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Abstract In this paper we deal with the problem of allocating a given number of
tokens in a cyclic timed event graph (CTEG) so as to maximize the fir-
ing rate of the net. We propose two different procedures, both involving
the solution of a mixed integer linear programming problem. The first
one needs the knowledge of the elementary cycles, thus it is convenient
only for those classes of CTEGs whose number of elementary cycles is
limited by the number of places, like kanban systems. On the contrary,
the second one enables us to overcome this difficulty, thus providing an
efficient tool for the solution of allocation problems in complex manu-
facturing systems like job–shop systems.

Introduction
Cyclic timed event–graphs (CTEG) are a special class of timed ordi-

nary Petri nets. They are often used for modeling and analyzing manu-
facturing systems assuming a cyclic manufacturing of the parts, since it
has been shown that choice–free job–shop, kanban systems, and assembly
systems, can be modeled using event graphs. In the case of deterministic
CTEGs it is possible to evaluate the steady state performance of the net
in terms of its cycle time.

In this paper we deal with the problem of allocating a given number
of tokens in a CTEG so as to maximize the firing rate (i.e., the inverse
of the cycle time) of the net. Note that both the initial marking and
the firing rate are decision variables in this approach. This problem
has a practical relevance: as an example, in the manufacturing domain
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it corresponds to determining the optimal allocation of a finite set of
resources so as to maximize the throughput.

Many different optimization problems in the setting of CTEGs have
been studied in the literature. We distinguish among problem state-
ments requiring the knowledge of all elementary cycles and problem
statements where this knowledge is not necessary. The solutions pro-
posed by Hillion and Proth (Hillion and Proth, 1989), and Di Febbraro
et al. (Di Febbraro et al., 1997) belong to the first class; on the contrary,
the solutions proposed by Campos et al. (Campos et al., 1992), Naka-
mura and Silva (Nakamura and Silva, 1999), Magott (Margott, 1984),
Morioka and Yamada (Morioka and Yamada, 1991), and Laftit et al.
(Laftit et al., 1992), belong to the second class.

In (Giua et al., 2000), we considered a simplified version of the allo-
cation problem we deal with in this paper. In fact, we defined a special
class of allocations and we proved that for this class the firing rate is
a generalized smooth performance index. Then, following Panayiotou
and Cassandras (Panayiotou and Cassandras, 1999), we proved that
whenever a performance index is generalized smooth, an incremental
optimization procedure — that adds one token at a time — can be used
to compute the optimal allocation.

In this paper we study the same problem in a more general setting,
posing no restriction on the class of allocations considered. We derive
two different approaches to solve the optimal allocation problem in this
general case.

The first procedure involves the solution of a mixed ILPP and is based
on the knowledge of all elementary cycles. Thus, it is convenient for
those classes of CTEGs where the number of elementary cycles does not
increase exponentially with the size of the net, such as kanban–systems
where the number of elementary cycles is limited by the number of places.

The second procedure requires solving a mixed ILPP. It does not
need the knowledge of the elementary cycles and the constraint set only
involves the computation of the incidence matrix, thus resulting to be
efficient for all classes of CTEGs.

1. BACKGROUND
In this section we recall the formalism used in the paper. For more

details on Petri nets and CTEGs we refer to (Proth et al., 1993); (Hillion
and Proth, 1989); (Laftit et al., 1992); (Murata, 1989); (Panayiotou and
Cassandras, 1999).
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A Place/Transition net (P/T net) is a structure N = (P, T,Pre,Post),
where P is a set of n places; T is a set of m transitions; Pre : P×T → N
and Post : P × T → N; C = Post− Pre is the incidence matrix.

A marking is a vector M : P → N (Mi is the marking of place pi).
A P/T system or net system 〈N, M0〉 is a net N with an initial marking

M0.
A transition t is enabled at M if M ≥ Pre(· , t) and may fire yielding

the marking M ′ = M + C(· , t).
A P/T net is called ordinary when all of its arc weights are 1’s.
An event graph is an ordinary Petri net such that each place p has

exactly one input transition and exactly one output transition.
We define an elementary circuit in a strongly connected event graph

as a directed path that goes from one node back to the same node, while
any other node is not repeated. A strongly connected event graph is
also called cyclic because each node belongs to a cycle. In a cyclic event
graph the total number of tokens in any elementary circuit is invariant
by transition firing (Commoner et al., 1971).

A deterministic Timed P/T net is a pair (N, τ), where N is a stan-
dard P/T net, and τ : T → R+, called release delay, assigns a positive
fixed firing duration to each transition. We consider an infinite–server
semantics, i.e., we assume that each enabled transition can fire as many
times as its enabling degree.

For deterministic timed cyclic event graphs we can compute, for any
elementary circuit γ, the following ratio called the cycle time of the
circuit: cγ = µγ/xγ , where µγ denotes the sum of the firing times related
to the transitions belonging to γ, and xγ the number of tokens circulating
in γ. We assume µγ > 0 ∀ γ.

Let Γ represent the set of elementary circuits of a cyclic event graph
and ĉ = maxγ∈Γ cγ . Any γ ∈ Γ such that cγ = ĉ is a critical circuit.
These circuits are the ones that actually bind the speed of the system.
Under an operational mode where transitions fire as soon as they are
enabled, the firing rate of each transition in steady state is given by
% = 1/ĉ. As a consequence, if we want to increase the speed (i.e., the
firing rate of the system), we have to add one (or several) token(s) to
the critical circuits. Adding tokens in other circuits would be worthless.

2. PROBLEM STATEMENT
Let us consider a timed cyclic event graph with n places, m transitions

and ` elementary circuits. We associate to each elementary circuit γ an
n dimensional vector aγ of zeros and ones. In particular, aγ(i) = 1 if
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pi ∈ γ, aγ(i) = 0 otherwise. Thus aT
γ M is the number of tokens in γ

and µγ/(aT
γ M) is the cycle time of circuit γ.

We assume that tokens may only be allocated within a given subset of
places Pa ⊆ P , while the number of tokens in all places in Pr = P rPa is
given. We denote as q the cardinality of Pa, and r = n−q the cardinality
of Pr. For simplicity of presentation, we assume that place labeling is
such that Pa = {pi | i = 1, · · · , q} and Pn = {pi | i = q + 1, · · · , n}, thus
a marking can be written as M = [MT

a MT
r ]T , where Ma ∈ Nq and

M r ∈ Nr. Finally, let Γa be the set of elementary circuits that contain
at least a place in Pa, i.e., Γa = {γ ∈ Γ | γ ∩ Pa 6= ∅}.

In this paper we shall deal with the problem of allocating a given
number of tokens in Pa so as to maximize the firing rate of the net.
We also assume that the allocation must satisfy a given set of s′ linear
inequalities each one of the form gT Ma ≤ k. Any admissible allocation
thus must satisfy: {

(a) M r = M r,0

(b) GMa ≤ k
(1)

where M r,0 ∈ Nr, G ∈ Zs′×q, and k ∈ Zs′ are given. Constraints (a)
express the fact that the marking of all places in Pr is assigned. Each
equation in (b) may either express an upper/lower bound on the number
of tokens in a place p ∈ Pa, or an upper/lower bound on the number
of tokens in a circuit γ ∈ Γa or in a generic subset of places in Pa.
Generalizing, our optimization problem can be formally written as a
nonlinear integer programming problem of the form:





max J = min
γ∈Γ

aγM

µγ

s.t. AM ≤ b

(2)

where M ∈ Nn is the unknown variable, and A ∈ Zs×n, and b ∈ Zs are
given.

3. MAIN RESULTS
A special case of problem (2) has already been studied by the authors

in (Giua et al., 2000). In particular, we considered a special class of
allocation problems where one has to allocate a given number K of
tokens (i.e., we had just one constraint of the form 1.b) and the set of
places Pa was given so as to satisfy the following assumption.

[A1 ] If γ and γ′ are two elementary circuits sharing a place in Pa, then
they must have the same set of places in Pa, i.e.,(∃p ∈ Pa) p ∈
γ ∩ γ′ =⇒ γ ∩ Pa = γ′ ∩ Pa.
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In (Giua et al., 2000) we proved that if assumption [A1] is satisfied
then the optimal allocation can be efficiently computed with an incre-
mental procedure that adds one token at a time. In this paper we want
to consider more general allocation problems that may not satisfy as-
sumption [A1]. More precisely, we propose two different solutions to the
allocation problem (2) whose validity is not related to the chosen set of
places Pa.

3.1. FIRST PROCEDURE
The first procedure we propose involves the solution of a mixed ILPP

and is based on the knowledge of the elementary cycles. As it is well
known, such an assumption is often unrealistic, thus making it not always
useful in real applications.

The mixed ILPP formulation originates from the following folk theo-
rem 1 that needs not to be proven.

Theorem 1. Consider the two programming problems:
{

maxJI = min
i=1,···,p

{cT
i x}

s.t. Ax ≤ b
(3)

with integer variables x ∈ NN and




maxJII = β
s.t. cT

i y − β ≥ 0, i = 1, · · · , p,
Ay ≤ b

(4)

with integer variables y ∈ NN and real variable β ∈ R+.
Here ci ∈ RN

0 , i = 1, · · · , p, A ∈ Rs×N , and b ∈ Rs are given.
Then x∗ is an optimal solution of (3) with performance index J∗I iff

(x∗, J∗I ) is an optimal solution of (4).

Proposition 2. The optimal solution (M∗, β∗) of the mixed ILPP:




maxβ
s.t. aT

γ M/µγ − β ≥ 0, γ ∈ Γ,
AM ≤ b

(5)

with variables M ∈ Nn, β ∈ R+, provides the optimal solution M∗

and the corresponding optimal performance index value J∗ = β∗ of the
nonlinear integer programming problem (2). ¥

Using this new formulation, we have to solve a simpler mixed ILPP
with n + 1 variables and ` + s constraints.

Obviously, the main drawback of the above procedure lies in the re-
quirement of computing all elementary cycles.
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3.2. SECOND PROCEDURE
In this subsection we propose another solution to our allocation prob-

lem (2) that still involves the solution of a mixed ILPP, but presents
two main advantages with respect to the previous one: (a) it does not
require the computation of the elementary circuits, and (b) the number
of constraints in the LPP is equal to n + s.

It is inspired by a result firstly proposed by Magott in (Margott,
1984), where he dealt with the problem of determining the cycle time of
an event–graph, given the initial marking M0:





max
aT

γ Pre θ

aT
γ M0

s.t. aT
γ C = 0

aγ ≥ 0

(6)

where PreT aγ is the characteristic vector of the set of transitions that
belong to cycle γ, and θ ∈ Nm is the vector containing all firing times
of timed transitions (recall that m = |T|).

The two constraints in problem (6) force aγ to be a P–invariant, i.e.,
aγ represents (but for a scalar factor) the characteristic vector of the
places along a cycle.

Magott (Margott, 1984) also observed that, the same optimal solution
of (6) can also be obtained by means of the following LPP:





maxaT
γ Preθ

s.t. aT
γ C = 0

aT
γ M0 = 1

aγ ≥ 0.

(7)

whose dual problem is:
{

min v
s.t. Cz + vM0 ≥ Pre θ

(8)

where the optimal value of the variable v ∈ R+ is the cycle time and the
unconstrained vector z ∈ Rm has no physical meaning.

Now, let us consider problem (8). This problem can be easily con-
verted into the problem of determining the optimal firing rate of the net,
given the initial marking. For this purpose we only need to replace v
with its inverse β = 1/v, thus obtaining:

{
maxβ
s.t. C(βz) + M0 ≥ Pre θ β

(9)
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where β ∈ R+, and βz ∈ Rm, i.e.,

{
maxβ
s.t. Cy − Pre θ β ≥ −M0

(10)

where y ∈ Rm and β ∈ R+ are the new variables.
Finally, if we assume, as in problem (2), that M0 is not known but

must satisfy a set of given inequalities, we have the following result.

Proposition 3. The optimal solution (M∗, β∗,y∗) of the mixed ILPP:





maxβ
s.t. Cy − Pre θ β + M ≥ 0

AM ≤ b
(11)

with variables M ∈ Nn, β ∈ R+, and y ∈ Rm, provides the optimal
solution M∗ and the corresponding optimal performance index value
J∗ = β∗ of the nonlinear integer programming problem (2). ¥

In this way our optimization problem has been reduced to the solution
of a mixed ILPP with n+m+1 variables and n+s constraints. Obviously,
in the most general cases, i.e., when the number of elementary cycles
is larger than the number of places, the approach herein proposed is
computationally more convenient with respect to the other one discussed
in the previous subsection.

3.3. A JOB–SHOP EXAMPLE
In this subsection we deal with an example taken from the literature

(Proth et al. 1997). We consider a job–shop composed of four machines
M1, M2, M3 and M4, which can manufacture three products denoted
by R1, R2 and R3. The production mix is 25%, 25%, 50% for R1, R2

and R3, respectively. The production processes of the products and the
corresponding cycles (the cycle for R3 is repeated) are:

R1 : (M1,M2,M3,M4) {p1, t1, p9, t2, p10, t3, p11, t4}
R2 : (M1,M4,M3) {p2, t5, p12, t6, p13, t7}
R3 : (M1,M2,M4) {p3, t8, p14, t9, p15, t10}

{p4, t11, p16, t12, p17, t13}.

Here the number of tokens in each product cycle represents the number
of available pallets for that product.
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Figure 1 Event graph model of the job–shop.

The fixed sequencing of the part types on the machines and the cor-
responding cycles are:

M1 : (R1,R2,R3,R3) {p8, t1, p18, t5, p19, t8, p20, t11}
M2 : (R1,R3,R3) {p5, t2, p21, t9, p22, t12}
M3 : (R1,R2) {p6, t3, p23, t7}
M4 : (R1,R2,R3,R3) {p7, t4, p24, t6, p25, t10, p26, t13}.

Here the number of tokens in each machine cycle represents the number
of available servers for that machine.

The event graph representative of this system is sketched in figure 1. It
is a strongly connected event graph with n = |P| = 26 and m = |T | = 13.
We have also computed that there are 76 elementary cycles, thus the
second proposed procedure better fits the solution of allocation problems
of the form (2).

We assume that Pa = {p1, p2, p3, p4, p5, p6, p7} where the number of
tokens in p1, p2, p3 and p4 represent the number of free pallets that
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must be optimally allocated; while the number of tokens in p5, p6 and
p7 represent the number of servers that has to be optimally distributed
between machines M2, M3 and M4.

Pr = P r Pa = {p8, · · · , p26} and we assume that: (a) the marking of
place p8 is 5 (i.e., M1 is the only machine that has a fixed number of
servers, that is equal to 5); (b) the marking of all other places in Pr is
zero ( i.e., no part is initially being worked in the job-shop).

Holding times of transitions are reported in figure 1, as well as the
marking of all places in Pr.

Now, let us consider the following optimization problem:




max J = min
γ∈Γ

aγM

µγ

s.t. M1 + M2 + M3 + M4 ≤ k1

M5 + M6 + M7 ≤ k2

M8 = 5
Mi = 0, i = 9, · · · , 26,

and let k1 = 100 and k2 = 20, i.e., we want to determine the optimal
token allocation when the number of pallets is equal to 100, machine
M1 has 5 servers and the global number of servers available to machines
M2, M3 and M4 is equal to 20.

Now, problems of the form (5) and (11) can be immediately formu-
lated. In accordance with the previous notation we have r = 19 and
s′ = 2. Thus, in the first case the number of variables is equal to 27 and
the number of constraints is equal to 76 + 19 + 2 = 97. In the second
case, there are 13+26+1 = 40 variables and 26+19+2 = 47 constraints.

As expected, both procedures determine the same optimal firing rate
J∗ = 1, while the optimal allocations are different. The optimal token
allocation computed using the first procedure is M1 = 6, M2 = M3 =
M4 = 10, M5 = 5, M6 = 9, M7 = 6, while the optimal token allo-
cation computed using the second procedure is M1 = 6, M2 = M4 =
10, M3 = 74, M5 = 5, M6 = 9, M7 = 6.

In this case, the second procedure provides a solution that allocates
to machine M3 a number of pallets significantly greater than that com-
puted with the first procedure. This is not a drawback of the second
approach: it is due to the fact that when more than one optimal solu-
tion exists, the ILPP solver just stops when the first one is found.

4. CONCLUSIONS
In this paper we have dealt with deterministic timed cyclic event–

graphs. We have discussed the problem of allocating a given number
of tokens in a CTEG so as to maximize the firing rate of the net. We
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assumed that tokens can only be allocated within a given subset of places
Pa, while the marking of all other places is assigned. Linear constraints
on the marking of all places in Pa are also taken into account.

The novel contribution of this paper consists in the formulation of
two mixed integer LPPs. The first one needs the knowledge of the el-
ementary circuits, thus making it not useful for all classes of CTGEs.
The second one overcome this difficulty and reveals to be efficient for
analyzing complex manufacturing systems like job–shop systems.
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