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A b s t r a c t  

In this paper we deal with the problem of allocating 

at least one place not shared among the other circuits. 
Kanban systems belong to this class. 

Then, we provide necessary and sufficient conditions 
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a given number of tokens, so as to maximize the firing 
rate of a cyclic event graph with deterministic transi- 
tion firing delays. We propose a new incremental al- 
gorithm that is inspired by the algorithm formulated by 
Panayiotou and Cassandras for the case of kanban sys- 
tems. The algorithm can be applied to a special class 
of nets in which tokens are allocated to places that be- 
long to only one circuit: this class is powerful enough to 
model kanban systems. We provide necessary and suf- 
ficient conditions for the convergence to the optimum 
also in the case of multiple solutions. 

1 I n t r o d u c t i o n  

Cyclic timed event-graphs (CTEG) are a special 
class of timed ordinary Petri nets. They are often used 
for modeling and analyzing manufacturing systems as- 
suming a cyclic manufacturing of the parts, since it 
has been shown that  choice-free job-shop, kanban sys- 
tems, and assembly systems, can be modeled using 
event graphs. 

Marked graphs may be either stochastic or deter- 
ministic. The most important  results are in the deter- 
ministic cyclic production case. In fact, in this case it 
is possible to evaluate the steady state performance of 
the net in terms of its critical time. This means that  in 
steady state conditions, at any point of the net, a num- 
ber of tokens (equal to the inverse of the critical time), 
pass through that  point during each unit of period of 
time (on the average). Note that ,  such a performance 
evaluation can be done assuming that  all the elemen- 
tary circuits are known. Some simple algorithms have 
been described by Laftit  et al. in [4] to obtain all the 
elementary circuits of a cyclic event graph. 

In this paper we deal with the problem of allocating 
a given number of tokens to a CTEG, so as to maximize 
the firing rate of the net. We propose a new algorithm 
that  is inspired by the previous ones recently formu- 
lated by Panayiotou and Cassandras in [6] and denoted 
as Incremental Optimization (IO) algorithm and Gen- 
eralized Incremental Optimization (GIO) algorithm, in 
the case of unique and nmltiple solutions, respectively. 
In [6] the authors focused their attention on kanban 
systems and formulated efficient algorithms to allocate 
a fixed number of kanban to a number of stages so as 
to maximize the system throughput.  Moreover, in the 
case of uniqueness of the solution, they also provided 
a necessary and sufficient condition under which their 
optimization scheme yields an optimal allocation. 

In this paper we first extend their algorithms to 
cyclic event graphs whose structure satisfy the follow- 
ing restriction: in each elementary circuit there exists 
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for the convergence to the optimum also in the case 
of multiple solutions. In particular, the latter result 
requires an extension of the smoothness condition given 
by Panayiotou and Cassandras in [6]. 

We also provide a new algorithm, denoted as Two- 
index Incremental Optimization (TIO) Mgorithm, that  
results to be equivalent to the IO algorithm in the case 
of uniqueness of the solution, while it reveals to be com- 
putationally more efficient with respect to (wrt) the 
GIO algorithm in the case of multiple solutions. In 
fact, at each step, we provide a criterion to select only 
one solution among all the optimal ones. The main im- 
provements wrt the GIO algorithm have origin by the 
following considerations: (a) among all the solutions 
that  are optimal at a given step, only those charac- 
terized by the minimal number of critical circuits, will 
reveal to be optimal at the following step(s); (b) all the 
optimal solutions with the minimal number of critical 
circuits will converge to the same optimal one after a 
number of steps that  is equal to the number of critical 
circuits; (c) if a solution that  is optimal at a given step 
is characterized by n critical circuits, then its firing rate 
will only improve after n further steps. 

By taking into account the three items above, three 
main improvements have been introduced wrt the GIO 
algorithm: (a) we first define a new performance index 
J consisting of two terms with a lexicographic ordering. 
The first one is the firing rate, while the second one is 
the inverse of the number of critical circuits. Thus, at 
each step, J enables us to select, among the solutions 
characterized by the maximal firing rate, those whose 
number of critical circuits is the minimum; (b) at each 
step, we choose arbitrarily one among all those solu- 
tions that  are optimal wrt J ;  (c) if the solution that  
is optimal at a given step is characterized by n critical 
circuits, n tokens are allocated in a single iteration. In 
particular, they will be added in those circuits whose 
cycle time is equal to the critical time. In such a way 
we also reduce the number of iterations required to al- 
locate the total number of available resources. 

2 B a c k g r o u n d  

In this section we recall some important  formalism 
used in the following of the paper. In particular we 
provide some important  features on Petri  nets, cyclic 
event graphs and Kanban-based manufacturing sys- 
tems. For more details on these subjects we address 
to [2, 3, 4, 5, 6]. 
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2.1 Petr i  ne t s  and  cycl ic  event  g r a p h s  

A Place/Transition net ( P / T  net) is a s t ructure N = 
(P, T, Pre, Post),  where P is a set of places; T is a set 
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of transitions; Pre : P × T  ~ N and Post : P × T  ~ N 
are the pre-  and post- incidence functions tha t  specify 
the arcs. 

A marking is a vector M : P ~ N that  assigns to 
each place of a P i T  net a non-negat ive  integer number  
of tokens, represented by black dots. A P i T  system or 
net system iN, Mo) is a net N with an initial marking 
M0. 

A transition t is enabled at M if M > Pre( . ,  t) and 
may fire yielding the marking M' = M + Post( . ,  t) - 
Pre( . ,  t). 

A P / T  net is called ordinary when all of its arc 
weights are l 's .  

An event graph is an ordinary Petri  net such that  
each place p has exactly one input transition and ex- 
actly one output  transition. 

An event graph (like a Petri  net in generM) is said 
to be strongly connected if there exists a directed path  
from any node in P U T  to every other node. We also de- 
fine an elementary circuit in a strongly connected event 
graph as a directed pa th  tha t  goes from one node back 
to the same node, while any other node is not repeated. 
A strongly connected event graph is also called cyclic 
because each node belongs to a circuit. 

It  can be proved tha t  in a cyclic event graph the total  
number of tokens in any elementary circuit is invariant 
by transition firing [1]. 

A deterministic Timed P / T  net is a pair ( N , T ) ,  

where N = (P,T,  Pre, Post) is a s tandard P / T  net, 
+ and T : T ~ It~ , called release delay, assigns a non-  

negative fixed f i r i ng  duration to each transition. A 
transition with a release delay equal to 0 is said to be 
immediate.  

For deterministic t imed cyclic event graphs we can 
compute, for any elementary circuit 7i, the following 
ratio called the cycle time of the circuit: 

#i 
C i ~ - -  

X i  

where ~i denotes the sum of the firing times related to 
the transitions belonging to 7i, and xi the number  of 
tokens circulating in 7i. 

Let F represents the set of elementary circuits of a 
cyclic event graph and: 

= max ei. ~,EF 

Any 7i E F such tha t  ci = & is a critical circuit. These 
circuits are the ones tha t  actually hind the speed of the 
system. Under an operat ional  mode where transitions 
fire as soon as they are enabled, the firing rate of each 
transition in steady s tate  is given by: 

1 
6 = . 7 .  

C 

This result means that ,  if we observe what happens at 
any point of the event graph, we can see that  0 tokens 
pass through that  point during each unit period of t ime 
(on the average). As a consequence, if we want to in- 
crease the speed (i.e., the firing rate  of the system), 
we have to add one (or several) token(s) to the criti- 
cal circuit(s). Adding tokens in other circuits would be 
worthless. 

22
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Figure 1: A stage of a kanban system. 

A further impor tant  feature of cyclic event graphs 
concerns liveness: a cyclic event graph is guaranteed to 
be live if and only if every elementary circuit contains 
at least one token. 

2.2 K a n b a n - b a s e d  m a n u f a c t u r i n g  s y s t e m s  

Kanban systems have been used by many  researchers 
[2, 6, 8] to model various types of manufacturing pro- 
cesses. The  main idea behind the kanban method is 
the following. A production line is divided into several 
stages and at every stage there is a fixed number  of tick- 
ets called kanban. An arriving job receives a kanban at 
the entrance of the stage and maintains possession of it 
until it exits the stage. If an arriving job does not find 
an available kanban at the entrance, it is not allowed 
to enter that  stage until a kanban is freed; in this case, 
the job is forced to wait in the previous stage. 

As shown by Di Mascolo et al. in [2], an event 
graph can be used to model a kanban system. In fig- 
ure 1, we show how to model the i - t h  stage of such 
a system. Transition wi represents the operation per- 
formed at stage i, Pi contains as many tokens as free 
kanbans, qi.1 contains as many  tokens as parts  waiting 
to be manufactured,  and qi,2 contains as many  tokens 
as parts  ready for the next operation.  These parts  will 
be transferred to the next operat ion if some kanbans 
are available, i.e., if there are some tokens in Pi+l. 

Note that  for C T E G  models of kanban systems the 
following properties hold: Ca) the firing rate coincides 
with the throughput;  (b) to each stage is associated an 
elementary circuit 7i = {Pi, t i -1,  qi,1, wi, qi,2, ti, Pi}; 
(c) because each place Pi only belongs to circuit 7i, the 
number of elementary circuits is limited by the number 
of places. 

I n c r e m e n t a l  
r i t h m s  a n d  
c o n d i t i o n  

O p t i m i z a t i o n  A l g o -  
g e n e r a l i z e d  s m o o t h n e s s  

The problem we deal with in this paper  is tha t  of al- 
locating a given number  K '  of resources to Nc processes 
so as to maximize a given performance index J .  

We assume that  each process requires at least one 
resource to be live, thus only K = K '  - Nc resources 
are available to be allocated. (The relaxation of this 
assumption does not modify the results we present in 
this paper.) 

We represent an allocation by the No-dimensional 
vector 

x = [ x l  .-- xi . . .  xNo ]r,  (1) 

where xi denotes the number  of resources allocated to 
the i - t h  process. 

We will make use of the following definitions. First, 
ei = [0 , . . - ,  0, 1, 0 , . - . ,  0] is an No-dimensional  vector 
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with all its elements zero except the i - th  element which 
is equal to one. Second, 

A J i ( x )  = J ( x  + ei) - J ( x )  (2) 

Panayiotou and Cassandras in [6] also provide a 
straightforward extension of the IO algorithm in the 
case of multiple solutions, denoted as Generalized In- 
cremental Optimization (GIO) Algorithm. 
is the change in J (x )  due to the allocation of an ad- 
ditional resource to the i - th  process wrt allocation x. 
Finally, let 

{ } Ak = x : xi = k + N~, xi > l , k = 0 , 1 , . . .  
i ~ l  

(3) 
be the set of all possible allocations of k available re- 
sources to Nc processes. 

Using the above definitions, the optimization prob- 
lem is formally stated as: 

(P1) max J (x ) .  
X E.A,~ 

Let 
,A; : {x* [ J(x*)  : max J (x )} .  (4) 

X E A k  

be the set of solutions of (P1). 
Panayiotou and Cassandras [6] defined the following 

conditions on J(x ) .  

Definition 1 ([6], Smoothness Condition). The 
performance index J verifies the smoothness condition 
i f Y x *  e A~, x E Ak,  k = 1 , . . . , K ,  

max J(x* + ei) > max J ( x  + ei). (5) 
i----1,.. . ,N~ - -  i = l , . . . , N c  

C o r o l l a r y  2. The performance index J verifies the 
smoothness condition if Vk > O, and VX(o) E A~, 
there exists an infinite sequence of optimal allocations 
x ( 1 ) , ' " , x ( t )  where x(l) E A*k+l, Vl _> 1 and x(t) is ob- 
tained from x(t-1) by allocating one additional resource 
to just one process. 

Proof. Follows from the definition. [] 

The smoothness condition ensures that  any alloca- 
tion that  is optimal in .Ak will become an optimal al- 
location in Ak+l by allocating one additional resource 
to some process. 

Now, let us recall the Incremental Optimization (IO) 
Algorithm proposed by Panayiotou and Cassandras in 
[6]. 

A l g o r i t h m  3 ([6] IO A l g o r i t h m ) .  
Le t  Xo := [1 , . . . ,  1]; 
for  k = O , . . . , K - 1  do 

begin 
i~ := arg max~=l,.. . ,g~{AJi(xk)}; 
3gk+ 1 : =  X k "Jr e i ~  ; 

end. 

After K steps, xK is the optimal solution of (P1) 
under the assumptions stated by the following theorem 
proved in [6]. 

Theorem 4 ([6]). For any k = 0, 1 , . . . ,  if Wk com- 
puted in accordance to algorithm 3 is unique, then it 
is the optimal solution to problem (P1) iff the perfor- 
mance index J is smooth. 
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A l g o r i t h m  5 ([6] G I O  A l g o r i t h m ) .  
Let x0 := [1,.. . ,1]; 
let/~0 = {x0}; 
for  k = 0 , . . . , K - 1  do 

begin 
:= maxi=l,...,Nc, X~eU~ { ~ J i ( x k )  } ; 

Uk+l :---- {Xk + ei I A J i ( x k )  = ~ ,  x~ e llk, 
i = 1 , . . . , N o ,  );  

end. 

The extra  cost incurred by this extension involves 
storing additional information. 

Now, to state under which assumptions any alloca- 
tion in the set Uk computed by the GIO algorithm is 
an optimal solution to (P1), we introduce a variation in 
the definition of smoothness given by Panayiotou and 
Cassandras in [6]. 

Definition 6 (Generalized Smoothness  Cond.). 
The performance index J verifies the generalized 
smoothness condition if Vk _> O, there exists an allo- 
cation X(o) E .A~ and an infinite sequence of optimal 
allocations x(1) , . . . ,x(~)  where w(~) E A~+ l, Vl _> 1 and 
x(t) is obtained from x( l - l )  by allocating one additional 
resource to just one process. • 

The generalized smoothness condition ensures that  
among all allocations that  are optimal at a given step, 
there exists at least one that  originates an infinite se- 
quence of optimal allocations. Note that  if a perfor- 
mance index J satisfies the smoothness condition, then 
it also satisfies the generalized smoothness condition. 

We now prove that  the GIO algorithm provides op- 
timal solutions at each step if and only if J satisfies the 

eneralized smoothness condition. This was implied in 
] but not formally proved. 

Theorem 7. For any k = 0, 1 , . . . ,  each Xk E Uk com- 
puted in accordance to the GIO algorithm, is an optimal 
solution wrt J iff J satisfies the generalized smoothness 
condition. 

Proof. (if) We observe that  Xo = [1 .-- 1] T is the only 
optimal allocation in .A~. If J is generalized smooth, 
then x0 originates an infinite sequence of optimal allo- 
cations x(l) E A~, Vl > 1. Since x(l) E b/t, we have that  
Ut c_ 

(only if) If the generalized smoothness condition is 
violated, then Xo cannot originate an infinite sequence 
of optimal allocations. This means that  there exists a 
k such that  Uk is not contained in A~. [] 

4 F i r i n g  r a t e  o p t i m i z a t i o n  f o r  C T E G  

In this section, we want to apply to CTEG the results 
presented in the previous section. 

Let us consider a cyclic event graph with Nc elemen- 
tary circuits and let Pi be the set of places that  belong 
only to circuit %. Clearly, Pi N Pj = flVi ~ j .  We make 
the following assumption 

Assumption Pi ¢ 0, Vi = 1 , . . . , N o ,  
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Figure 2: The cyclic event graph in example 8. 

i.e., we assume that  in each elementary circuit there 
exists at least one place not shared among the other 
circuits. This assumption implies that  Nc < card (P),  
i.e., in the restricted class of nets we are considering, the 
number of elementary circuits cannot be greater than 
the number of places (in a general CTEG the number 
of circuits can be exponential in the number of places). 
Note that CTEG models of kanban system, as discussed 
in Section 2.2, satisfy this assumption. 

The allocation problem now becomes that of allo- 
cating K = K '  - Nc available tokens to Nc elementary 
circuits. We assume that  the optimization procedure 
may only allocate tokens to the places in Pi, thus all 
places belonging to more than one circuit are empty, 
i.e., 

N~ M(p)  = O, Vp  E P \ Ui=lPi. 

while the i - th  component xi of the allocation vector 
denotes the sum of the markings of all places belonging 
only to the i - th  circuit, i.e., 

= Z M(p) ,  (6) 
pE P~ 

We also define the No-dimensional vector 

~ = [ ~1 ' ' '  ~ i  " ' '  P'N¢ ]T 

whose i - th  entry represents the cycle time of the i - th  
circuit. 

In this section we consider a particular performance 
index J: the firing rate. To increase the firing rate of 
the system, we have to reduce the critical time, so we 
choose J ( x )  = 1/~(x) as the objective function, where 
5(x) is the critical t ime for the allocation x. 

We first present an example showing that  J is not 
smooth. On the contrary, we shall prove that  it satis- 
fies the generalized smoothness condition, thus ensuring 
that  the GIO algorithm provides the set of optimal so- 
lutions. The following example also enables us to make 
some important  considerations that  will be the basis 
for the formulation of a new and computationally more 
convenient optimization algorithm. 

E x a m p l e  8. Let us consider the cyclic event graph 
in Fig. 2. It contains three elementary circuits: 
71 : { p l , t l , P 4 , t 2 , P l } ,  72 = { p 2 , t l , P 4 , t 2 , P 2 } ,  73 : 
{P3, tl ,  P3 }. Furthermore, in accordance with the above 
notation: PI : {pl}, P2 : {p2}, P3 : {P3}. Now, to 
apply the GIO algorithm, we assume that  one token is 
initially allocated to each of circuits, i.e., Xo = [1 1 1] r .  

2 2
x,  m 2 1 1 

x ,(2) 1 2 1 

x/3) 1 1 2 

Table 1: The results of the first step of the IO algorithm. 

Then, we have to select the set Pi where to allocate an 
additional token, so as to maximize the performance 
index J.  We compare the values obtained by allocating 
the additional token in the three sets. The result of 
such a comparison can be summarized in Tab. 1. As it 
can be noted, all circuits are characterized by the same 
cycle time, thus the same J.  Therefore, we can con- 

clude that  all solutions x~ i) = x0 + e l ,  x~ 2) = x0 + e2 

and x~ 3) = Xo + e3 are optimal wrt J.  Nevertheless, 
we can observe that  

2 
maxi{J(x~ i) + e{)} : m ax i{ J (x [  2) + e~)} : 5 

1 
maxi{J(x~3) + e,)} = 5" 

Thus we can conclude that  x~ 1) and x~ 2) only generate 
optimal allocations at step 2. 

Note that  this follows from the fact that  the third 
allocation x~ 3) is characterized by two critical circuits, 
so the addition of a single token cannot modify the 
critical time. • 

This example shows that  if a given allocation is char- 
acterized by n critical circuits, it is necessary to add at 
least n tokens (one to each critical circuit) to improve 
the firing rate. This conclusion reveals the require- 
ment to distinguish among different allocations with 
the same firing rate but  different number of critical cir- 
cuits. Thus, we introduce a new performance index 
J = [J1 J2] T consisting of two terms. The first one, 
J1 is the firing rate, i.e., the performance index previ- 
ously considered, while the second one is a measure of 
the number of critical circuits, i.e., J2 = 1/tiff(x), where 
fi(x) denotes the number of critical circuits in the allo- 
cation x. Note that  we impose a lexicographic ordering 
on the performance index, i.e., J = J '  if J1 = J~ and 
J2 = J~, J < g '  if J1 < J~ or J1 = J~ and J2 < J~. 

E x a m p l e  9. Let us consider again the cyclic event 
graph in Fig. 2 and the allocations in Tab. 1 relative to 
the first step of the algorithm. The introduction of the 
new performance index enables us to immediately re- 
ject the allocation x~ 3), being J l (x~  ')) = Jl(X~ 2)) = 

J,(x~ 3)) = i/3 and J2(x~ 3)) = i/2 < J2(x~ i)) = 
J2(x~ 2)) = 1, thus J (x~  3)) < J (x~  1)) = J(x~2)).  

Therefore, the only optimal solutions wrt J are x~ 1) 
and x~ 2). • 

Now, we characterize the set of optimal allocations 
wrt J ,  showing that  the removal of one token from any 
circuit '7 makes "7 become a critical circuit. This result 
will be useful when proving the smoothness of J .  
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L e m m a  10. An allocation x* is optimal wrt J iff: 

1 
P£ > ~(x*) =_ V i = 1, . .  N~. (7) 

T h e o r e m  11. The performance index J satisfies the 
smoothness condition. 

Proof. Let x* be an optimal solution for Ak and let 

x; - 1 - J~ (x*) " 

Proof. (if) Let us assume that  the inequality (7) is ver- 
ified for an allocation x* E Ak and let x E Ak be a 
different allocation. 

We first prove that  J l ( x )  cannot be greater than 
Jl(x*).  Since x,  x* E .Ak and x # x*, there exists a 
circuit ~i such that  xi < x~. This implies that  

1 ~ i  > 5 ( x * )  - 1 
JI(x-----) >- c~(x) > x ~ -  i - Ji (x*)  (8) 

thus 
J1 (x*) > J1 (x). (9) 

Now, let us prove that  if Jl (x*)  = J l (x ) ,  it holds 
that  J2(x*) > J~(x). 

We first show that  assumption (7) implies that  the 
number of tokens in each circuit for allocation x can- 
not be less than one wrt the corresponding number of 
tokens for allocation x*, i.e., 

xi > x~ - 1, i = l , . . . , N c .  (10) 

This can be proved by contradiction. In fact, if we 
assume that  3 7i such that  xi < x~ - 2, then 

1 # i  # i  1 
- -  > c ~ ( x )  > - -  > - -  > - -  Jl(x) x~ - 2 x~ - 1 - J l (x*)  

and this contradicts the assumption that  J l ( x )  = 
Jl(x*).  

Now, let F be the set of elementary circuits in the 
cyclic event graph. The set F can be partit ioned into 
three disjoint sets, i.e., F = F1 U F2 U F3 where 

r, = {~  I x~ = x ; } ,  
r~ = tT, Ix, = x;~-  1}, 
r3 7~lx~ > x~ 

By assumption (7), all circuits in F2 are critical for the 
allocation x but not for x*, while all circuits in F1 that  
are critical for x* are also critical for x. Thus we can 
state that  

~(x)  = card(F~) + card(F2), 
~(x*) < card(F~) + card(F3), 

where F~ = {7i E F1 ] ci(x*) = 5(x*)}. 
By virtue of equation (10) and by the assumption that  
~ i  xi = ~ i  x~, it is easy to observe that  card(F3) < 
card(F2). We can conclude that  ~(x)  > 5(x*),  thus 
J2(x*) > J2(x),  as we want to prove. 

(only if) We prove this by contradiction. Let us 
assume that x* is an optimal solution, but condition 
(7) is violated, i.e., there exists a circuit 71 such that  
~ / ( x ~ '  - 1) < ~ ( z ' ) .  
Let %n be a critical circuit in x* and consider a new 
vector x obtained from x* by moving one token from 
7t to 7m. If 7m is the only critical circuit in x*, then 
J l ( x )  > Jl(x*).  If x* has more than one critical cir- 
cuit, the value of J1 does not vary, i.e., J1 (x) = J l (x*) ,  
but J2(x) > J2(x*). Thus, in both cases, x* cannot be 
optimal. [] 
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x'  E Ak+l be an allocation obtained from x* adding a 
token to a circuit 7t that  is a critical circuit of x*. 

We prove that  x '  is an optimal allocation for Ak+l. 
Clearly, J l (x ' )  > Jl(X*) (the equality holds if x* has 
more than one critical circuit). For all "7i e F \ {71} we 
have that  

#__L_ = #i > _ _ 1  >_ _ _ 1  (11) 
x i' - 1 x i* - 1 - J l (x*)  J l (x ' )"  

The first inequality follows from the characterization 
given by (7) [Lemma 10] and the fact that  x* is optimal. 

For circuit ?t we have that  

#t  _ # t  1 1 
- >_ - -  ( 1 2 )  

x' l - 1 - x~ J l (x*)  J l ( x ' )  

where the equality derives from the fact that  71 is a 
critical circuit for x*. 

Since x '  satisfies (11) and (12), by lemma 10 it fol- 
lows that  x '  is optimal for .Ak+l. 

This shows that  J satisfies the smoothness condi- 
tion. [] 

Note that  even if J satisfies the smoothness condi- 
tion, it does not necessarily give a unique optimal allo- 
cation at each step, hence it is necessary to use the GIO 
Algorithm (as opposed to the IO Algorithm) to com- 
pute an optimal allocation. Furthermore,  the following 
corollary can be easily proved. 

C o r o l l a r y  12. The performance index J1, i.e., the fir- 
ing rate, verifies the generalized smoothness condition. 

Proof. Let A~ and .A~ be the sets of allocations in Ak 
that  are optimal wrt J1 and J ,  respectively. 

Clearly, A~ C= A~ Vk _> 0. By virtue of corollary 2 
all solutions in calA~ will produce an infinite sequence 
of optimal solutions wrt J .  This implies that  there 
exist some x* E .A[. which origin an infinite sequence of 
optimal allocations wrt to J1. It follows that  J1 satisfies 
the generalized smoothness condition. [] 

Note that  from theorem 7 and corollary 12 it immedi- 
ately follows that  all solutions computed in accordance 
to the GIO algorithm are optimal wrt J1. 

5 T w o - i n d e x  O p t i m i z a t i o n  a l g o r i t h m  

In this section we propose a new IO algorithm, de- 
noted as Two-index Incremental Optimization (TIC) 
algorithm, which reveals to be computationally more 
convenient wrt the generalized one. 

The main improvement consists in the fact that 
while at each step the GIO algorithm considers as op- 
timal all those allocations within the set L/k, whose 
cardinality may greatly increase, the use of the new 
performance index J enables us to neglect all those 
allocations that  will be found non optimal at the fol- 
lowing step(s). Moreover, the new algorithm allows one 
to consider only one solution at each step. In fact, by 
virtue of the property below, it follows that  all the al- 
locations that  are optimal at a given step will converge 
to the same optimal one after a given number of steps. 



Thus no error occurs if we do not examine all the inter- 
mediate steps and directly compute  the final common 
allocation. 

allocation that has an (even) number n of critical cir- 
cuits, a#er n /2  steps the cardinality of Hk may reach 

t h e v a l u e ( n ~ 2  ) t h a t u s i n g S t i r l i n g ' s f o r m u l a c a n b e  

P r o p e r t y  13. Let us consider a cyclic event graph 
with Nc elementary circuits. Let us assume that at a 
given step k there exist multiple optimal allocations wrt 
J each of them containing n critical circuits. All these 
allocations will converge to the same optimal one at the 
(k + n)- th step of the optimization algorithm. 

Proof. By condition 7 it follows that:  

• all circuits that  are non critical for all optimal allo- 
cations in A~ contain the same number  of tokens; 

• the difference among the number  of tokens in all 
other circuits can at most  be equal to one. 

Moreover, the firing rate  of all allocations in .4 t may 
only increase for the addition of n more tokens, one 
in each critical circuit. Thus,  at the (k + n ) - t h  all 
optimal allocations in .A~ converge to the same optimal 
allocation in .A* [] k+n" 

Now, let us provide the formulation of the Two-  
index IO algorithm. 

A l g o r i t h m  14 ( T I O  A l g o r i t h m ) .  
Le t  Xo := [1 , . . - ,  1]; 
le t  k := 0; 
wh i l e  k < K do  

b e g i n  
Fc := {7i I 7i is critical for xk};  
n := card(Fc); 
i f k + n > K  t h e n k : = K  

else 
b e g i n  

XkTn : =  Xk + X ei; 
71Ere 

k := k + n; 
e n d  

end .  

Note that  if at a given step k we have n critical 
circuits and we still have to allocate a number  k < n 
tokens, we can be sure tha t  no further improvement  
will occur in terms of firing rate  and we exit without 
allocating the remaining tokens. 

P r o p e r t y  15. For any k, each Xk computed in accor- 
dance to the TIO algorithm, is an optimal solution wrt 
J .  

Proof. We showed that  the index J is smooth, thus 
(see the if part  of the proof of Theorem 7) the GIO 
algorithm determines an infinite series of optimal  allo- 
cations start ing from Xo. The modifications introduced 
in the new TIO Algorithm do not affect this property.  
In fact, when the solution is unique at each step the two 
algorithms provides the same allocation; in the case of 
multiple (say, n) solutions, Proper ty  13 ensures tha t  
arbitrarily choosing one is sufficient to recover the set 
of optimal solutions after n steps. [] 

R e m a r k  16. We have observed that the TIO algo- 
rithm only keeps one optimal solution at each step, 
while the GIO algorithm keeps at each step a set of 
solutions Uk. If the GIO starts from a single optimal 
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2n+l 
approximated for large n by 2 ~  

Thus it is easy to observe that the worst case compu- 
tationally complexity of the TIO algorithm is O ( K  N) ,  
because the while loop is repeated at most K times, and 
in each step we have to consider at most N circuits, 
while for the GIO algorithm it has an upper-bound 
given by O(K  2 N N1/2). 

6 C o n c l u s i o n s  

We have proposed an incremental algorithm to allo- 
cate a given number  of tokens, so as to maximize the 
firing rate of a cyclic event graph with deterministic 
transit ion firing delays. The algorithm is very efficient 
both  in terms of computat ional  t ime and in terms of 
memory  requirements (only one solution needs to be 
kept at each step). The  algori thm can be applied to 
a special class of nets in which tokens are allocated to 
places that  belong to only one circuit: this class is pow- 
erful enough to model kanban systems. 

We envisage two possible extensions of this work. 
Firstly, it may be possible to extend this approach 
to cyclic event graphs with stochastic transit ion firing 
rates. Secondly, we plan to investigate the possibility 
of removing the assumption tha t  tokens are allocated 
to places that  belong to only one circuit. 
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