be stable. Stability in
general depends on the switching sequence and on the switching time instants.

We consider an infinite switching sequence of autonomous linear and stable dynamics as given by equa-
tion (1) with n = ∞ and make two additional assumptions:

A1: each Aj may only take values in a finite set A = {A(1),A(2), · · · ,A(p)};

A2: the sequence of jump matrices M ’s is such that

inf
j≥1

σ(M1)σ(M2) · · ·σ(M j) > 0

where σ(M) denotes the smallest singular value of matrix M .

Note that the second assumption is always verified when the jump matrices are all equal to the identity
matrix.

To prove that the controlled system is stable if the switching times are chosen so as to minimize the cost
functional F given by equation (3), we introduce a Lyapunov-like function

V (x, j) = min{Fj(x, δj , δj+1, · · · ) | δk ∈ R+
0 , k ≥ j},
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where Fj is defined in (11); the value of this function coincides with the optimal residual cost associated
with a given evolution that starts in x and evolves along the residual sequence Aj ,Aj+1, · · · .

Before providing a lower and upper bound for V (x, j), we present an elementary lemma that will be
used in the following derivation.
Lemma 4.1. Given a linear and stationary dynamical system ẋ(t) = Ax(t), with initial condition
x(0) = x0, for all t ≥ 0 holds

∥x(t)∥ = ∥eAtx0∥ ≥ e−σt∥x0∥,

where ∥ · ∥ denotes the Euclidean norm and σ = ∥A∥ is the largest singular value of matrix A.

Proof. First observe that (here ⟨·, ·⟩ denotes the scalar product)

2∥x(t)∥ d
dt∥x(t)∥ = d

dt⟨x(t),x(t)⟩ ≥ −2∥ẋ(t)∥∥x(t)∥
= −2∥Ax(t)∥∥x(t)∥ ≥ −2∥A∥∥x(t)∥2 = −2σ∥x(t)∥2,

so that d
dt∥x(t)∥ ≥ −σ∥x(t)∥. Hence eσt∥x(t)∥ is non-decreasing, i.e., eσt∥x(t)∥ ≥ ∥x0∥.

Proposition 4.2. Let σ̂ = max{∥A(i)∥ | i = 1 · · · , p}, be the maximum amongst all largest singular
values of all matrices in A, let

v = arg min
∥x∥=1

xTQx

be the vector on the unitary sphere with minimal quadratic cost, and, said M0 = I , let M = infh,k≥0{σ(Mh)σ(Mh+1) · · ·σ(Mh+k)}.
Note that assumption A2 implies that M > 0.

Let Z(i) be the solution of A(i)TZ(i) +Z(i)A(i) = −Q.

(1) We define

Vmin(x) = M2
(
vTQv

)(∫ ∞

0
e−2σ̂tdt

)
∥x∥2,

and claim that V (x, j) ≥ Vmin(x) for all j ≥ 1.

(2) We define
Vmax(x) = max

i=1,··· ,p
{xTZ(i)x | A(i) ∈ A},

and claim that V (x, j) ≤ Vmax(x) for all j ≥ 1.

Proof. The first claim follows from the fact that Vmin is associated to the cost of an evolution along the
direction of v in which the quadratic form xTQx is minimized and that is traversed with the fastest
decaying rate (associated to σ̂) amongst all those possible with the allowed dynamics and the greatest
norm reduction allowed by consecutive jumps. To show this formally, let xop(·) be an optimal trajectory
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starting at time τj−1 from x and location j; it holds

V (x, j) =

∫ ∞

τj−1

xT
op(t)Qxop(t)dt ≥

∫ ∞

τj−1

∥xop(t)∥2vTQvdt

=
(
vTQv

) ∞∑
i=j

∫ τi

τi−1

∥ eAi(t−τi−1)M i−1

·eAi−1(τi−1−τi−2)M i−2 · · ·M je
Aj(τj−τj−1)x ∥2 dt

≥
(
vTQv

) ∞∑
i=j

σ2(M i−1) · · ·σ2(M j)

·
∫ τi
c e−2σ̂(t−τi−1) · · · e−2σ̂(τj−τj−1)dt

)
∥x∥2

≥ M2
(
vTQv

) ∞∑
i=j

∫ τi

τi−1

e−2σ̂(t−τj−1)dt

 ∥x∥2

= M2
(
vTQv

)(∫ ∞

τj−1

e−2σ̂(t−τj−1)dt

)
∥x∥2

= M2
(
vTQv

)(∫ ∞

0
e−2σ̂tdt

)
∥x∥2 = Vmin(x).

The second claim follows from the fact that starting from x with the dynamics given by Aj and without
switching, one may obtain a cost xTZjx ≤ Vmax(x). Clearly, the optimal cost V (x, j) can only be
smaller.

Now, we state an obvious monotonicity result.
Property 4.3. Monotonicity Property. Let τ, τ ′ ∈ R+ be two generic time instants. If τ < τ ′ and the
switched system evolves along an optimal trajectory xop(·), jop(·), then

V (xop(τ), jop(τ)) ≥ V (xop(τ
′), jop(τ

′)),

i.e., the optimal remaining cost does not increase along any optimal trajectory.

Proof. Trivially follows from the fact that the cost is the integral of a positive definite function.

From the above monotonicity property, it immediately derives the following stability result.
Proposition 4.4. The switched system considered in this section and optimally controlled is stable be-
cause given an arbitrary ρ > 0, there exists γ > 0 such that ∥x(τ ′)∥ ≤ ρ for all τ ′ > τj if ∥x(τj)∥ ≤ γ.

Proof. Let C be the maximal value for which the curve Vmin(x) = C is all contained within the closed
ball of radius ρ. Then, choose γ as the minimal value of ∥x∥ for x belonging to the curve Vmax(x) = C.
We prove that any optimal evolution that starts in xop(τj) = xj within the closed ball of radius γ (this
initial state is such that Vmax(xj) ≤ C) remains in the closed ball of radius ρ. Assume, by contradiction
that for τ ′ ≥ τj , and j(τ ′) = j′ we have xop(τ

′) = x′, with ∥x′∥ > ρ. Then by the first claim of the
lemma, V (x′, j′) ≥ Vmin(x

′) > C, hence V (x′, j′) > Vmax(xj) ≥ V (xj , j) where the last inequality
follows from the second claim of the lemma, thus contradicting the monotonicity property that states that
the cost must decrease along any trajectory.
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A final comment. Due to the discontinuity caused by the jumps, x(τ) may not be defined if τ is a
switching instant. The results of Property 4.3 and Proposition 4.4 hold if we assume at all points of
discontinuity x(τ) = 1

2(x(τ
−) + x(τ+)).

5 Non-zeno optimal control

In the previous section, no limit was posed on the number of switches that may occur simultaneously or
within a given finite time interval. This may result in a new type of instability (divergence) that is often
called zenoness in the hybrid systems literature. One way to rule out the possibility of a zeno execution
is that of assuming that at most one switch may occur within a time interval of length δ > 0, i.e., we
pose the following spacing condition

δj = τj+1 − τj ≥ δ > 0, j = 1, 2, 3, · · · . (13)

Note that this condition is not an abstract assumption, deriving from the necessity of avoiding zeno
models, but is in many cases a realistic assumption on the behavior of physical systems, where the
dynamics associated to the actuator that produces the switch may not be neglectable with respect to the
system dynamics.

When a finite number of switches are allowed we can still compute the optimal switching regions with a
slight modification of the procedure described in Section 3. We need to define:

δ̄∗k(x) = arg min
δk≥δ

Fk(x, δk, δ̄
∗
k+1(xk), · · · , δ̄∗n(xn−1))

where xj = eAj δ̄
∗
j (xj−1)xj−1 and Fk is still given by (11). Finally we can write

C̄j,n = {x | δ̄∗n(x) = 0}. (14)

The same procedure previously described may be used to compute these regions.

We can also prove the stability of the corresponding control law (that we call non-zeno) for n = ∞ with
a similar argument to that used in the previous section. We consider an infinite switching sequence of
autonomous linear and stable dynamics as given by equation (1) with n = ∞ and make the additional
assumptions:

A1: each Aj may only take values in a finite set A = {A(1),A(2), · · · ,A(p)}.

Note that in this case the assumption A2 previously defined is not necessary to prove stability.

Finally, we define
V̄ (x, j) = min{Fj(x, δj , δj+1, · · · ) | δk ≥ δ, k ≥ j},

that coincides with the optimal residual cost for the non-zeno control law associated with a given evolu-
tion that starts in x and evolves along the residual sequence Aj ,Aj+1, · · · . Note that in the definition of
V̄ (x, j) we assume that no switch is possible for t ∈ [0, δ], because this would imply δj < δ.

It is still immediate to prove this cost has still as upper bound Vmax(x) defined in Proposition 4.2, while
a lower bound is given by V̄min =

(
vTQv

) (∫ δ
0 e−2σ̂tdt

)
∥x∥2. Repeating the argument of Proposi-

tion 4.4 it is immediate to prove stability for the system controlled with a non-zeno optimal law.
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5.1 Some convergence results

We have proved the stability of the switched system in the case of an infinite number of switchings when
it is optimally controlled. We study for this case the convergence properties of the proposed control
procedure. The preliminary results presented here are limited to the convergence of the regions C̃ (not
the regions C or C̄) and do not give a constructive algorithm to determine them.

The stability of the optimally controlled systems implies that for certain C > 0 and ε > 0

∥U(t, τ)∥ ≤ Ce−ε(t−τ), t > τ ≥ 0. (15)

If we assume that the constant

Z = sup
j=1,2,3,···

max(∥M j∥, ∥Zj∥) < +∞, (16)

we obtain the absolute convergence of the infinite series

Hj =

∞∑
i=j+1

U(τi, τj)
T
[
MT

i Zi+1M i −Zi

]
U(τi, τj)

=

∞∑
i=j+1

eA
T
j+1δj+1MT

j+1 · · ·MT
i−1e

AT
i δi×

×
[
MT

i Zi+1M i −Zi

]
eAiδiM i−1 · · ·M j+1e

Aj+1δj+1 (17)

whenever the spacing condition (13) is satisfied for a fixed δ. Indeed, a straightforward estimate yields

∞∑
i=j+1

∥∥U(τi, τj)
T
[
MT

i Zi+1M i −Zi

]
U(τi, τj)

∥∥
≤ (Z3 + Z)C2

∞∑
i=j+1

e−2ε(τi−τj), (18)

which is convergent as a result of the ratio test and condition (13).

Note that the condition given by (16) is always verified when the sets A = {Aj | j ≥ 1} and M =

{Mj | j ≥ 1} are finite.

In this case (and under condition (13)) we can study the situation of infinitely many switching times. We
then have

∂

∂τj
F (τ1, τ2, · · · ) = xT (τ−j )Gjx(τ

−
j ),

where
Gj = AT

j

[
MT

j Zj+1M j −Zj

]
+
[
MT

j Zj+1M j −Zj

]
Aj

+
[
−MT

j A
T
j+1 +AT

j M
T
j

]
Hj +Hj [−Aj+1M j +M jAj ] .

6 Additional stability properties

In the previous section we have discussed the stability of the optimally controlled switched system. In
this section we present more general results related to the stability of arbitrary switching policies.
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The following result, that is also discussed in [9] but presented here for completeness, gives sufficient
conditions under which (15) and (16) are satisfied for hybrid systems with continuous switching (i.e.,
where M j ≡ I , being I the identity matrix.).
Proposition 6.1. Suppose the set A = {Aj | j ≥ 1} is finite and consists of p pairwise commuting
stable matrices A(1),A(2), · · · ,A(p), and let the switching matrices M j all be equal to the identity ma-
trix. Then conditions (15) and (16) are satisfied. In particular, the series (17) are absolutely convergent
whenever the spacing condition (13) is satisfied.

Proof. Clearly, under the assumptions of this proposition we have

U(t, τ) =

p∏
i=1

eA
(i)

[δi(t)−δi(τ)],

where δi(t) is the time within [0, t] spent in the system with state space matrix A(i). Here note that∑p
i=1 δi(t) = t. Since A(1), · · · ,A(p) have only eigenvalues with real part < −ε (for some positive ε),

there exist constants C1, · · · , Cp such that ∥eA
(i)

t∥ ≤ Cie
−εt (i = 1, · · · , p). We then find condition

(15), where C = C1 · · ·Cp. Condition (16) is obvious.

Now, let us consider the hybrid system{
ẋ(t) = Ajx(t), τj−1 < t < τj ,

x(τ+j ) = M jx(τ
−
j ), x(0+) = x0.

(19)

with state space matrices Aj , switching matrices M j and switching times τj . Then by a similarity we
mean a sequence of nonsingular matrices Sj converting (19) into the new hybrid system{

˙̌x(t) = Ǎj x̌(t), τj−1 < t < τj ,

x̌(τ+j ) = M̌ jx̌(τ
−
j ), x̌(0+) = x̌0,

(20)

where {
x̌(t) = Sjx(t) for τj−1 < t < τj , x̌0 = S1x0,

Ǎj = SjAjS
−1
j , M̌ j = Sj+1M jS

−1
j .

Let us now convert the hybrid system (19) with nonsingular switching matrices M j into the hybrid
system (20) such that the new switching matrices M̌ j are all equal to the identity matrix. This requires
choosing Sj such that Sj+1M jS

−1
j = I . Given a nonsingular matrix S1, one must then choose

Sj+1 = S1 [M jM j−1 · · ·M2M1]
−1 . (21)

One easily verifies that

U(t, τ) = S−1
n+1e

ˇAn+1(t−τn)M̌n

· e
ˇAn(τn−τn−1)M̌n−1 · · ·M̌ je

ˇAj(τj−t)Sj

= S−1
n+1e

ˇAn+1(t−τn)e
ˇAn(τn−τn−1) · · · e

ˇAj(τj−t)Sj

= S−1
n+1Ǔ(t, τ)Sj , (22)

whenever τj−1 ≤ τ < τj < τj+1 < · · · < τn < t ≤ τn+1. Here Ǔ(t, τ) is the evolution system
pertaining to (20).
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Theorem 6.2. Let the set of matrices M jM j−1 · · ·M2M1 (j = 1, 2, 3, · · · ) and the set of their invers-
es [M jM j−1 · · ·M2M1]

−1 (j = 1, 2, 3, · · · ) both be bounded. Then the hybrid system (19) satisfies
conditions (15) and (16) if and only if the hybrid system (20) does.

Proof. In view of (21) and (22), the sequence of similarity matrices Sj and the sequence of their inverses
S−1

j are both bounded. The statement of this theorem is then an immediate consequence of (22).

Remark 6.3. Theorem 6.2 allows us to reduce the problem of stating conditions for the stability of an
arbitrary hybrid system with nonsingular switching matrices M j (j = 1, 2, · · · ) to that for a hybrid
system where M j ≡ I (j = 1, 2, · · · ). In particular, if the transformation from the system (19) to
the system (20) leads to a hybrid system (20) with finitely many different pairwise commuting matrices
Ã

(1)
, · · · , Ã(p)

, system (19) satisfies conditions (15) and (16). �

7 Conclusions and future work

In this paper we dealt with the optimal control of switched piece–wise linear autonomous systems, where
the objective is that of minimizing a quadratic performance index over an infinite time horizon. We as-
sumed that the switching sequence is known and the unknowns to be determined are the optimal switch-
ing times. The proposed control procedure is based on the computation of homogeneous regions of the
state space such that an optimal switch should occur if and only if the present state belongs to this region.

The results obtained so far are interesting, and we hope that they could be extended to a more general
setting. In particular we also plan to study in the future the case in which the switching sequence is not
pre–assigned and the case in which the subsystems dynamics are neither autonomous nor stable.
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