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Abstract� In this paper we deal with the problem of designing a controller for a three�dimensional
overhead crane� We consider a linear model of the crane where the length of the suspending rope is a
time�varying parameter� The set of models given by frozen values of the rope length can be reduced to a
single time�invariant reference model using suitable time scalings� A controller for the reference model can
be designed by assigning the desired closed loop eigenvalues for the system� The time scaling relations can
be used to derive a control law for the time�varying system that implements an implicit gain�scheduling�

�� Introduction

The swinging of an object suspended from an overhead crane is an undesirable result of the crane movement
and serious damage could occur during the load transport� Therefore� a satisfactory control scheme is
desirable in a crane design to suppress the load swing�

Several control methodologies have been proposed in the literature ��� �� 	� 
�� However� in quite all
these cases planar cranes have been considered� i�e�� it has been assumed that the movement of the load
lies within a plane� On the contrary� in this paper we deal with a three�dimensional overhead crane and we
propose the design of an observer�controller that aims to minimize the load swinging� while moving it to
the desired position as fast as possible�

We �rst develop a non�linear model of the overhead crane which takes into account simultaneous travel
and transverse motions� Then� under appropriate simplifying assumptions namely� small angles� constant
rope velocity� force applied by the rope equal to the weight of the load and no external force acting on the
load� a linear time�varying model of the crane is obtained� where the time�varying parameter is the length
of the rope that sustains the load� The linearized model has order eight and its dynamic can be described
as two decoupled fourth�order systems�

The controller design is realized by �rst considering the set of frozen models given by di�erent constant
values of the rope length� Using two suitable time scalings� one for each sub�system� all these models can
be reduced to a single time�invariant reference model that does not depend on the value of the rope length�
Then� the pole placement technique enables us to design a satisfactory controller for the reference model�
Finally� by inverting the time�scalings� these constant feedback gains give the corresponding time�varying
gains that implement an implicit gain�scheduling�

In this paper we introduce a further improvement wrt previous works ��� 
� where a gain�scheduling
approach has been adopted� a double gain�scheduling has been introduced� It consists of a variation of the
desired eigenvalues of the reference stationary system depending on the load mass and on the lowering�lifting
movement�

An important aspect in the approach we propose has to be mentioned� the state�feedback gains are
expressed in a parametrized form� as a symbolic function of the desired closed�loop dynamics i�e�� the
eigenvalues of the reference closed�loop system�� rope length� rope velocity� trolley and load mass� As these
parameters vary� the gains need not be recomputed by reapplying the whole design procedure but can simply
be obtained by function evaluation�

A �nal remarks� concerning stability� needs to be done� As it is well known� gain�scheduling does not
guarantee the stability of the closed�loop time�varying system� However� there exist appropriate method�
ologies ���� based on a Lyapunov�like theorem ���� that enables us to �nd upper bounds on the rate of change
of the varying parameter to ensure stability� In ��� it has been shown that in the applicative case examined�
this approach gives su�ciently large bounds on the rope velocity to ensure stability of the time�varying
system in all nominal conditions�

�� Linear time�varying model and time scaling

A three�dimensional overhead crane is constituted by a bridge and a trolley� the trolley moves on the bridge
rails and contains the motor and all the other mechanisms necessary for the movement of the load� the bridge
moves in the orthogonal direction thanks to appropriate wheels located on the end truck� In this paper
we will consider a three�dimensional overhead crane� whose model is sketched in �gure �� The following
notation is used� mT � mB are the mass of the trolley and that of the bridge� respectively� mC � mT �mB is
total mass of the crane� mL is the mass of the load� L is the length of the suspending rope� xT � zT denote the
displacement of the trolley with respect to wrt� a �xed coordinate system� xL� zL denote the displacement of
the load wrt a �xed coordinate system� xC � mTxT �mLxL��mT �mL�� zC � mCzT �mLzL��mC�mL�
denote the displacement of the center of gravity of the overall system wrt a �xed coordinate system� � is
the angle between the suspending rope and the vertical� � is the angle between the oscillation plane of the
load and the XY plane� taken as positive when clockwise� xV � xT � xL � Lsin� cos�� zV � zT � zL �
L cos� sin� denote the displacement of the load wrt the vertical� fx and fz are the control forces applied to
the trolley and to the bridge� respectively� g is the gravitation constant�

If the load is heavy enough� it is possible to consider the suspending rope as a rigid rod� Under appropriate
simplifying assumptions namely� small angles� force applied by the rope equal to the weight of the load and
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Figure �� Model of the �D crane�

no disturbance acting on the system� we obtain ��� the linearized model described by
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Choosing the following state variables�
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we get from �� the following state variable equation�
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The subscript t has been introduced to recall that the variables are functions of time� The model given by
	� is time�varying because both �x and �z are functions of Lt�� If we consider a given constant value of



both �x and �z� i�e�� if we consider the system 	� for a frozen value of L� we can consider the following
transformations�

�x � �xt� �z � �zt� ��

These transformations de�ne a time scaling that enable us to rewrite �� as�

xt � Nx� 
�

where
N � diag f �� �� �x� �x� �� �� �z� �z g

x� � � x��x� x��x� x��x� x��x� x��z� x��z� x��z� x��z� �
T
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Moreover� we may also write
�xt � �N �x� ��

where �x� is the derivative of x� wrt �x for the �rst four components and wrt �z for the remaining ones� It
has been assumed

� � diag f �x� �x� �x� �x� �z� �z� �z� �z g� ��

Using 
� and ��� it is possible to rewrite the equation 	� as
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The representation given by ��� is time�invariant and does not depend on the frozen value of L in 	��

�� Controller design

Let us consider a linear and time�invariant system of the form ���� If the couple A� �B� � is controllable
���� then a regulator can be designed by imposing the closed loop poles to system ���� �nding a control law
of the form

u� � �K�x� �	�

where K� is a constant matrix and does not depend on the value of L� The above equation can be
transformed� using 
� and ���� into a corresponding law for the frozen system 	� that gives�

ut � �Ktxt� Kt � NuK�N
��� ���

The feedback laws �	� and ��� lead to closed loop systems whose characteristic matrices are�

�A� � A� �B�K� � �At � At �BtKt� �
�

Note that also the above matrices can be rewritten as
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�
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For a stationary system it is easy to �nd a feedback control law by imposing the closed loop eigenvalues
following the procedure presented in ���� Let us denote as s� �ax��s

� �ax��s
� �ax��s�ax�	 and s��az��s

� �
az��s

��az��s�az�	 the open loop characteristic polynomials relative to matrices A��x and A��z� respectively�
Then� let s� � px��s

� � px��s
� � px��s� px�	 and s� � pz��s

� � pz��s
� � pz��s� pz�	 be the desired closed loop



characteristic polynomials relative to matrices �A��x and �A��z� respectively� Therefore� the time�invariant
control law is ����
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and B��x and B��z are the two non�null sub�matrices of B� � i�e��
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h
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i
�

Note that� P c is an equivalence transformation that brings the initial system into a controllable canonical
form ����

Using equation ���� we get the time�varying control law�
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� An applicative example

In this section we show how the above procedure can be applied to a real overhead crane� We consider a
model produced by Munck Cranes Inc�� Ontario�Canada whose load capacity varies from � to �� ton� In
particular� in this paper we consider an overhead crane whose trolley mass is mT � 	��� Kg and whose
bridge mass is mB � 	��� Kg� We assume the length of the suspending rope to be� Lt� � �Lmin� Lmax��
where Lmin � � m and Lmax � �� m� To deduce the controller and observer gain matrices we assumed
that the rope length has a constant derivative j �Lt�j � ��� m�s� Clearly this is not true during a real
movement� Therefore during numerical simulations� we have removed this assumption and we have imposed
an acceleration of ���� m�s� at the beginning and at the end of the hoisting and lowering movement� while
in the central part of the movement the velocity is constant and equal to ���� m�s�

During the simulations� we have also removed the assumption of linearity thus we used a nonlinear model
of the crane derived in ���� Numerical simulations have been carried out with the SIMULINK toolbox of
MATLAB�

An important remarks needs to be done� The physical realization of such a gain�scheduling controller
requires the knowledge of all state variables centre of mass position and velocity� load displacement with
respect to wrt� the vertical and its rate of change�� of the rope length and of the load weight� During
numerical simulations we assume that only the trolley position and the rope length can be measured by
appropriate sensors as discussed by several authors ��� and we also design a time�varying observer via gain�
scheduling and pole�placement to provide an estimate of the unknown state vector� The design procedure
adopted is the same as that already presented for the observer� with the only di�erence that in this case�
desired poles are assigned to the closed�loop stationary error system that is de�ned by means of the same
time�scaling relations used for the controller design� Details are not reported here for brevity s requirements�
An interested read can look at ��� for a precise description of the problem�

Note that in previous works the authors used the gain�scheduling technique to derive a satisfactory
control law for a given planar crane ��� 
�� In those works� even in the second one where also an observer has
been designed� a single set of eigenvalues for the controller and a single one for the observer has been used�
In this paper� we make a di�erent choice motivated by the greater complexity of the system at hand� In
particular� we divided the whole range of possible values of the load mass in three di�erent intervals and we
further distinguished among lowering and lifting movement� Then� we associated to each range a di�erent
set of eigenvalues for the reference stationary system and the error system� In this way we introduced
a double gain�scheduling� thus producing a signi�cant improvement in the performance of the controlled
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Figure �� The results of numerical simulation�

system� Note that� from an applicative point of view� this does not introduce any amount in the cost of
realization of the system� being the load mass assumed known ��� during each operation� These values are
not reported here for brevity s sake� but are available in ����

Now� let us present the results of a numerical simulation� We considered a load mass equal to the
maximum load capacity� i�e�� equal to �� ton� The simulation was performed for a lifting movement from
Lo � �� m to Lf � � m� The initial state of the crane was xV �� � zV �� � ��� m� xC�� � zC�� � �� m�
�xV �� � �xC�� � �zV �� � �zC�� � � m�s� while the initial state of the observer was !xV �� � � m� !xC�� �

�	�� m� !zV �� � � m� !zC�� � ���� m� !�xV �� � !�xC�� � !�zV �� � !�zC�� � � m�s�
In �gure � the results of this simulation are reported� Figure a� shows the displacement of the load

wrt to a �xed coordinate system� b� shows the displacement of the load wrt the vertical and enables us to
conclude that quite no oscillation occurs during the load movement� in c� the curves representative of the
control forces are shown�

�� Conclusions

In this paper we presented a general methodology for controlling three�dimensional overhead cranes� This
work is an extension of previous ones where the authors limit to consider planar cranes�

Time scaling relations have been used to reduce the original time�varying system to a stationary one�
The controller design for the reference system has been carried out via pole�placement� Then� the time�
scalings inversion enabled us to derive in a parametric form the time�varying gains for the controller� Note
that in this paper we implemented a double gain�scheduling� being the eigenvalues of the closed�loop system
dependent on the load mass and on the lowering�lifting movement�
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