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Abstract. In this paper we deal with a hybrid formalism based on Petri nets. A restricted model,
called Unitary Rate Hybrid Petri Net, is defined. This model can be seen as the Petri net counterpart of
a Timed Automaton. We demonstrate that the reachability problem for a hybrid net in this class can be
reduced to the reachability problem of a corresponding discrete Petri net, and thus it is decidable.

1. Introduction
The control of hybrid systems, i.e., systems with both time—driven and event—driven dynamics, is a domain
of increasing importance and several hybrid models have been presented in the literature.

Petri nets (PNs) [4] have originally been introduced to describe and analyze discrete event systems.
Recently, much effort has been devoted to apply these models to hybrid systems as well. Among the many
different hybrid net formalisms that have been proposed, we consider here a basic model that was originally
presented in [2] and that was inspired from the approach of David and Alla [3]. This model, that will be
called in the rest of this paper Hybrid Petri Net (HPN), consists of continuous places holding fluid, discrete
places containing a non—negative integer number of tokens, and transitions, either discrete or continuous.
Note that, unlike [2], we are assuming here that no timing structure is associated to the firing of discrete

transitions.
In this paper we define a particular class of HPS called unitary—rate HPN (URHPN), that can be seen as

the HPN counterpart of a Timed Automaton (TA) [1]. It consists of a HPN where the continuous dynamics
is such that the marking of each continuous place constantly increases with a wunitary slope. Thus the
marking of each continuous place represents the value of a timer. When comparing URHPNs and TA we
observe that: TA can model “reset” of the continuous state, while URHPNs can model “jumps of constant
magnitude” of the continuous state (and, as in the general case, may also have an infinite discrete state
space) [6].

We prove that the reachability problem is decidable for a URHPN and can be reduced to the reachability
problem of a discrete PN with a suitable initial marking. This result may not be surprising, because the
reachability problem is also known to be decidable for TA [1].

2. Hybrid Petri Nets

The Petri net formalism used in this paper can be seen as the “untimed” version of the model presented in
[2]. For a more comprehensive introduction to place/transition Petri nets see [4].

A Hybrid Petri Net (HPN) is a structure N = (P, T, Pre, Post,C).

The set of places P = P; U P, is partitioned into a set of discrete places P; (represented as circles) and
a set of continuous places P. (represented as double circles). The cardinality of P, P; and P. is denoted n,
ng and n..

! The sét of transitions T = TyUT. is partitioned into a set of discrete transitions Ty and a set of continuous
transitions 7. (represented as double boxes). The cardinality of T', T; and T is denoted ¢, ¢4 and g¢..

The pre- and post-incidence functions that specify the arcs are (here Rf = Rt U{0}): Pre: PyxT — N,
Post: P. x T — RY .

We require (well-formed nets) that for all ¢ € T, and for all p € P;, Pre(p,t) = Post(p,t).

The function C : T, — ]R(J{ x RE specifies the firing speeds associated to continuous transitions (here
Rf, = R U{oc}). For any continuous transition t; € T, we let C(t;) = (V},V;), with V] < V;. Here V/
represents the minimum firing speed (mfs) and V; represents the maximum firing speed (MFS).

We denote the preset (postset) of transition ¢ as *t (¢*) and its restriction to continuous or discrete places
as (Dt = *tN Py or (9t = *t N P.. Similar notation may be used for presets and postsets of places. The
incidence matrix of the net is defined as C(p,t) = Post(p,t) — Pre(p,t). The restriction of C to Px and
Ty (X,Y € {c,d}) is denoted Cxy. Note that by the well-formedness hypothesis C4. = 0.

A markingm : P; > N, P. — ]R(T is a function that assigns to each discrete place a non-negative number
of tokens, represented by black dots and assigns to each continuous place a fluid volume; m,, denotes the
marking of place p. The value of a marking at time 7 is denoted m(7). The restriction of m to P; and
P, are denoted with m? and m¢, respectively. An HPN system (N,m(7)) is an HPN N with an initial
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Figure 1: (a) A URHPN; (b) the corresponding discretized PN.

marking m(7p).
The enabling of a discrete transition depends on the marking of all its input places, both discrete and

continuous. ) o ) )
Definition 1. Let (N,m) be an HPN system. A discrete transition t is enabled at m if for all p; € °t,
|

m; > Pre(p;,t).

A continuous transition is enabled only by the marking of its input discrete places. The marking of its
input continuous places, however, is used to distinguish between strongly and weakly enabling.
Definition 2. Let (N, m) be an HPN system. A continuous transition t is enabled at m if for all p; € (Dt,
m; > Pre(p;,t).

We say that an enabled transition ¢ € T, is: strongly enabled at m if for all places p; € (D¢, m; > 0;
weakly enabled at m if for some p; € (¢, m; = 0.

In the following we describe the hybrid dynamics of an HPN. We first consider the time—driven behavior
associated to the firing of continuous transitions, and then the event—driven behavior associated to the firing

of discrete transitions. . . . .
The instantaneous firing speed (IFS) at time 7 of a transition ¢; € T¢ is denoted v;(7). We can write

the equation which governs the evolution in time of the marking of a place p; € P, as

mi(r) =Y Clpist;)v;(r) (1)
t; €T,
where v(7) = [v1(7),...,v,,(7)]T is the IFS vector at time 7. Indeed Equation 1 holds assuming that at
time 7 no discrete transition is fired and that all speeds v;(r) are continuous in 7.
The enabling state of a continuous transition t; defines its admissible IFS v;. If ¢; is not enabled then
v; = 0. If ¢; is strongly enabled, then it may fire with any firing speed v; € [Vj’, Vj]. If t; is weakly enabled,
then it may fire with any firing speed v; € [V}, V], where V; < V; since ¢; cannot remove more fluid from
any empty input continuous place p than the quantity entered in p by other transitions.

We now characterize the set of all admissible IFS vectors.
Definition 3. (admissible IFS vectors)

Let (N,m) be an HPN system. Let Te(m) C T, (Txr(m) C T.) be the subset of continuous transitions
enabled (not enabled) at m, and Ps = {p; € P. | m; = 0} be the subset of empty continuous places. Any
admissible IFS vector v at m is a feasible solution of the following linear set:

(G,) V} —vj > 0 \V/tj € Tg(m)
(b) vj — V}-’ >0 \V/tj € Tg(m)
(©) v;=0 Vi, € Ty (m) (2)
(d) e Coitj)v; >0 Vp € Pe(m).

The set of all feasible solutions is denoted S(N, m). [ ]
Constraints of the form (2.a), (2.b), and (2.c) follow from the firing rules of continuous transitions.
Constraints of the form (2.d) follow from (1), because if a continuous place is empty then its fluid content

cannot decrease. ) ) ) )
Note that the set S is a function of the marking of the net. Thus as m changes it may vary as well.

In particular it changes at the occurrence of the following macro—events: (a) a discrete transition fires,
thus changing the discrete marking and enabling/disabling a continuous transition; (b) a continuous place
becomes empty, thus changing the enabling state of a continuous transition from strong to weak.

Let 7 and 7141 be the occurrence times of two consecutive macro—events of this kind; we assume that
within the interval of time [7, Tx+1) the IFS vector is constant and we denote it v(73). Then the continuous
behavior of an HPN for 7 € [ry, Txy1) is described by: m®(7) = m®(13) +C v (1) (7 —11), m4(1) = m9 (7).

The firing of a discrete transition ¢; at m(r) yields the marking: m¢(r) = m¢(r~) + C 4o (1), m¥(r) =
m?(77) + Cqq0(7), where o(7) is the firing count vector associated to the firing of transition ¢;.
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Figure 2: The reachability graph of the URHPN in figure 1

2.1. Firing sequence and reachability

Now, we provide some definitions that will be useful in the following.

Definition 4. (Event Step) Let us consider a HPN system (N, m). If t € Ty is enabled at m, t may fire.

The firing of t determines a new marking m = m + Post(-,t) — Pre(-,t) and we write m[t)m. [ ]
We can use a similar notation for the marking variation due to the firing of continuous transitions.

Definition 5. (Time Step) Let us consider a HPN system (N,m). Ift € T. is enabled at m for a time

interval of length T € RY. The firing of t during that time interval determines a new marking 1m.: m? = m,

m’ = [ Ceov(r)dr + m® > 0, where v € S(N,m) and we write m[7)mh. [ ]
Definition 6. Let (N,m) be a HPN system. A firing sequence o = ay,---,a; € (Ty UR")* is enabled
from a marking m if m[oq)my[az)mes - - [ag)m holds. To denote that the firing of o from m determines
the marking ™ we write m[o)m. [ ]

3. Unitary-rate hybrid Petri nets

In this section we define a special class of hybrid Petri nets called unitary—rate HPNs that can be seen as
the net counterpart of timed automata.

Definition 7. A unitary—rate hybrid Petri net (URHPN) is a HPN where: T, = {t.}, *t. = 0, C(t.) =
(1,1), Vp € P. : Post(p,t.) =1, Pre, Post € N"*1. [ |

Thus a unitary—-rate hybrid Petri net has a single continuous transition that is always enabled — because
it has no input places — and whose firing speed is always unitary. The marking of all continuous places
increases with unitary rate during a time step. Discontinuous variations of continuous markings may only
follow the firing of discrete transitions. Furthermore, we assume that all arcs have integer weights. Such an
assumption has been introduced for simplicity. In fact, whenever Pre, Post € R"*? all the weights could be
multiplied by the least common multiple of the denominators of all the constants appearing in Pre, Post to
get a new hybrid net that is isomorphic with a new one where Pre, Post € N**7. Even if Pre, Post € R"*4
but each weight has the same irrational numbers as common factors, an isomorphism with a net where
Pre, Post € N**? can be determined.

The evolution of URHPNs can be related to that of timed HA. In fact, the constant rate variation of
continuous marking in URHPNs agrees with the set Inclusions containing the single element 1 € R” in
timed HA. However, all the differences outlined in the previous section still hold. In particular, in URHPNs
the firing of a discrete transition may only produce constant variations on the continuous marking. On the
other hand, URHPNs can assume an infinite number of discrete states.

Example 8. The HPN in figure 1.a is a URHPN. Its reachability graph is shown in figure 2 under the
assumption that mo = (0.8,0.5,1,0). It has been drawn in accordance with the following rule. The firing
of the continuous transition is represented only if it produces a variation on the enabling condition of the
net. Note however that the continuous transition is always enabled and always fires with a constant unitary
rope. Therefore, all the markings obtained from those in figure 2 with the addition of the same positive real
number to m,, and m,,, are reachable. ]

Now, we prove that the reachability problem for URHPNSs is decidable.

Let us first define an equivalence relation on (R )™.

Definition 9. A vectorx € (R )™ is time-consistent withy € (RS )™ if: b€ [0,1) : Vi=1,---,m, {y;) =
(z; + b) where (-) denotes the fractional part and we write € ~ y. The equivalence classes of this relation
are denoted [x]. [ ]



A

1Ay p E

0.3 (0:80.5) g o’
% 071 > s 4 5x 6 % 2 2 6 g m 10

1

Figure 3: (a) The equivalence class [(0,0.3)]; (b) the set of continuous markings for the URHPN in exam-
ple 12.

Example 10. Let = (0,0.3). In figure 3.a the set of vectors time-consistent with x are represented in
the plane (z1,z2) and lie on a family of parallel lines. All lines are equally spaced and are characterized by

a constant unitary slope. [ |
Lemma 11. Let (N, m) be a URHPN system. If m € R(N,m) then m° € [m°].

Proof. If mn € R(N,m), then there exists a firing sequence o = ay, as, - -, oy such that m[a;)my[as)ms
.-+ [ag)ym. Since all the arc weights are integers, the firing of a discrete transition produces no variation on
the fractional parts of a continuous marking. Thus, if m;_;[a;)m; and a; € Ty, then (m;_1) = (m;) and
m; € [mi_,].

On the contrary, the firing of the continuous transition produces a variation on the fractional parts of the
continuous marking. However, all these variations have the same magnitude. Thus, if a; = 7 € R*, then

m¢ = [ Ceov(r)dr +m¢_,. However, v(7) = 1 and C.. = 1 by hypothesis, hence m¢{ = m§_, +7 where 7
is a vector € R whose components are all equal to 7. Now, let b = (7), then Vp € P, (m; ) = (mi_1,+Db).
Thus, m{ € [m§_,].

Finally, we can conclude that m° € [m¢] by the transitivity of equivalence relations. [l

Example 12. Let us consider the URHPN system (N,myg) in example 8 with initial marking mo =
(0.8,0.5,1,0). In figure 3.b the set of all continuous markings reachable from myg is represented. Obvi-
ously, this is a subset of [m§].

Lines have been partitioned in two different sets and distinguished as dash and continuous lines. Dash
lines belong to the set of continuous markings reachable when the discrete marking is equal to m? = (1,0),

while continuous lines belong to the set of continuous markings reachable in the case of m¢ = (0,1). The
discrete marking changes every times one of the discrete transition fires and discrete transitions can only
fire alternatively.

Let us examine all possible evolutions of the net when the initial marking is mg. During the first 0.2
time instants, no discrete transition is enabled and #. fires until the marking moving along line 1 reaches
point A corresponding to (1,0.7,1,0). Now ¢; become enabled. Thus from point A it may fire changing the
marking to point A‘. Note however that ¢; is not required to fire as soon as A is reached; it may fire from
any other point on line 1 greater than A thus reaching a corresponding point on line 2. For all markings
on line 2 smaller than B no discrete transition is enabled and only the continuous transition fires until B is
reached. Now ¢y become enabled. Thus from point B it may fire changing the marking to point B‘. Note
however that ¢, is not required to fire as soon as B is reached; it may fire from any other point on line 2
greater than B thus reaching a corresponding point on line 3. All markings on line 3 enable transition #;
that may fire thus reaching a corresponding point on line 4. Everything repeats periodically as shown in
figure 3.b. We also observe that the points A, A, B, etc. that characterize the net evolution correspond to
the markings in the reachability graph of figure 2.

|
Now, let us define a transformation on a hybrid Petri net system.
Definition 13. Given a HPN N = (P, T, Pre, Post,C). We define the "discretized PN associated to N7,
the P/T net |N| = (P',T', Pre', Post') with: P' = P, i.e., |[N| has as many places as N, but they are all
discrete; T' =T, i.e., | N| has as many transitions as N, but they are all discrete; Pre'(p,t) = | Pre(p,t)];
Post'(p,t) = |Post(p,t)|, where |-| denotes the integer part. We call |N| the discretized HPN associated
to N. ]
Example 14. In figure 1.b the discretized PN corresponding to the HPN in figure 1.a is shown. u

Now, we provide a necessary and sufficient condition for a marking m in a URHPN to be reachable.

Theorem 15. Let (N,mg) be a URHPN system. Then, m € R(N,myg) iff m® € [m§] and |m| €



R(|N|,m) where

M. = [mop) +1 if (mp) < (mop)
L mo,p otherwise

and | N| is the discretized net associated to N

Proof. First, let us observe that m € R(N, my) iff 3o such that mo[o)m. Since the continuous transition in
(N,my) is always enabled, this implies that 30’ = 0,07 such that mg[o’)m, where o, € R{ and or € T},
i.e., if m is reachable, then it may also be reached by a “normalized sequence” where a single time step
occurs first, and all the event steps occur only at the end

The ﬁring sequence o, can be written as o, = oLo”, where o, = (0,), and ¢! = |o,]|. Therefore,
moo! ymblo"ym/[erym. Obviously, (mf) = (m') = (m}.

We now observe that the difference in the fractional part between mgy and m is due to the time step
o,, that has a length less than one and yields mg from mg. Obviously, Vp € P, if (m,) = (mg ,) > (mo )

then |mg | = [mop]. Otherwise, if (mp) = (mg ) < (mop), then [mg | = [mg | + 1. Thus the integer
part of my, is exactly the marking 7 defined in the theorem statement.

Finally we observe that because m( and m have the same fractional part, then m € R(N,mj) if and
only if [m| € R(|N|, [my]). In fact, let ¢ be the discrete transition of | N | corresponding to the continuous
transition ¢, of N. With the notation used above it is easy to understand that m{[o)or)m if and only if
|my |[o)for)|m| where ¢/ contains the transition ¢ an number of times equal to o7. Thus, |N| simulates
N firing t for each time step of length 1 occurring in N. (|

Example 16. Let us consider the URHPN system (N,mg) in example 8 with initial marking my =
(0.8,0.5,1,0). We want to determine if m = (5,0.7,1,0) € R(N my) by applying theorem 15.

Clearly m*¢ € [m§] because if we take b = 0.2, then Vp € P., (mp) = (mo,p + b). Then, if we consider
the discretized PN in figure 1.b we see that (5,0,1,0) € R(|N|,(1,0,1,0)) where, in accordance with the
notation of theorem 15, (1,0,1,0) = 7 and (5,0,1,0) = |m]. In fact, the firing sequence & = ,t1,%,ts is
such that m[g)|[m]. Therefore, we can conclude that even m € R(N,my). The same conclusion can be
reached by looking at figure 3. In fact, it is easy to observe that the firing sequence o = 0.2,¢1,1.3,¢5,0.7
is such that mg[o)m. [ ]

By virtue of the above theorem 15, the results on the reachability of discrete Petri nets can be extended
to URHPNSs, thus proving the validity of the following corollary.

Corollary 17. The reachability problem is decidable for URHPNs.

Proof. Follows from theorem 15 and from the fact that the reachability problem is decidable for discrete
PN [5].

O
4. Conclusions
In this paper we have defined a special class of Hybrid Petri Nets, called Unitary Rate Hybrid Petri Nets,
that can be seen as the Petri net counterpart of a Timed Automaton. The reachability problem for a hybrid
net in this class has been reduced to the reachability problem of a corresponding discrete Petri net, and
thus it is decidable.

To study this class of nets, in one of the examples we have informally used the reachability graph analysis
that has been developed for discrete nets. It may be interesting to find out if a technique based on the
reachability /coverability graph may always be applied to this hybrid model and which properties can be
studied with it.

It is also worth defining and exploring new restricted classes of HPNs. These structures may extend the
classes of models for which important properties can be shown to be decidable and can be studied with
standard tools of discrete Petri nets.
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