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Abstract

In this paper we present a design procedure for semiactive
suspensions of road vehicles. In the first phase we design an
asymplotic state observer that reveals to be particularly effi-
cient in the presence of external disturbances. We also derive
a target active control law that minimizes a quadratic perfor-
mance index and takes the form of a feedback control law. Fi-
nally, in the second phase, we approximate the target law by
controlling the damper coefficient f of the semiactive suspen-
sion. To improve the efficiency of the proposed system, we take
into account the updating frequency of the coefficient f — im-
posed by present technology — and compute the expected vaiue
of f using a predictive procedure,

1 Introduction

The design of active suspensions for road vehicles aims to
optimize the performance of the vehicle with regard to comfort,
road holding, and rideability.

In a fully active suspension there are no passive elements,
such as dampers and springs. The interaction between vehicle
body and wheel is regulated by an actuator of variable length.
The actuator is usually hydrautically controlled and applies be-
tween body and wheel a force that represents the control action
generally determined with an optimization procedure.

Active suspensions {2, 8, 13] have better performance than
passive suspensions. However, active suspension systems are
rather complex, since they require several components such as
actuators, servovalves, high-pressure tanks for the control fluid,
either sensors for detecting the system state or appropriate sys-
tem state observers, etc. Moreover, the associated power, that
must be provided by the vehicle engine, may reach the order
of several 10 KW [6] depending on the required performance.
Thus, these suspension systems have a very high cost.

As a viable alternative to a purely active suspension system,
the use of semiactive suspensions has been considered [, 3, 6,
7,9, 12]. Such a system consists of a spring whose stiffness is
constant and of a damper whose characteristic coefficient f can
be made to change within an interval [fiin, fmax] controlling
the opening of a valve. The time required to update [ is usually
less than 1025 [5].

A semiactive suspension is a valid engineering solution
when it can reasonably approximate the performance of the ac-
tive control. In fact, a semiactive suspension requires a low
power controller that can be easily realized at a lower cost than
that of a fully active one. In general, a semiactive suspension
design consists of two phases [1]: (a) design a good active law,
u¢(-) to be considered as a “target”; (b) design the semniactive
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suspension so that its control law u,(-) approximates as close
as possible the target taw ().
In the following, we discuss in detail these two phases.

Target active law

Thompson [13] was the first to explore the use of optimal
control techniques to design an active law so as to minimize
a performance index of the form J = [*(xT(1)Q=(¢) +
ru?(¢))dt, where z(t) is the system state and u(¢) the control
force provided by the actuator at the time instant ¢. This design
technique is called LQR [10, 11} and has been used by many
authors [1, 2, 12]. Its two main advantages are: a) the optimal
solution can be easily computed solving an algebraic Riccati
equation; b} it takes the form of a state feedback law with con-
stant gains, i.e., u{t) = —Kx(t). Note, however, that in most
cases the system state is not directly accessible or measuring it
is too expensive. Thus, an asymptoiic state gbserver needs to
be used. This implies that the real control law takes the form
u(t) = —K&(t) where &(t) denotes the system state estimate
at the generi¢ time instant &.

In this paper we propose an original procedure for the design
of an asymptotic state observer that well fits within the present
application whose main requirement is that of recenstructing
the system state when external disturbances are acting on it,
while the initial state may always be assumed known. More
precisely, the observer gain matrix is computed so as to mini-
mize the H, norm of the transfer function matrix between the
estimate error and the external disturbance. The results of vari-
ous numerical simulations show the efficiency of the proposed
approach that also provides a good estimate of the system state
derivatives,

Semiactive approximation

On the base of the previous analysis, we propose to cheose
as target for the semiactive control law a4 (-) the law u,{-). Ev-
ery At time units the controller should select the damper coef-
ficient f in the set [fiin, fmax) SO 45 10 minimize the quadratic
difference among the semiactive and the target active control
force. The value of At cannot be chosen arbitrarily, but its
lower bound is imposed by the physical limits on the updating
frequency of the damper coefficient f.

In this paper we introduce a significant variation with respect
to previous works [5] so as to improve the efficiency of the re-
sulting suspension system. In particular, taking into account
the time At required to update f, we compute the value of f at
the generic time instant ¢ so as to minimize the quadratic dif-
ference (1, (t + At) — u,(t + At))%. Insucha way, as proved
via various numerical simulations, we are able to compensate
the delay on the updating of f, thus producing a significant im-
proverment on the system behaviour, that is evaluated in terms
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Figure 1: Scheme of two degree-of-freedom suspension: (a) active
suspension; (b) semiactive suspension.

of the performance index .J,

Note that this approach has been possible thanks to the effi-
ciency of the proposed state observer that also provides a good
estimate of the system state derivatives.

Different simulations have been carried out, considering the
effect of input disturbances caused by the road profile and the
effect of non—null initial conditions on the state. The results of
these simulations show that the semiactive suspension performs
reasonably well, and is a good approximation of the target ac-
tive suspension, while it introduces significant improvements
with respect to a completely passive suspension [4],

2 Dynamical model of the suspension system

Let us now consider the completely active suspension sys-
tem with two degrees of freedom schematized in figure l.a.
We used the following notation: M, is the equivalent unsprung
mass consisting of the wheel and its moving parts; M5 is the
sprung mass, i.e., the part of the whole body mass and the load
mass pertaining to only one wheel; A, is the elastic constant
of the tire, whose damping characteristics have been neglected.
This is in line with almost all researchers who have investigated
synthesis of active suspensions for motor vehicles as the tire
damping is minimal; z, (¢} is the deformation of the suspen-
sion with respect to (wrt) the static equilibrium configuration,
taken as positive when elongating; z2(t) is the vertical absolute
velocity of the sprung mass My; z3(t) is the movement of the
unsprung mass wrt the static equilibrium configuration, taken
as positive upwards. Under the assumption of flat road surface,
this is also the deformation of the tire; z4(¢) is the vertical abso-
lute velocity of the unsprung mass M, ; u(t) is the control force
produced by the actuator; w(t) is the function representing the
disturbance. It coincides with the absolute vertical velocity of
the point of contact of the tire with the road.

It is readily shown that the state variable mathematical model
of the system under study is given by {2]

&(t) = Az(t) + Bu(t) + Lw(t) (N

where @(t) = [z1(t), z2(t), z3(t), z4(¢)]T is the state,
whereas the constant matrices A, B and L have the following
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structure:

01 0 -1
00 0 0
A=19 o 0 1 |
0 0 —X\/M; ©
0
1/M.
B= /02 ,L=[00 -1 0].
~1/M,

The disturbance w is caused by the uneven road profile and is
assumed to be a white noise signal, which is equivalent to say-
ing that the longitudinal road profile zy can be represented by
an integrated white noise {5, 8, 13]. Here, the road roughness
characteristics are expressed by a signal whose PSD distribu-
tion function is [8]:

cV

P{w) = W2+ alV?2

@
where ¢ = (¢? /7). Here o denotes the road roughness vari-
ance and V the vehicle speed, whereas the coefficients ¢ and o
depend on the type of road surface. The product is the power
spectrum of the white noise. The signal zo(t}, whose PSD is
given by (2), may be obtained as the output of a linear filter
expressed by the differential equation [2}

o(t) = —aVze{t) + w(t). 3)

If we assume o?V? << w? we have ¥(w) = cV/w? and
Zoft) = w(?), i.e., the road profile is integrated white noise.

3 Observer design via H: norm minimization

The control law we will design in the following section re-
quires the knowledge of the system state . Since not every
component of & is directly measured, we construct an appro-
priate state observer. To do this, we choose a suitable matrix C
for the output equation

y(t) = Cz(t). &)

If we assume

(5)

<[ 975

00180

which corresponds to measuring the suspension and the tire de-
formation, the observability of the pair (A, C) is ensured.

The asymptotic state observer we propose has the structure
of a Luenberger observer, i.e., it takes the form

E(t) = Az(t) + Bu(t) + Ko(y(t) — §(t)) (6)

where &(2) is the state estimate and () = C&(2).
Ky is the gain matrix that has to be determined so as to
impose the desired error dynamics:

e(t) = (A — KoC)elt) + Lw(t). €)]

The gain matrix Ko may be chosen so as to impose a given
set of eigenvalues to (A — K C). Nevertheless, in the presence



of external disturbances, as in the case at hand, this does not en-
sure a satisfactory behaviour. This motivates the non-standard
procedure used in this paper for the design of the state observer,
that is described in detail in the following.

Firstly, let us observe that we can always assume that the
initial estimation error is null, i.e., ¢(0} = 0, being x; and =3
measurable variables and x5 and z4 vertical velocities that are
null at the very first time instant of evolution, when the car is
motionless.

By virtue of this consideration, the Laplace—transform of the
above equation (7) takes the form

E(s) = [s] — (A~ K,C)]7'LW(s) (8

where T is the fourth order identity matrix, and E(s) and W (s)
are the Laplace-transformation of e(¢) and w(t), respectively.

Now, we determine the observer matrix Ky by simply min-
imizing the H; norm® of the transfer function matrix

F(s) = [sI - (A — K,C)] ‘L.

In such a way we can be sure that we are minimizing the
effect of the disturbance on the error estimate.

Note that the resulting matrix Ky does not guarantee a priori
a satisfactory behaviour of the closed loop error dynamics in
the presence of significant errors in the initial state estimate,
Nevertheless, as already discussed above, this is not a problem
in the particular case at hand where we can be sure that e(0} =
0 and the main requirement is that of reducing the effect of the
disturbance on the state estimate, caused by the uneven road
profile.

4 Semiactive suspension design

In this section we first discuss how the target active control
law has been determined. Then we show how such a control
law, that requires an actuator, may be approximated by a semi-
active suspension, whose varying parameter is the characteristic
coefficient of the damper f.

4.1 Target active control law

The design of the active suspension requires determining a
suitable control law u(-) for system (1). To this end, we first
determine the control law u(-) that minimizes a performance
index of the form

J= f " @T Qe + rud(t)dt ©)
0

where € is positive semidefinite and » > 0. As well known
from the literature [10], the solution of this problem can be eas-
ily computed by simply solving an algebraic Riccati equation,
and takes the form of a feedback control law:

u(t) = —Kz(1). (10)

ILet G{s) : C ~» R”" be a transfer function matrix. The H norm of G
is:

1

16 1= (5 [ racic et

where ¥ denotes compiex conjugate transposttion.
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Obviously, when the system state is not directly measured, but
is reconstructed via an asymptotic observer, the above control
law is replaced by

u(t) = ~K&(2). an
4.2 Semiactive approximation

In this section we show how the target control law u, may
be approximated by a semiactive suspension, whose varying
parameter is the characteristic coefficient of the damper f.

In figure 1.b, we have represented a conventional semiactive
suspension composed of a spring with elastic constant A,, and
of a damper with adaptive characteristic coefficient f.

The effect of this suspension is equivalent {4] to that of a
control force

us(t)=—[ A £ 0 —f ().

Note that, as f may vary, u,(t) is both a function of f and of
x(i).

In general, f can only take values in a real set [ fmin, fmax)
and requires a certain time At to be updated, that is usually less
than 10~ 325 [5].

This implies that, if at the generic time instan: ¢ we deter-
mine a certain value of f, then such a value will enly be im-
posed to f at the time instant ¢ + Az. In previous works the up-
dated value of f is determined so as to minimize the quadratic
difference (1,(2) — u,(t))> where u,{-) is an appropriately se-
lected control law [1, 5). In such a way the delay on updating f
never allows u,(-) to be equal to wu,{-).

To overcome such a problem, in this paper we choose f so
as to minimize the quadratic difference

Flf,z(# + Ab), 2+ At)] =
(1t + At) — ug(t + A =
(—K&(t + At) + Kpz(t + Az))?

2

(13)

where K, ={A\, f 0 — f].

Moreover, we make the realistic assumption that f varies
linearly during the time interval At.

Let us first observe that the assumption of non-measurable
state implies that instead of minimizing F[f, = (t + At), &(z +
At)] as defined in equation (13), we have to minimize

Fif, &t + At)) = (~K#z(t + At) + K,a(t + At))*. (14)

Let us first assume that Z2(¢ + At) # Z4(¢ + At); then the
valee f*(t) such that F{f*(t), &(¢ + At)] = 01is

K&t + At) — A i1 (t + At)

== Fa(t + At) — 24t + AL) (3)
It is easy to see that in this case
F(8) = min argsey ., g, FULE(E+ AY)] =
Jmax if FT(t) > frmax (16)
fa(k) if f*(t) € [fmin:fmax] .

fmin i f7() < fmin

When &2(t + Af) = Z4(t + At), regardless of the values of
f the damper does not give any contribution to u,. Thus, in this



case we assume that if ¢ > At then f(t) = f(¢ — At), ie., the
value of the damper coefficient is not updated, while if ¢t = 0
we arbitrarily choose f(0) = fiax-

Let us now discuss how the above updating procedure is
made possible thanks to the presence of a good state observer.
We first note that for sufficiently small values of Af, like those
of interest here, we may assume

E(t + At) = &(t) + At - 2(t), 7
and from equation (6)
Et+ AL =T+ At- A) -é({)+ (18)
At Bu,(t) + At~ K, - (y(t) — 9(0) -
Thus, being u,(t) = — K,p&(2),
Ft+AY=(T+AL-A-At-B-K;) £(6)+ (19)

At- K, - (y(t) -~ (1)),

Le., &(t + At) can be written as a function of known variables.

5 Application example

In this section we discuss the results of several simulations.
First, however, we explain the choices we have made for the
various parameters.

The proposed procedure has been applied to the quarter car
suspension shown in figure 1, with values of the parameters
taken from [13}: M; = 28.58Kg, M, = 288.90Kg, A, =

The results of this simulation are shown in figure 2.

Figure (a) shows the road profile z¢ (thin line) along with
the unsprung mass displacement x3 + 2o (thick line}, Figure
(b) shows the road profile xg (thin line) along with the sprung
mass displacement &1 + 3 -+ 2g (thick line). It is possible to ob-
serve that the semiactive suspension filters the high frequencies
smoothing the movement of the sprung mass.

Figure (c) compares the sprung mass displacement in the
case of the semiactive suspension {thick line) and in the case
of a completely passive suspension (thin line). In particular,
we considered the passive suspension system proposed in [4]
where all characteristic parameters are the same as those used
in the semiactive design, apart from the damper coefficient that
has been chosen constant and equal to f = 1.918Ns/m €
{Fmin, fmax)- It is immediate to observe the significant improve-
ments deriving from adapting f.

Figure (dy compares the sprung mass displacement in the
case of the semiactive suspension {thick line) and in the case
of the target active suspension (thin line). As it can be noted,
the two curves are practically coincident, thus proving the sat-
isfactory behaviour of the preposed design.

Figure (¢) compares the target force (thin line) with the con-
trol force produced by the semiactive suspension (thick line).
‘We can observe that the variation of f guarantees a satisfactory
approximation.

Figure {f) shows the value of the damper coefficient f as a
function of time.

Figures (g) — (1) show the efficiency of the proposed state
observer that provides a good evaluation of both the state vari-

- ables and their derivatives. As an example, in figure (g) we

155900N/m. The value of A; = 14345N/m has been taken

from [4].

To define completely the state equation (1) it is necessary to
assume reference values for & and V. In the following we have
taken a = 0.15m~*! and V = 30m/s. These values of o« and V'
have been nsed in [8] to describe an asphalt road profile.

The matrices Q and r of the performance index J have been
taken from [ 13)] and are the same as those already used in {4, 5]:

Q = diag{1,10,1,10}, r = 0.8-107°.
Thus, the resulting feedback control masrix is
K =] 35355 4827 —21879 -1386 |.

For the computation of the observer matrix we used the soft-
ware tools available in Matlab: £mins is the minirnization pro-
cedure and normh2 computes the Hz norm. We determined

|5 J

2.45
Finally, we have taken At = 0.7 - 10~2s, fuin = 800Ns/m
and fax = 3000Ns/m.
To show the performance of our semiactive suspension de-
sign, we have simulated two different situations.

20.72
—0.25

—11.52
37091

—1341.70
—5449.00

a =

K

5.1 Simulation 1

In the first simulation we considered nul! initial conditions,
ie, z(0) = £(0) = 0 and we assumed that the only distur-
bance acting on the system is caused by an asphalt road profile,
whose characteristic parameters are given above.
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have reported the evolution of the first state variable z,, while

+in figure (h) we have reported the evolution of its error estimate

e1 = z; — & . Figure (i) shows the evolution of &, while
€) = I — & is reported in figure (1).

Finally, to prove the efficiency of the procedure used for the
updating of f, we provide the values of the performance in-
dex J in the case of the proposed semiactive design and in the
case of a semiactive suspension designed without taking into
account such a delay and using the same target control law. In
the first case J = 0.95, while in the second case J = 0.98, i.e.,
we have an improvement of the order of 3%.

5.2 Simulation 2

In the second simulation we considered an initial state dif-
ferent from zero and no disturbance. We assumed =(0) =
[0.200.020)".

The results of this simulation are shown in figure 3.

Figures (a) and (b) compare the unsprung and sprung mass
displacement of the semiactive suspension (thick lines) with
that of a completely passive one (thin lines). As we can note
in both cases the semiactive system guarantees better perfor-
mances that the passive one {4].

Figure (c) shows the comparison between the displacement
of the sprung mass in the case of the semiactive suspension
(thick line) and in the case of the target active suspension (thin
line).

Figure (d) compares the target force (thin line) with the con-
trol force produced by the semiactive suspension (thick line)
that represents a satisfactory approximation of the previous one.

Finally, as in the previous case, we compare the values of J
corresponding to our procedure with the value of J computed
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Figure 3: The results of Simulation 2.

in the case of a semiactive suspenston designed without taking
into account the delay on the updating of f. In the first case
J = 1.70, while in the second case J = 1.85, i.e., our approach
produces an improvement of the order of 10%.

6 Conclusions

This paper presents a two—phase design technique for semi-
active suspensions.

The first phase of the project requires the design of an
asympiotic state observer that has been computed by minimiz-
ing the H» norm of the transfer function matrix among the error
state estimate and the external disturbance. Then, the target ac-
tive control law has been obtained by solving an LQR problem.

In the second phase, this target is approximated by control-
ling the damper coefficient of the semiactive suspension. The
novelty with respect to previous works is that we considered the
delay At required for the updating of f, and we assumed that
the new value of f is chosen so as to minimize the difference
between the target and the semiactive control faw at the time
instant t + Af, 50 as to be sure that when the computed value
of f is really imposed, then the semiactive force is as close as
possible to the target one.

The results of several numerical simulations shown that the
use of a semiactive suspension leads to minimal loss with re-
spect to the performance of the target active suspension, while
the updating procedure produces a significant improvement in
terms of the performance index J.
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