
Modeling Production Systems with Inventory
Using Hybrid Petri Nets

Roberto Furcas, Alessandro Giua, Aldo Piccaluga, Carla Seatzu

University of Cagliari
Department of Electrical and Electronic Engineering

Piazza d’Armi — 09123 Cagliari, Italy
giua@diee.unica.it

http://www.diee.unica.it/∼giua/info.html

Abstract—In this paper we deal with the problem of mod-
eling production systems where inventory management is
predominant with respect to other aspects of the production
cycle. The model we use, called First–Order Hybrid Petri
Nets, is an hybrid model that combines fluid and discrete
event dynamics and enables us to simulate the dynamic con-
current activities of inventory management systems (IMS).
It also provides a modular representation of an IMS, thus
making it useful even when dealing with large dimension
systems. A real application case, a cheese factory, is finally
considered: all numerical data are relative to an existing
plant, and simulation is carried out with an available soft-
ware SIRPHYCO.

I. Introduction

Every organization holds inventories, i.e., stocks, of some
kind. These stocks are in general expensive, but allow for
variations and uncertainty in supply and demand: they
provide a buffer between suppliers and customers [7].

Inventory Management Systems (IMS) are discrete event
dynamic systems whose number of reachable states is typi-
cally very large, thus the simulation, analysis and optimiza-
tion of these systems require large amount of computational
efforts and problems of realistic scale quickly become an-
alytically and computationally intractable. To cope with
this problem, fluid models which are continuous–dynamics
approximations of discrete systems, may be successfully de-
veloped and applied to the inventory management domain
[4]. In general different fluid approximations are necessary
to describe the same IMS, depending on its discrete state:
new orders required or only demand satisfaction, storage
full or empty, and so on. Thus, the resulting model can
be better described as an hybrid model , where different dy-
namics are associated to each discrete state.

In [4] we have shown how some independent demand
IMS can be modeled with First–Order Hybrid Petri Nets
(FOHPN), a class of hybrid Petri nets originally presented
in [3], that adds to the original formalism of David and Alla
[1], [2] linear algebraic tools for the analysis and control
of the model. In particular, we associated to each man-
agement policy a different FOHPN net (a module). We
considered fixed order quantity systems (with finite lead
time, fixed reorder level, and instantaneous replenishment)
and periodic review systems. We also showed how costs
relative to the different management policies can be eas-
ily evaluated by adding appropriate net structures to the
corresponding modules. A numerical example also demon-
strated how FOHPN can be used via simulation as an effi-
cient tool for the solution of some numerical optimization
problems.

Note that while the classic analysis of inventory con-

trol provides immediate solution to deterministic optimiza-
tion problems related to single processes, it may not be
useful when dealing with stochastic processes or with in-
terconnected processes. On the contrary, simulation with
FOHPN always result to be a valid tool for performance
evaluation. We also mention a related approach by Lefeb-
vre [6], where continuous Petri nets are used and compared
with standard IMS models.

In this paper we consider more complex systems, where
the production process is deeply interleaved with the inven-
tory management process. Systems of this type are com-
mon in the food industry, where the processing of different
products require different stages of maturing and are man-
aged with different inventory management policies.

In particular, we first recall the basic module of a fixed
order quantity system (FOQS) with finite lead time and
instantaneous replenishment presented in [4]. Then, we in-
troduce the FOHPN models of two other IMS, i.e., FOQS
with finite replenishment rate and FOQS with back–orders.
Moreover, we derive a FOHPN model for maturing stores,
showing how storage times can be modeled with an arbi-
trarily high precision by simply increasing the number of
continuous places in the net. Then, we show how appro-
priate FOHPN modules, that can be directly included in
all the previous nets, can be introduced to simulate time–
varying demand either stochastic or piece-wise constant.

Finally, we deal with a real application case, a cheese
factory, and show how even such a complex system can
be easily modeled with FOHPN, thanks to their modular-
ity property. The model and the data used for simulation
are relative to a real plant in Sardinia, Italy while the hy-
brid net simulator used was the software SIRPHYCO [5]
developed at LAG, France. In the examples, the results
of simulation only show the inventory levels. Adding to
this model the appropriate net structure (described in [4])
it is also possibile to compute the costs associated to the
factory operation, and to optimize, via simulation, some
system parameters. This is not shown in this paper, for
space limitations but we refer the interested reader to [4].

Our results show that Hybrid Petri Nets are a viable
approach to build in short time models of real size complex
systems, and to study their behavior via simulation using
standard tools.

II. First–Order Hybrid Petri Nets

We recall the Petri net formalism used in this paper fol-
lowing [3]. A First–Order Hybrid Petri Net (FOHPN) is a
structure N = (P, T, Pre, Post,D, C).

The set of places P = Pd ∪ Pc is partitioned into a set
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of discrete places Pd (represented as circles) and a set of
continuous places Pc (represented as double circles).

The set of transitions T = Td∪Tc is partitioned into a set
of discrete transitions Td and a set of continuous transitions
Tc (represented as double boxes). The set Td = TI∪TD∪TE

is further partitioned into a set of immediate transitions TI

(represented as bars), a set of deterministic timed transi-
tions TD (represented as black boxes), and a set of expo-
nentially distributed timed transitions TE (represented as
white boxes).

The pre- and post-incidence functions that specify the
arcs are (here R+

0 = R+ ∪ {0}): Pre, Post : Pd × T →
N, Pc × T → R+

0 . We require (well-formed nets) that for
all t ∈ Tc and for all p ∈ Pd, Pre(p, t) = Post(p, t).

The function D : Tt → R+ specifies the delay d asso-
ciated to deterministic discrete transitions and the firing
rate λ associated to exponentially distributed transitions.

For any continuous transition tj ∈ Tc we let C(tj) =
(V ′

j , Vj), with V ′
j ≤ Vj . Here V ′

j represents the minimum
firing speed (mfs) and Vj represents the maximum firing
speed (MFS). In the following, unless explicitly specified,
the mfs of a continuous transition will be V ′

j = 0.
The incidence matrix of the net is defined as C(p, t) =

Post(p, t)− Pre(p, t). The restriction of C to PX and TY

(X, Y ∈ {c, d}) is denoted CXY . Note that by the well-
formedness hypothesis Cdc = 0.

We denote the preset (postset) of transition t as •t (t•)
and its restriction to continuous or discrete places as (d)t =
•t ∩ Pd or (c)t = •t ∩ Pc.

A marking m : Pd → N, Pc → R+
0 is a function that

assigns to each discrete place a non-negative number of
tokens, represented by black dots and assigns to each con-
tinuous place a fluid volume; mi (mi) denotes the marking
of place pi (pi). The value of a marking at time τ is de-
noted m(τ). A FOHPN system 〈N,m(τ0)〉 is a FOHPN
N with an initial marking m(τ0).

The enabling of a discrete transition depends on the
marking of all its input places, both discrete and continu-
ous.

A discrete transition t is enabled at m(τ) if for all pi ∈ •t,
mi(τ) ≥ Pre(pi, t) and it may fire yielding

m(τ) = m(τ−) +
[

Ccd

Cdd

]
σt

where σt(t) = 1 and σt(t′) = 0 if t 6= t′.
A continuous transition is enabled only by the mark-

ing of its input discrete places. The marking of its input
continuous places, however, is used to distinguish between
strongly and weakly enabling.

Let 〈N,m〉 be a FOHPN system. A continuous transi-
tion t is enabled at m if for all pi ∈ (d)t, mi ≥ Pre(pi, t).

We say that an enabled transition t ∈ Tc is: strongly
enabled at m if for all places pi ∈ (c)t, mi > 0; weakly
enabled at m if for some pi ∈ (c)t, mi = 0.

The enabling state of a continuous transition ti defines
its admissible instantaneous firing speed vi. If ti is not
enabled then vi = 0. If ti is strongly enabled, then it
may fire with any firing speed vi ∈ [V ′

i , Vi]. Finally, if ti
is weakly enabled, then it may fire with any firing speed
vi ∈ [V ′

i , V i], where V i ≤ Vi depends on the amount of
fluid entering the empty input continuous place(s) of ti.
In fact, the transition cannot remove more fluid from any

empty input continuous place p than the quantity entered
in p by other transitions.

The instantaneous firing speed (IFS) at time τ of
a transition tj ∈ Tc is denoted vj(τ) and v(τ) =
[v1(τ), . . . , vnc

(τ)]T is the IFS vector at time τ (nc is the
number of continuous places).

We use linear inequalities to characterize the set of all
admissible firing speed vectors S. Each IFS vector v ∈ S
represents a particular mode of operation of the system
described by the net, and among all possible modes of op-
eration, the system operator may choose the best according
to a given objective. In all the examples considered in this
paper we implicitly assume that the performance index to
be optimized is the sum of the firing speeds of continu-
ous transitions. This implies that, whenever a continuous
transition is strongly enabled, then it fires at its maximum
firing speed.

As m changes the IFS vector may vary as well. In par-
ticular it changes at the occurrence of the following macro–
events: (a) a discrete transition fires, thus changing the dis-
crete marking and enabling/disabling a continuous transi-
tion; (b) a continuous place becomes empty, thus changing
the enabling state of a continuous transition from strong
to weak.

Let τk and τk+1 be the occurrence times of two consecu-
tive macro–events of this kind; we assume that within the
interval of time [τk, τk+1) the IFS vector is constant and we
denote it v(τk). Then the continuous behavior of a FOHPN
for τ ∈ [τk, τk+1) is described by{

mc(τ) = mc(τk) + Cccv(τk)(τ − τk)
md(τ) = md(τk). (1)

III. Fixed order quantity systems (FOQS)

Fixed order quantity systems place an order of fixed size
whenever stock falls to a certain level. Such systems need
continuous monitoring of stock levels and are better suited
to low, irregular demand for relatively expensive items.

In this section we present the most important models of
IMS characterized by a fixed order quantity. In particular,
we consider FOQS with finite lead time, finite replenish-
ment rate, and back–orders.

For simplicity, all models are presented assuming a con-
stant demand. Then, in section V we show how the use of
appropriate FOHPN modules enables us to simulate time–
varying and even stochastic demand.

A. FOQS with finite lead time
In this subsection we consider FOQS with a finite lead

time and a fixed reorder level. We also assume an instanta-
neous replenishment and no shortages in nominal operating
conditions [4].

Under the assumption of continuous and constant de-
mand, the stock level of an item varies with a typical pat-
tern shown in figure 1.a where the following notation has
been used:
• L(τ) is the stock level at the generic time instant τ ;
• Q is the fixed order quantity;
• LT is the lead time, i.e., the delay between placing an
order and receiving the goods in stock;
• T is the cycle time, i.e., the time between two consecutive
replenishment;
• D is the demand and coincides with the constant slope
(taken as positive) of the curves in figure 1.a; it denotes
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Fig. 1. Fixed order quantity system with finite lead time and in-
stantaneous replenishment: regular pattern (a) and the FOHPN
model (b).
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Fig. 2. Fixed order quantity system with finite replenishment rate:
regular pattern (a) and the FOHPN model (b).

the number of units to be supplied from stock in a given
time period.

In fixed order quantity systems new orders take place
whenever the stock level falls to the reorder level ROL.

In figure 1.b the FOHPN model for this kind of systems is
presented. The marking of continuous place p1 represents
the stock level while the complementary place p1 represents
the available space in the storage area. By construction,
at each time instant τ , the sum of the marking in p1 and
in its complementary place p1 always keeps to a constant
value Lmax. Lmax represents the maximum capacity of the
storage area that is in general much greater than the order
quantity Q.

When the marking of p1 is positive, transition t2 may fire
at its maximum firing speed D, thus reducing the marking
of p1 with a constant slope D. As soon as the marking of
p1 falls to the reorder level ROL (i.e., the marking of p1
goes over Lmax − ROL) discrete transition t1 is enabled
and fires after LT time units. When t1 fires the ordered
quantity Q is received in p1 (the stock), thus this firing
produces an increasing of Q units in p1 and a decreasing of
the same entity in the complementary place p1.

B. FOQS with finite replenishment rate

In the previous subsection we dealt with a typical situ-
ation met by wholesalers: a large delivery of an item in-
stantaneously raises the stock level and then the demand
reduces it. Now, let us consider the stock of finished goods
at the end of a production line.

If the rate of production is greater than demand, the
stock level rises at a rate which is the difference between
production and demand. If we call the rate of production
P , stocks will build up at a rate P − D, as shown in fig-
ure 2.a. Stock will continue to accumulate as long as pro-
duction continues. After some time, PT , a decision is made

to stop production. Then, stock is used to meet demand
and declines at a rate D. After some further time, DT ,
all stock has been used and production must start again.
Thus, a decision must be made at some point to stop pro-
duction of this item and transfer facilities to making other
items [7].

The resulting variation in stock level is shown in fig-
ure 2.a where A = (P − D) · PT , and L, Q, T have the
same physical meaning as in the previous subsection.

In figure 2.b the FOHPN model for this kind of systems
is shown. The marking of continuous place p1 denotes the
stock level, while p1 is its complementary place and at each
time instant m1 + m1 = A. When the discrete place p2 is
marked, as in figure 2.b, and p1 is not empty, continu-
ous transitions t1 and t2 may fire at their maximum firing
speeds, P and D respectively. Assuming P > D, the fluid
content of continuous place p1 increases with a constant
slope equal to P − D, while the fluid content of p1 de-
creases at the same constant slope. As soon as m1 = A,
transition t3 fires thus moving the token from p2 to p3. This
produces the disabling of transition t1, and the stock level
starts decreasing at a constant slope equal to the demand
D. Such a decreasing proceeds until p1 gets empty, and
the content of its complementary place p1 is equal to A,
thus producing the firing of transition t4. Then the cycle
repeats unaltered.

C. FOQS with back–orders

The models described so far have assumed that all de-
mand must be met. The implication is that shortages are
very expensive and must be avoided. There are however,
situations where planned shortages are beneficial, and an
obvious example of this occurs when the cost of keeping an
item in stock is higher than the gross profit made from sell-
ing it. When there is customer demand for an item which
cannot be met immediately there are shortages, and each
customer has a choice: he can wait for an item to come
into stock, in which case it is met by a back–order, or he
can withdraw his order and go to another supplier, in which
case there are lost sales [7]. In this subsection we shall look
at the first case.

Under the assumption of continuous and constant de-
mand, the stock level of an item varies with a typical pat-
tern shown in figure 3.a. where back–orders are shown as
negative stock levels. Let L(0) be the initial stock level. At
time τ = L(0)/D, the stock gets empty and the following
demand cannot be met, thus producing shortages. When
shortages reach a certain value S, a new order Q is im-
mediately supplied: S units are used to satisfy the unmet
demand, while Q − S units are stored in the stock. And
the process repeats periodically.

In figure 3.b the FOHPN model for this kind of systems
is reported. The fluid content of continuous place p1 rep-
resents the stock level, while place p1 is its complementary
place and at each time instant m1+m1 = Q−S. Let us as-
sume that the initial discrete marking is that in figure 3.b,
while m1(0) = L(0). Continuous transition t2 may fire at
its maximum firing speed D. As soon as p1 gets empty,
i.e., m1 = Q − S, the immediate transition t4 fires thus
marking discrete place p5. This enables the firing of con-
tinuous transition t3 with a firing speed that is equal to the
demand D. As soon as p3, whose fluid content represents
the amount of unmet demand, is equal to S, transition t1
fires and places p3, p5 and p1 get empty, while an amount
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Fig. 3. Fixed order quantity system with back–orders: regular pat-
tern (a) and the FOHPN model (b).

p1 

∞

Lmax-ROL 

Lmax-ROL-Q 

∞ ∞ p2 p3 
p4 

p5 p6 p7 

p8 

t1 

LT 

t6 t7 t8 

t4 t3 

t6 t5 

ε ε 

ε Tm 

t2 

p 
D 

 Q 

Fig. 4. The FOHPN of a maturing store.

of fluid equal to Q− S is supplied to continuous place p1.
At this point, the demand can be satisfied again and the
process repeats cyclically.

IV. Maturing stores

As well known, many products, especially in the food
field, need a certain maturing time before getting ready to
be sold. This fact obviously needs to be taken into account
when solving related inventory control problems.

In this section we show how FOHPN can be used as
a modeling tool for maturing stores. The corresponding
module is shown in figure 4 where we assumed the fixed
order quantity policy with non–null reorder level and finite
lead time discussed in subsection III-A. Note however, that
whatever inventory management policy may be considered
as well.

In this model the stock level is no more equal to the
fluid content within a single continuous place. It is given
by the sum of the fluid content within four places: p1,

p2, p3, and p4. Continuous place p is the complementary
place of all the above four places, i.e., at each time instant
m1 + m2 + m3 + m4 + m = Lmax, where Lmax denotes the
maximum capacity of the storage area.

The net evolution can be briefly summarized as follows.
As soon as m = Lmax −ROL (i.e., m1 + m2 + m3 + m4 =
ROL) transition t1 is enabled and, after a time interval
LT , it fires, thus introducing Q further units within the
storage area and more precisely, within place p1. Now,
let us consider the cycle p8, t6, p7, t3, p6, t4, p5, t5, p8. Since
ε ≈ 0, we can assume that whenever a new order Q is
supplied, only discrete place p8 is marked, while places p5,
p6 and p7 are empty. In particular, two extreme cases may
occur: it may happen that either a new order arrives when
place p8 has been just marked, or place p8 is marked since
a time period that is quite equal to Tm. In the former case
the new order will remain in p1 for Tm time instants, while
in the latter case, the new order will immediately leave p1.
On the average, the new order Q will stay in p1 for a time
period that is equal to Tm/2. Moreover, it will remain in
each one of the other n− 1 stores (places p2 and p3) for a
time period Tm. Thus, we can conclude that the average
maturing time is Tm = Tm/2 + (n− 1) · Tm where n is the
number n of continuous places whose marking denote the
level of maturing products (in the case of figure 4, n = 3),
and the maximum error we can commit in evaluating the
maturing period is Tm/2.

Note that the precision in modeling the maturing pro-
cess can be arbitrarily improved by simply increasing the
number of continuous places.

V. Time–varying demands

In all the above sections we have assumed that the de-
mand is continuous and constant. Obviously, this is only a
simplifying assumption that does not find its counterpart
in real applications. In this section we provide new FOHPN
modules that can be directly included in all the previous
nets, replacing all continuous transitions with maximum
firing speed D.

In the case of stochastic demand, all continuous transi-
tions with maximum firing speed D have to be replaced
by an exponentially distributed timed transition with an
appropriate value of the average firing rate.

For simplicity of presentation, we focus our attention on
a particular IMS model. As an example, let us consider
the fixed order quantity system in subsection III-A. In this
case, continuous transition t2 should be replaced by an ex-
ponentially distributed timed transition. Moreover, to em-
phasize the stochastic effect of the demand, we assume that
the arcs between p1, p1 and t2 have weight α (we assume
that Q is a multiple of α) while the firing rate of transition
t2 is λ = D/α so that on the average the stochastic demand
is equal to D. As an example, figure 5.a shows a regular
pattern of stock level in the case of stochastic demand.

It often happens that demand periodically varies, but
it keeps constant during certain sub–periods. This can be
easily simulated by the FOHPN module within dashed line
in figure 6.a. Transitions t2, t3 and t4 produce a decreasing
in the marking of continuous place p1 with constant slope
D2, D3 and D4, respectively. The enabling of these transi-
tions occur during consecutive time intervals of length d5,
d6 and d7, respectively. Note that for simplicity, we have
not reported the module for the management costs compu-
tation. Nevertheless, the new FOHPN module should also
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Fig. 5. Stock level with stochastic demand (a) and piecewise constant
demand (b) in the case of the IMS in subsection III-A.
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Fig. 6. FOHPN module (a) and discrete FOHPN module (b) of a
piecewise constant demand.

replace the continuous transition relative to the holding
cost component. As an example, figure 5.b shows a regu-
lar pattern of stock level in the case of piecewise constant
demand.

A discrete FOHPN of piecewise constant demand can
also be given. It is shown in figure 6.b. The only difference
with respect to the previous one consists in replacing the
continuous transitions t2, t3, and t4 with discrete timed
transitions whose time delays are equal to 1/D2, 1/D3 and
1/D4, respectively. Note that in this case a conflict needs
to be solved at each discrete place. So as to obtain the
desired behaviour of the net, we have to impose priority
to transitions t2, t3 and t4 with respect to t5, t6 and t7,
respectively.

VI. A real application case: the FOHPN model
of a cheese factory

In this section we deal with a real application case. In
particular, we consider a cheese factory in Sardinia, Italy.

The most significant production consists in two different
kinds of cheese: ripe cheese and soft cheese. For both kinds
of product, the production process can be divided in three
consecutive phases:
• milk supply: every day a certain amount of milk is sup-

plied. Such an amount in not constant and depends on
the current month following a characteristic curve (the
milk–curve); it reaches the highest values in spring (March,
April, May), negligible values in autumn (October, Novem-
ber and December), and intermediate values in the other
months;
• production: this phase both includes the actual transfor-
mation of milk in cheese and the maturing process; obvi-
ously, the time required for this phase depends on the kind
of cheese and is approximately equal to 76 days for ripe
cheese, and 20 days for soft cheese;
• storage of finished products: as soon as the maturing pro-
cess is finished, goods are transferred to appropriate storage
areas and are ready to be sold. Clearly, the time that ripe
and soft cheese may spend within these areas are different,
and strict constraints exist in the latter case.

The adopted production strategy consists in giving pri-
ority to the production of soft cheese. The amount of soft
cheese that has to be prepared is evaluated on the base of
both the current demand and the stock level in the storage
area. All the remaining milk is used for the production
of ripe cheese. Note that this policy originates from the
consideration that in the case of ripe cheese, large amount
of storage may be kept for even long periods of time. So,
even if priority is given to the production of soft cheese,
demand of ripe cheese may be satisfied as well.

Finally, let us observe that the demand of both products
largely varies during the year, and sometimes this may pro-
duce serious difficulties in making good sales forecasts.

In the following we illustrate how some of the previous
FOHPN modules can be assembled so as to model the
whole production system. As it can be seen in figure 7
four elementary modules are required:
1. milk supply,
2. production and maturing of soft cheese,
3. production and maturing of ripe cheese,
4. demand of finished products.

1. Milk supply has been modeled with an elementary
FOHPN module obtained by slightly modifying the discrete
piecewise constant demand model in figure 6.b. While the
module in figure 6.b. represents the withdrawal of a certain
good from a given storage area, in the actual case we need
to model the inlet of a certain good (the milk) within a
given storage area. This only requires the inversion of all
arcs between discrete transitions and continuous place.

Milk supply is modeled by the firing of discrete transi-
tions tM,Jan−Feb, tM,Mar, · · ·, tM,Sep, tM,Oct−Dec whose
firing delays are all equal to 1 (we assume the day as the
time unit). The content of continuous place pM represents
the milk level in the warehouse, while the weights of the
arcs from the above transitions to pM denote the daily
amount of milk supplied during the different months. No
milk supply occurs during the last three months of the year.

2. The second elementary module represents the pro-
duction and maturing of soft cheese and has been already
presented in section IV. For soft cheese the required time
for this phase is equal to 20 days and this has been mod-
eled by assuming n = 3, Tm = 8 and ε = 0.01. In such a
way the maximum error we can commit in evaluating the
maturing period is equal to Tm/2 = 4 days. Note that in
this case the maturing store is a FOQS with instantaneous
replenishment, LT = 1 day, Q = 875, ROL = 35000, and
Lmax = 40600 cheese.

Finally, the weight of the arc from continuous place pM

to discrete transition tS,prod has been assumed equal to
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Fig. 7. The FOHPN model of a cheese factory.

14000. This originates from the fact that, from real data
provided by the cheese factory, we know that 16 liters of
milk are required for 1 soft cheese. Thus, so as to satisfy
a new order Q, 875 · 16 = 14000 liters of milk should be
supplied.

3. The third elementary module represents the produc-
tion and maturing of ripe cheese and has been obtained
by slightly modifying the FOHPN module in section IV.
Firstly, let us consider the FOHPN module on the bottom
left constituted by discrete transitions t1, t2 and discrete
places p1, p2. Its goal is that of imposing the production
of ripe cheese only during the first six months of the year.
Moreover, it has been assumed that when continuous tran-
sition tR,prod is enabled, it fires with a firing speed so high
(109) that the time required for milk supply can be ne-
glected. Secondly, the marking of the co–buffer pW,R is
complementary to the sum of the marking in places p3,
p4, · · · p8, but does not depend on the marking of place
pR, whose content denotes the amount of finished prod-

uct. This originates from the real situation of the plant. In
fact, as soon as ripe cheese stops its maturing process, it
is stored in an area that is independent from the maturing
store and whose dimensions do not require a control on the
stock level. On the contrary, more strict constraints are
imposed by the dimension of the maturing store. In par-
ticular its maximum capacity is equal to 110000 cheeses.

The weight of the arc from continuous transition tR,prod

to continuous place p3 has been assumed equal to 0.0667.
This originates from the fact that, from real data provided
by the cheese factory, we know that 15 liters of milk are
required for 1 ripe cheese. Thus, each liter of milk may
produce 1/15 = 0.0667 cheese.

Finally, for ripe cheese the required time for the produc-
tion/maturing phase is equal to 76 days and this has been
modeled by assuming n = 6, Tm = 14 and ε = 0.01. In such
a way the maximum error we can commit in evaluating the
maturing period is equal to Tm/2 = 7 days.

Note that to ensure the priority of soft cheese production,
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we assign priority to the firing of discrete transition tS,prod

with respect to continuous transition tR,prod.
4. The demand of finished products has been modeled by

slightly modifying the piecewise constant demand module
in figure 6.a. We now use a single model so as to sim-
ulate the demand of two different items. In order to do
this, we simply need to associate two different continuous
transitions to each discrete place.

The firing of transitions tR,Jan, tR,Feb, · · ·, tR,Sep−Dec

simulate the demand of ripe cheese, while transitions
tS,Jan, tS,Feb, · · ·, tS,Sep−Dec simulate the demand of soft
cheese. Note that in the latter case, arcs between continu-
ous transitions and the co–buffer pW,S are also required.

A. A numerical simulation

Now, let us present the result of a numerical simulation
carried out with the software SIRPHYCO [5]. All numeri-
cal data have been provided by a Sardinian cheese factory.

The marking in figure 7 is representative of the initial
simulating condition. In particular the fluid content of
places pS and pR is equal to the amount of soft and ripe
cheese, respectively, remained from the previous year.

The results of simulation are reported in figure 8.
Figure 8.a shows the stock level evolution in the ripe

cheese warehouse (fluid content in pR) during one year.
As it can be seen, during the first 76 days the curve de-
creases, since no new finished product arrives. After this
time period, new product is available, thus producing an
increasing in the stock level. Then, after 184 more days,
milk supply is interrupted. Nevertheless, for about 80 more
days new product still arrives in the ripe cheese warehouse,
as a result of the actual content within the maturing store.
Finally, during the rest of the year the stock level decreases.
As it can be seen, at the end of the year a large amount
of product is still available, so as to satisfy the demand
occurring at the beginning of the following year.

Figure 8.b shows the stock level evolution in the soft
cheese warehouse (fluid content in pS) during the first three
years, so as to highlight the periodicity of the curve and the
decreasing of the level until stocks are finished. Note that
the second point is a prior requirement in the case of soft
cheese whose quality is not preserved for long time periods.
As in the previous case, at the beginning of each year stock
level decreases since no new product is still ready. Then,
at the end of each year, stock level decreases again, since
no milk supply occurs.

Finally, figure 8.c shows the stock level in the milk ware-
house (fluid content in place pM ). As it can be seen high
stock levels should not be maintained for many consecutive
days, being milk a very perishable good.

VII. Conclusions

In this paper we dealt with the problem of simulating
systems whose predominant aspect of the production cycle
is the inventory management. The choice of FOHPN as a
modeling tool presents many advantages: they can be used
as a visual–communication aid; they enables us to set up
mathematical models governing the behaviour of systems;
with the addition of tokens, FOHPN are able to simulate
the dynamic concurrent activities of IMS; finally, they en-
able a modular representation of an IMS, thus enabling us
to deal even with very large dimension systems.

In this paper we provided the FOHPN model for three
different fixed order quantity systems, for maturing stores,
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Fig. 8. The results of a numerical simulation carried out on the
FOHPN model in figure 7.

and for time–varying demand. A real application case, a
cheese factory, has also been considered: all numerical data
are relative to an existing plant, and simulation has been
carried out with the software SIRPHYCO.

Our future work will be that of considering more complex
production systems, also introducing appropriate FOHPN
modules to compute costs relative to the different phases of
management and production, so as to solve even complex
numerical optimization problems, as already done in [4] for
a simple application case.
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