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Abstract— In this paper we deal with the problem of mod-
eling railway networks with Petri nets so as to apply the
theory of supervisory control for discrete event systems to
automatically design the system controller. We provide a
modular representation of railway networks in terms of sta-
tions and tracks including sensors and semaphores. We en-
sure safeness and local liveness imposing both Generalized
Mutual Exclusion Constraints and constraints also involving
the firing vector.

I. INTRODUCTION

The specification, analysis and implementation of rail-
way control logic has ever been an important activity since
trains and railways were invented centuries ago, and fail-
ure of control logic can lead to railway accidents and loss
of human life. At present time, this activity is even more
important because railway networks are often large, the
speed of trains and traffic density is increasing, and activ-
ities within networks are taking place concurrently and at
geographically different locations. As a result, the overall
complexity of railway systems increases, and hence greater
demands are placed on the control logic of these systems
[10].

The control of a railway network can be divided into
two distinct phases. The first one, at a lower level, im-
poses the satisfaction of a series of safeness constraints (col-
lision avoidance) and liveness constraints (deadlock free-
ness). The second one, at a higher level, is concerned
with the problem of scheduling both the departures and
the stops, so as to optimize the efficiency of the net. In
this paper the attention is uniquely devoted to the first
phase.

We focus our attention on the modeling and control of
railway networks with Petri nets [14], that provide a pow-
erful framework for the analysis and control of distributed

- and concurrent systems. Some of the advantages of Petri
nets as models for discrete event control include [8]: graphi-
cal representation, solid foundations based in mathematics,
the existence of simulation and formal analysis techniques,
and the existence of computer tool support for simulation,
analysis and control. The literature on modelling and an-
alyzing railway systems using Petri nets is not extensive
and a good survey is given by Janczura in [10]. The idea of
applying Petri nets theory goes back to Genrich [5], then
it was revisited in [1], [11] and in [9] where coloured Petri
nets have been used. Significant contributions in this set-
ting are also due to Decknatel and Schnieder [2] and Di
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Febbraro et al. [4] who used hybrid Petri nets to model
transportation systems.

We provide a modular representation of railway net-
works in terms of stations and tracks including sensors and
semaphores. The overall model will be a place/transition
(P/T) net whose transitions may be (un)controllable
and/or (un)observable, following the paradigm of supervi-
sory control [15]. There exist several techniques for au-
tomatically designing controllers for P/T nets with un-
controllable and/or unobservable transitions [8]. In par-
ticular, we show how collision avoidance constraints can
be expressed as Generalized Mutual Exclusion Constraints
(GMECs) [6] and the corresponding controller takes the
form of a set of monitor places that can be automatically
computed — taking into account uncontrollable and un-
observable transitions — using Moody’s parametrization
[13].

It is well know that a P/T net monitor based solution
may not be maximally permissive when there exist uncon-
trollable or unobservable transitions [6]: the price one has
to pay to keep the control structure simple is the fact that
the controller may unnecessarily disable some transitions.
In the case at hand, this leads to a local deadlock, i.e., the
automatically designed monitor controller leads to a block
when two trains coming from opposite directions cross each
other at a station. To solve this problem we modify the con-
troller, writing explicitly a new set of rules that define the
admission policy into the stations; we show that the cor-
responding control structure is still very simple and takes
the form of a “monitor with self-loops”.

A nice feature of this approach is that the whole con-
trol problem can be divided into a certain number of sub—
problems, thus making the proposed control procedure
suitable even for large-scale networks.

Let us finally observe that in [7] we have also addressed
the problem of global deadlock avoidance. In fact, when
all the modules introduced here are put together and the
number of trains in the network increases, it may well be
the case that the net enters a blocking state. In [7] a so-
lution to this problem has been provided applying siphon
analysis to a simplified net and adding new monitors that,
controlling the net siphons to prevent them from becoming
empty, ensure global liveness for the system.



II. BACKGROUND
A. Generalities on Petri nets

In this subsection we recall the formalism used in the
paper. For more details on Petri nets we address to [14].

A Place/Transition net (P/T net) is a structure N =
(P, T, Pre, Post), where P is a set of m places; T is a set
of n transitions; Pre: PxT — Nand Post: PxT - N
are the pre—- and post— incidence functions that specify the
arcs; C = Post — Pre is the incidence matrix.

A marking is a vector m : P — N that assigns to each
place of a P/T net a non-negative integer number of to-
kens, represented by black dots. In the following we denote
as m; the marking of place p;.

A P/T system or net system (N, my) is a net N with an
initial marking my.

A transition ¢ is enabled at m if m > Pre(-,t) and may
fire yielding the marking m’ = m + C(-,t). The notation
m[tym' means that an enabled transition ¢ may fire at m
yielding m/’.

A firing sequence from mg is a (possibly empty)
sequence of tranmsitions ¢ = t1---t; such that
mo[t1)mi[ts) -+ - [te)me. A marking m is reachable in
(N, mg) iff there exists a firing sequence o such that
mgfo)m. Given a net system (N,mg) the set of reach-
able markings is denoted R(N,myp). The function o :
T — N, where o (t) represents the number of occurrences
of t in o, is called firing count vector of the fireable se-
quence o. If mg[o)m, then we can write in vector form
m = mg + C(-,t) - . This is known as the state equation
of the system.

B. Generalized Mutual Exclusion Constraints

Assume we are given a set of legal markings £ C N™, and
consider the basic control problem of designing a supervisor
that restricts the reachability set of the plant in closed loop
to LNR(N,mg). Of particular interest are those PN state—
based control problems where the set of legal markings £ is
expressed by a set of n, linear inequality constraints called
Generalized Mutual Ezxclusion Constraints (GMECs).

Each GMEC is a couple (w,k) wherew : P =5 Z is a
m x 1 weight vector and ¥ € Z. Given the net system
(N, mg), a GMEC defines a set of markings that will be
called legal markings: M(w,k) = {m € N* | wTm <
k}. The markings that are not legal are called forbid-
den markings. A controlling agent, called supervisor, must
ensure that the forbidden markings will be not reached.
So the set of legal markings under control is M.(w, k) =
- M(w, k) N R(N,my).

In the presence of multiple constraints, all constraints
can be grouped and written in matrix form as

wim<k (1)
where W € Z™*"< and k € Z™-. The set of legal markings
is M(W,k)={m eN" | WTm < k}.

Each constraint requires the introduction of a new place

{(denoted as monitor place or controller place). To each

NN
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Fig. 1. Convention on transitions: ¢ controllable, o observable, nc
uncontrollable, no unobservable.

monitor place, it corresponds an additional row in the in-
cidence matrix of the closed loop system. Im particular,
let C. be the matrix that contains the arcs connecting the
controller places to the transitions of the plant, and (m)
m, the (initial) marking of the controller. The incidence
matrix C € Z{m+ndxn of the closed loop system is

Cyp

3

and the marking vector . € Z™*+"< and initial marking

my are

m=[mr ], me=[mm], 3
where the subscript p has been used to denote the variables
of the plant.

In the case of controllable and observable transitions,
Giua et al. provided the following theorem.

Theorem 1 ([6]) If k—WTmyg > O then a Petri net con-
troller with incidence matriz C. = -WTC,, and initial
marking mq = k — WTmg enforces constraint (1) when
included in the closed loop system (2) with marking (3).

The controller so constructed is maximally permissive,
i.e., it prevents only transitions firings that yield forbidden
markings. The controller net has 7. control places and no
transition is added.

It often occurs that certain tramsitions can not be dis-
abled by any control action (uncontrollable transitions) or
can not be directly detected or measured (unobservable
transitions). The uncontrollability of a transition indicates
that we can not draw any arc from the controller places
to this transition, so that the controller may never disable
it. The unobservability of a transition implies that it must
have the same number of input and output arcs to/from
each controller place — i.e., its only admissible connection
to monitor places is given by self-loops — so that its firing
does not modify the controller state. In these cases the
previous theorem is no more valid and an appropriate set
of transformed constraints needs to be determined so as to
construct a Petri net controller.

Theorem 2 ([12]) Let a Petri net with incidence matriz
C,, be given with a set of uncontrollable and/or unobserv-
able transitions. Let Cy. (Cy,) be the incidence matriz of
the uncontrollable (unobservable) portion of the Petri net.
A set of linear constraints on the net marking, Wim <k,
are to be imposed. Assume Ry € Z™*™ satisfy Rym > 0
Ym € N, and Ry € Z™*™ be a positive definite diagonal
matriz, with Ry + RoWT £0. Let

o-|

[R1 Ry ]
Cuc Cuo —Cuo Mypo
wTc,, wiCc, -WTC,, Wimyp-k-1
<[00 0 ~-1].
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Fig. 2. A monitor with self-loop.

t3

pbYop, 2 ops pe “ ps

»

pl’ tl, p2' tZ’ pa’ t3, p4’ L PS

’

Fig. 3. The Petri net model of a track.

Then the controller

C.=-(Ri + ReWT)C, = -WC,
meo = Ro(k+1) = 1— (R + ReWT)myo =
kT — Wmy

exists and causes all subsequent markings of the closed loop
system (2) to satisfy the constraint WTm,, < k without
attempting to inhibst uncontrollable transitions and without
detecting unobservable transitions.

It is possible to compute matrices R; and R following
the procedure by Moody by simply performing row opera-
tions on a matrix containing the uncontrollable and unob-
servable columns of the plant incidence matrix [13]. The
computational part of this procedure involves little more
than the integer triangularization of a matrix.

In the rest of the paper we adopt the convention re-
ported in figure 1 so as to distinguish among control-
lable and/or uncontrollable, observable and/or unobserv-
able transitions.

C. Constraints involving the firing vector

Certain control goals may involve the firing vector of a
Petri net as well as the tokens content of places [13]. A
constraint of this kind takes the form:

4)

where v; € N, and ¢; € {0,1} is such that ¢; = 1 if ¢;
is enabled, otherwise ¢; = 0. Thus, constraint (4) implies
that wTm < k and that transition ¢; should be enabled if
k-wTm > v;.

The corresponding control structure takes the form of
a monitor place with a self-loop. As an example, in fig-
ure 2 we have shown the monitor with self-loop pas that
enforces the constraint m; + ms + ¢1 < 1. Note that tran-
sition ¢; must be controllable, transitions ¢2 and ¢4 must
be controllable and observable, transitions ¢3 and #; must
be observable.

wim+vg; <k

III. MODELING RAILWAY NETWORKS WITH PETRI NETS

In this section we show how Petri nets can be efficiently
used as a modeling tool for railway networks. In particular,

we show that the whole network can be seen as the compo-
sition of a certain number of elementary modules, namely
tracks and stations.

A. The track model

An example of Petri net modeling a track is shown in
figure 3. It consists of two series of places (py, -, ps and
pi, -+, pg) and transitions (¢, - -+, t4 and ¢}, -+ -, ¢}), each
one representative of the flow of trains in a certain direc-
tion. Each couple of places p;, p; represents a segment of
the track, i.e., the marking of either p; or p; denotes the
presence of a train in the segment. Note that, in the case of
a double track, the two lines are independent and places p;
and p} correspond to parallel segments and can be marked
simultaneously. On the contrary, in the case of a single
track two places, p; and p}, are used to represent the same
segment of the track that can be crossed in both directions,
but places can not be marked at the same time. Note that
during simulation a release delay is associated to each tran-
sition, to represent the time a train requires to run along
that segment. :

Transitions may be (un) controllable and/or (un) observ-

able. In this setting, a transition that is both controllable
and observable represents a semaphore (see transitions ¢3
and ¢} in figure 3), i.e., in that point of the net the presence
of a train can be detected and its transit can be forbidden.
In all real situations a semaphore is placed at the exit of a
track, or equivalently at the entrance of a station.
A transition that is observable but not controllable (see
trangitions ¢, t4, ¢] and t}), represents a sensor counting
the number of axles of the train, i.e., the number of cars
passing through that point.

The number of places used to represent the track de-
pends on the required precision. On one hand, we assume
that the Petri net is safe (such a condition will be imposed
by the addition of appropriate monitor places), thus the
number of places is mainly limited by the required safeness
distance, i.e., we assume that the length of each segment is
such that no more than one train can be contained within
it at any given time instant. On the other hand, we take
into account the presence of sensors and semaphores that
are modeled by appropriate transitions as discussed above.
Note that, even if these elements are only associated to
one direction of flow, an equal number of uncontrollable
and unobservable transitions should be added in the other
direction so as to keep the structure shown in figure 3. Let
us finally observe that an arbitrary large number of places
may be included in the model of the track, and these places
should be connected through uncontrollable and unobserv-
able transitions. Nevertheless they would only change the
modeling granularity, while no variation would occur in the
controller design.

B. The railway station model

In this subsection we present the Petri net model of a
three-tracks railway station that is sketched in figure 4.2
(ignore place par,; and all connected arcs), where double
arrows have been used to denote self-loops. Note that we
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Fig. 4. The Petri net model of a three-tracks railway station with the monitor place relative to the constraint m; +m; < 1 assuming that
all transitions are controllable and observable (a) and taking into account the uncontrollability and unobservability of transitions (b). )

can easily extend this model to a railway station with an
arbitrary number of tracks.

As shown in figure 4.a, the station is composed of five
different stretches shown within dashed boxes: three paral-
lel stretches in the station and input tracks on both sides.
The models of the stretches are similar to those already
presented in the previous subsection. ' ,

The firing of controllable and observable transitions
ting,1 and ting o represent the input of a train in the sta-
tion, while the firing of uncontrollable and unobservable
transitions t,y¢1 and t,4,2 represent the output of a train
from the station. Note that, as in the case of the track
model, a controllable and observable transition is used to
model a semaphore, while an observable but uncontrollable
transition is used to model an axles counter.

The two subnets containing places p,1, Pd,1,Pin
and pu32,Ppd2,Pi2, and transitions tui:,tiu1,tai,tid,1,
tud,1;tdu,1 and By 2, L2, tai 2, tid 2, Lud,2, Ldu,2, Tespectively,
. model the points, i.e., when places p,; and p,. are

marked, trains may be directed to the up-track or may
leave the up-track; on the contrary, when places Pd,1
(pi,1) and pas (pi2) are marked, trains may be directed
to the down (intermediate)—track or may leave the down
(intermediate)—track.

Let us finally observe that as in the case of the track
model, during simulation we associate a time delay to each
transition so as to simulate time intervals required to get
across a given segment of the station.

IV. THE CONTROLLER DESIGN FOR TRACKS AND
STATIONS

As already discussed in the introduction, in this paper
we shall deal with the problem of designing a Petri net su-
pervisor for a railway network so as to ensure safeness and
local liveness. In other words, the goal of the supervisory
controller is that of guaranteeing that two trains may flow
through the net in opposite directions without colliding,
while prohibiting that blocking conditions may occur.

Note that as the number of trains in the system increases,
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Fig. 5. The reduced Petri ‘net model of a three-tracks railway station and the monitor places relative to constraint 7.a and 7.u.

additibnal blocking conditions may occur. This issue has
been discussed in [7).

To do this we first consider single modules and derive a
controller for tracks and stations separately. In particular,
we observe that GMECs may be satisfactorily applied when
controlling tracks. On the contrary, this kind of constraints
are too restrictive when controlling stations. We show in
detail that in this latter case, safeness may be ensured by
imposing appropriate logical constraints that also ensure
local liveness.

GMECs have been firstly imposed so as to ensure safe-
ness, i.e., to ensure that each couple of places corresponding
to the same segment of a single-track (that may also be-
long to a station) are not marked simultaneously, and each
place never contains more than one token at a time.

In accordance to the supervisory control theory briefly
summarized in subsection II-B each constraint requires the
introduction of a monitor place. Moreover, in the case of
uncontrollable and/or unobservable transitions, constraints
need to be appropriately transformed. As an example, a
constraint of the form

mi+m; <1

(5)

relative to a given segment of a track within a station (see
figure 4.a) ensures that places p; and p} are not marked at
the same time and each place never contains more than one
token. If all transitions were controllable and observable,
the monitor place par,; enforcing (5) would have been that
in figure 4.a. The presence of uncontrollable and unob-
servable transitions requires the transformation of (5) into

a more restrictive constraint

Mi—3 + Mi—g + Mi—1 +m; + m)
+miy +mi, +miz <1

(6)

The corresponding monitor place is pas,; in figure 4.b. This
result can be formally obtained with Moody’s procedure
[13] as discussed in subsection II-B.

Constraints of this kind ensure safeness. Nevertheless,
as we now show, they are too restrictive when applied to
places relative to tracks within the stations, while they en-
sure a satisfactory behaviour of the net when imposed to
places modeling the intermediate tracks.

As an example, let us consider the monitor places pps,;
and pys,; in figure 4.b, that have been introduced so as to
enforce the GMECs m; +m| < 1 and m; + m} < 1, re-
spectively, and applying Moody’s transformation to make
them controllable and observable. By looking at figure 4.b
we can immediately observe that whenever a train is in the
upper track (place p; or p} is marked) no train can enter
the station (transition #;,4,2 is not enabled because place
Pu,i is empty). Consider now the case in which a train is in
the upper track going right (place p; marked) and another
one is arriving from the right (place p;- marked) as shown
in figure 4.b: a deadlock occurs. Such a case, as well as
other analogous conditions for trains in the intermediate
and lower tracks, demonstrate that GMECs do not guar-
antee a satisfactory behaviour of the net, resulting to be
too restrictive. )

A better solution to this problem consists in the intro-
duction of a new set of constraints, some of whom may
also involve the firing vector, that regulate the input of
trains in the stations, and the points within them. In fact,
whenever there is at least one empty stretch a reasonable
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admission policy should let the incoming train enter the
station, while the points should direct the incoming train
towards the empty stretch.

To do this, let us consider the simplified Petri net model
of the three—tracks railway station reported in figure 5, that
is obtained from the previous one by simply grouping to-
gether some places. The set of constraints that have been
proved to satisfy the desired requirement of safeness and
local liveness is [3]:

(( My +ma+mz+me+ms <3 (a)
Qing,1 + M2+ My <2 (%)
Qing,1 + M3 + M4 < 2 @]
Qing,1 + My +myg,; <2 (d)
Qiu,1 +my1 +mg <2 (e)
Qau,t +m1 +mg <2 (f)
Qui, g +my +mg <2 (9)
Qain+mi+mg<2 (R

| Quapr+mi+my <2 (%)
$ Qg +my+my <2 o (7
Qing,2 + M2 +My2 < 2 (m)
Qing,2 + M3 + M2 <2 (n)
Qing,2 + M4 + Mgz < 2 (0)
Qw2 + M2 +mg <2 (p)
Qdu,2 +mg +ms < 2 (9)
Quiz +m3 +ms <2 (r)

" dai2z +m3 +ms <2 (s)
Qua,2 + Mg +m5 < 2 ®

\ Gid2 +ms+ms <2 (v)

where constraints (a)—(d) and (m)—(o) regulate the inpit of
trains in the station, while the others regulate the points.
Note that, apart from constraint (a) that is a GMEC, all
the other constraints also involve the firing vector.

The inequality (a) implies that transitions #ing,1 and
ting,2 may only fire if no more than two trains are already
contained in py, p2, p3, ps and ps. In such a case we can be
sure that there is always a free track in the station, where
the last entered train may flow.

The inequalities (b)—(d) imply that transition ;g1 may
fire whenever the following conditions hold. (b) Places p;
and p,,1 are not marked at the same time: in fact, if both
these places are marked, and a new train enters the station,
then the last entered train may only go to ps, thus violating
safeness constraint. (c) Places ps and p;,; are not marked
contemporary (similar to the previous case). (d) Places p4
and pq,; are not marked at the same time (similar to the
previous cases). ‘

Inequality (e) implies that transition t;,,; cannot fire if
both places p; and ps are marked: the firing of ¢;,,1 would
allow the train in p; to enter the up-track thus colliding
with that one in ps. '

Analogous considerations lead to the formulation of the
other constraints in (7).

As an example, in figure 5 we have reported the monitor
places relative to constraints 7.a and 7.u (par,, and pag,,
respectively).

Let us finally observe that, even if constraints (b)—(d)
and (m)-(o) involve the firing vector, no self-loop exists

' [3] F. Diana, “Supervisory control of railway networks using

between transitions ting,1 and #;ny2 and the correspond-
ing monitor places. This is due to the uncontrollability of
all transitions entering places ps, ps and ps, and can be
immediately observed by simply transforming the above
constraints in accordance to the Moody’s procedure.

V. CONCLUSIONS

In this paper we provided a modular representation of
railway networks in terms of stations and tracks includ-
ing sensors and semaphores. The resulting model is a
P/T net whose transitions may be (un)controllable and/or
{un)observable.

We have shown how collision avoidance constraints can
be expressed as GMECs and the corresponding controller
takes the form of a set of monitor places that can be com-
puted using Moody’s parametrization. This solution may
lead to local deadlock: a better solution that guarantees
safeness and local liveness, can be written in the form of
constraints also involving the firing vector and the corre-

" sponding control structure takes the form of a monitor with

self-loops.
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