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Abstract

In this paper we discuss the problem of estimating the
marking of a Place/Transition net based on event ob-
servation. We assume that the net structure is known
while the initial marking is unknown.
We de�ne several observability properties and show how
they can be proved. In particular we set up a hierarchy
considering the possibility that the above properties are
satis�ed by a net N starting from an initial marking
M0, by a net N starting from any initial marking M
reachable from an initial marking M0, or by a net N
starting from any marking in Nm , where m is the num-
ber of places of the net.

1 Introduction

This paper presents a set of analytical tools to deter-
mine the observability properties of Petri nets, i.e., al-
gorithms to determine under which conditions it is pos-
sible to reconstruct the marking of a Place/Transition
net based on event observation.
Observability is widely studied by automatic control
researchers. It is a fundamental property because it al-
lows one to estimate states that cannot be measured.
The idea of constructing estimates of the unknown
plant state for discrete{event systems has been already
investigated in the literature [1, 5, 6], even if there ex-
ists very few work dealing with observability in Petri
nets [3, 12].

In this paper we consider the marking estimation prob-
lem presented in [3] where an algorithm was given to
estimate the actual marking of the net based on the
observation of a word of events (i.e., transition �rings),
under the assumption that the net structure is known
while the initial marking is not known. The estimate is
always a lower bound of the actual marking. The sys-
tem that compute the estimate is called an observer.
The error function between the actual marking and
the estimate was shown in [3] to be a monotonically
non-increasing function of the observed word length.
Observed words that lead to a null error are said to
be \complete". Complete observers are the discrete-
event counterpart of asymptotic observers for time-
driven systems.
This framework provides a useful paradigm that can be
applied to di�erent settings, from discrete event control,
to failure diagnosis and error recovery. The assumption
that only event occurrences may be observed, while the
plant state cannot, is common in discrete event con-
trol. The assumption that the state of the plant is
not known (or is only partially known) is natural dur-
ing error recovery. Consider for instance the case of a
plant remotely controlled: if the communication fails
the state may evolve and when the communication is
re{established the state will be at best partially known.

In a manufacturing environment, one may consider the
case in which resources (i.e., tokens) enter unobserved,
or in which we know how many resources have entered
the system but not their exact location.
In this paper we de�ne several observability properties
and show that they are decidable. In particular we
consider two main properties. Marking observability
(MO) means that there exists at least one word that is
complete, while strongly marking observability (SMO)
means that all words can be completed in a �nite num-
ber of steps into a complete word.
We set up a hierarchy considering the possibility that
the two properties are satis�ed by a net N starting
from an initial marking M0, by a net N starting from
any marking M reachable from an initial marking M0

(uniform observability) or by a net N starting from any
marking in Nm (structural observability) wherem is the
number of places of the net.

All the considered properties can be proved by reduc-
ing them to other decision problems (e.g., home-space
properties, marking reachability, existence of repetitive
sequences) that can be checked using algorithms well
known from the literature.

2 Background

In this section we provide some basic de�nitions that
will be used in the following of the paper. We �rst recall
some basic terminology on Petri nets, then we provide
the de�nition of both linear and semi-linear sets and
we recall the main results on decidability of home-space
property. Finally, we recall some preliminary concepts
already presented by Giua in [3] that are the basis for
the new results of this paper.

2.1 Petri nets
In this subsection we recall the Petri net formalism used
in this paper. For a more comprehensive introduction
to Petri nets see [9]. A Place/Transition net (P/T net)
is a structure N = (P; T; Pre; Post), where P is a set of
m places ; T is a set of n transitions ; Pre : P � T ! N
and Post : P � T ! N are the pre- and post-incidence
functions that specify the arcs. The incidence matrix
of the net is de�ned as C(p; t) = Post(p; t)� Pre(p; t).

We de�ne p� = ft 2 T j Pre(p; t) > 0g as the set of
output transitions of place p.

A marking is a vector M : P ! N that assigns to each
place of a P/T net a non-negative number of tokens,
represented by black dots. A P/T system or net system
hN;M0i is a net N with an initial marking M0.

A transition t is enabled at M if M � Pre(�; t) and
may �re yielding the marking M 0 = M + C(�; t). We
write M [wi M 0 to denote that the enabled sequence
of transitions w may �re at M yielding M 0; we use the



notation M 0 = w(M) and M = w�1(M 0). Moreover,
we denote w(M0) = Mw. Finally, we denote as w0 the
sequence of null length. The set of all sequences �rable
in hN;M0i is denoted L(N;M0) (this is also called the
pre�x-closed free language of the net). If the �ring se-
quence w is enabled atM0, we also say that w is a word
in L(N;M0).

Let w = t�1 ; t�2 ; � � � ; t�k be a sequence in L(N;M0).
The sequence wi = t�1 ; � � � ; t�i with i 2 N and i < k is
a pre�x of w of length i and we write wi 4 w.
A marking M is reachable in hN;M0i i� there exists a
�ring sequence w such that M0 [wi M . The set of all
markings reachable fromM0 de�nes the reachability set
of hN;M0i and is denoted R(N;M0).

A repetitive sequence w is such that M [wiM 0 with
M 0 �M . Then 8 i � 1, wi is enabled at M . A repeti-
tive sequence w is said to be non-stationary if M [wiM 0

with M 0  M : such a sequence strictly increases the
token count of one or more places.

Three useful elementary facts about Petri nets that will
be used in the paper are the following.

Fact 1. If M �M 0 then L(N;M) � L(N;M 0).

Fact 2. If w is enabled at M and M 0 then: M �M 0 =
w(M)� w(M 0).

Fact 3. The reachability set R(N;M0) is in�nite i�
there exists a non-stationary repetitive sequence in
L(N;M0).

Finally, we denote ~0m (~1m) a m � 1 vector of zeros
(ones).

2.2 Home space property
Linear and semi-linear sets were �rstly introduced in
[10] in order to study some problems from formal lan-
guage theory.

De�nition 4. We say that E � Nm is a linear
set if there exists some V 2 Nm and a �nite set
fV1; � � � ; Vng � Nm such that

E = fV 0 2 Nm jV 0 = V +

nX
i=1

kiVi with ki 2 Ng;

V is called the base of E, and V1; � � � ; Vn are called its
periods.

A semi-linear set is the �nite union of a family of linear
sets.

A �rst result regarding decidability is the following.

Theorem 5 ([2]). Given a net system hN;M0i and a
semi-linear set E it is decidable if R(N;M0) \E = ;.

Finally, we introduce the de�nition of home space [8]
and an important theorem that will be used when prov-
ing some properties of estimates.

De�nition 6 ([8]). Let HS be a set of markings. We
say that HS is a home space of a P/T net hN;M0i i�
8M 2 R(N;M0), 9M 0 2 HS such that M 0 2 R(N;M).
If HS is a singleton, we call its unique element a home
state.

Theorem 7 ([2]). The property of being a home space
for �nite unions of linear sets having the same periods,
is decidable.

2.3 Estimate and error
The aim of this subsection is that of recalling some pre-
liminary concepts already presented in [3]. The proofs
of all propositions are omitted and can be found in
[3, 4].
Firstly, we recall an algorithm for estimating the state
of a net system hN;M0i whose marking cannot be di-
rectly observed under the following assumptions.

A1) The structure of the net N = (P; T; Pre; Post) is
known, while the initial marking M0 is not.

A2) The event occurrences (i.e., the transition �rings)
can be observed.

After the word w has been observed we de�ne the set
M(w) of w consistent markings as the set of all mark-
ings in which the system may be given the observed
behaviour.

De�nition 8. Given an observed word w, the set of
w consistent markings is M(w) = fM j 9M 0 2
Nm ;M 0[wiMg:

Given an evolution of the net Mw0 [t�1iMw1 [t�2i � � �, we
use the following algorithm to compute the estimate �wi

of each actual marking Mwi
based on the observation

of the word of events wi = t�1 ; t�2 ; � � � ; t�i .

Algorithm 9 ([3] Mark. Est. with Event Obs.).

1. Let the initial estimate be �w0 = ~0m.
2. Let i = 1.
3. Wait until t�i �res.
4. Update the estimate �wi�1

to �0wi
with

�0wi
(p) = maxf�wi�1

(p); P re(p; t�i)g:

5. Let �wi
= �0wi

+ C(�; t�i).
6. Let i = i+ 1.
7. Goto 3. �

Note that in step 4: of the algorithm we update the
previously computed estimate �wi�1

, since the �ring of
t�i implies that Mwi�1

� Pre(�; t�i). In the following
we will always denote the estimate computed by this
algorithm after having observed the word w as �w.
The estimate computed by Algorithm 9 is a lower
bound on the actual marking of the net.

Proposition 10 ([3]). Let w = t�1t�2 � � � 2 L(N;M0)
be an observed string and wi its pre�x of length i. Then

8i; �wi
� �0wi+1

�Mwi
:

In [3] it has been given an easy characterization of the
set of consistent markings in terms of estimate.

Theorem 11 ([3]). Given an observed word w 2
L(N;M0) and the corresponding estimated marking �w
computed by Algorithm 2, the set of w consistent mark-
ings is

M(w) = fM 2 Nm jM � �wg:

In this paper we also de�ne a meaningful measure of the
place estimation error, as the token di�erence between
a marking and its estimate in a given place.



De�nition 12. Let us consider a place p 2 P and an
observed word w 2 L(N;M0). Let Mw and �w be the
corresponding marking and its estimate. The place es-
timation error in p is ep(Mw; �w) = Mw(p) � �w(p)
and its update after the �ring of t is ep(Mw; �

0
wt) =

Mw(p)� �0wt(p).

Analogously, it is possible [3] to de�ne a measure of
the estimation error, as the token di�erence between a
marking and its estimate.

De�nition 13 ([3]). Given a marking Mw and its
estimate �w, the estimation error is e(Mw; �w) =P

p2P ep(Mw; �w) = ~1 T
n � (Mw � �w) and its update

after the �ring of t is e(Mw; �
0
wt) = ~1 T

n � (Mw � �0wt).

Note that the place estimation error is a monotonically
non-increasing function of the observed word length.

Proposition 14 ([4]). Let w = t�1t�2 � � � 2 L(N;M0)
be an observed word and wi its pre�x of length i. Then
8i and 8p:

ep(Mwi
; �wi

) � ep(Mwi
; �0wi+1

) = ep(Mwi+1
; �wi+1

);

(1)
and

ep(Mwi
; �0wi+1

) =

min
�
ep(Mwi

; �wi
);Mwi

� Pre(p; t�i+1)
	
:

(2)

Thus, it follows that also the estimation error is a mono-
tonically non-increasing function of the observed word
length.

Proposition 15 ([3]). Let w = t�1t�2 � � � 2 L(N;M0)
be an observed word, wi the pre�x of w of length i, and
�wi

and �0wi
the estimate and the updated estimate of

Mwi
. Then 8i:

e(Mwi
; �wi

) � e(Mwi
; �0wi+1

) = e(Mwi+1
; �wi+1

):

3 Properties of estimates

It is natural to ask under which conditions the esti-
mated marking computed by algorithm 9 converges to
the actual marking. This motivated us to de�ne the
following properties.

De�nition 16. A word w 2 L(N;M0) is marking
complete with respect to (wrt) hN;M0i if �w = Mw,
i.e., e(Mw; �w) = 0.

Thus a marking complete word allows one to recon-
struct the actual marking of the net. Sometimes, how-
ever, only the marking of a subset of places can be
reconstructed.

De�nition 17. A place p 2 P is observable in hN;M0i
if there exists a word w 2 L(N;M0) such that �w(p) =
Mw(p), i.e., ep(Mw; �w) = 0.

Finally we can de�ne these properties of a net system.

De�nition 18. A net system hN;M0i is:

� marking observable (MO) if there exists a mark-
ing complete w 2 L(N;M0);

� strongly marking observable (SMO) in k steps if:

1. 8w 2 L(N;M0) such that jwj � k, w is
marking complete,

2. 8w 2 L(N;M0) such that jwj < k, either
w is marking complete or 9 t 2 T such that
M0[wti.

In this de�nition we note that the observability prop-
erties depend not only on the net structure N , but also
on the initial markingM0, that we assume is unknown.
Thus, it may seem that those properties have little sig-
ni�cance per se. In e�ect, we will use the characteriza-
tion of MO and SMO to prove two more general prop-
erties that have greater signi�cance.

De�nition 19. A net system hN;M0i is:

� uniformly marking observable (uMO) if 8M 2
R(N;M0), hN;Mi is MO;

� uniformly strongly marking observable (uSMO)
in k steps if 8M 2 R(N;M0), hN;Mi is SMO in
k steps.

The property of uMO and uSMO are important if we
consider the following problem: we consider a system
whose initial markingM0 is known. Due to a communi-
cation failure the system evolves unobserved. When the
communication is re-established, we can only be sure
that the actual marking belongs to the set R(N;M0).
We want to know if the marking can be reconstructed
starting from any of these reachable markings.

De�nition 20. A net N is:

� structurally marking observable (sMO) if it is
MO for any initial marking M0 2 Nm ;

� structurally strongly marking observable (sSMO)
if hN;M0i is SMO (in a number of steps k that
depends on M0) for any initial marking M0 2
Nm .

The properties of sMO and sSMO are even more general
and only depend on the net structure N .

The above properties are related among them as shown
in the following partial order diagram:

sSMO �! uSMO �! SMO
# # #

sMO �! uMO �! MO

Here, say, sMO �! uMO means that if a net N is sMO
then hN;M0i is uMO for all initial markings M0. By
means of simple counterexamples it is possible to prove
that properties not in a partial order relationship are
uncorrelated.

4 Properties analysis

In this section we discuss in detail the observability
problem. In particular we provide necessary and suf-
�cient conditions to characterize the properties de�ned
above and we also prove that all these properties are
decidable.
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Figure 1: Place/Transition nets used in the examples.

4.1 Word completeness
A necessary and su�cient condition for completeness of
a word was given in [3] in terms of languages.

Proposition 21 ([3]). A word w 2 L(N;M0) is
marking complete i� 8M0 < M0 : w 62 L(N;M0).

Example 22. Let us consider the net system in �g-
ure 1.a. The word w = t2 is marking complete.
On the contrary, it is not marking complete for the
net system in �gure 1.b since t2 2 L(N;M0) with
M0 = [1 0 0] < M0 = [2 0 0]. A complete word for
the net system in �gure 1.b is w = t2t2. It can be
proved with proposition 21. �

Theorem 23. Let hN;M0i be a net system and w a
word in L(N;M0). It is decidable whether w is marking
complete wrt to hN;M0i.
Proof: It follows from proposition 21 because it only
requires to check if w can be �red from a �nite set of
initial markings.

4.2 Observability
A characterization based on the net language for both
marking and strongly marking observability were given
in [3], where it was proven that these properties are
decidable.
We will not discuss here this point but present some
examples.

Example 24. All net systems in �gure 1 are marking
observable, as it can be read in table 1 that summarizes
all observability properties of P/T nets in �gure 1.

In all cases there exist at least one complete word. In
the case of �gure 1.a (b), the word w = t2 (w = t2t2) is
complete since its �ring removes all tokens in place p1.
Analogously, w = t1 and w = t1t1 are complete words
for the net systems in �gure 1.c and d, respectively.

On the contrary, only net systems in �gure 1.a and c
are SMO (in one step). The net systems in �gure 1.b
and d are not SMO. In fact, in both cases there exist
arbitrarily long sequences that are enabled at the initial
marking and that are not complete. In the case of �g-
ure 1.b, w = (t2t3t1)

i is not marking complete 8 i 2 N.
Analogously, the net system in �gure 1.d in not SMO
since 8 i 2 N, w = t1(t2)

i is not marking complete. �

MO SMO uMO uSMO sMO sSMO

(a) × × × × × __

(b) × __ × __ × __

(c) × × × × __ __

(d) × __ __ __ __ __

Table 1: Observability properties of the nets in �gure 1.

4.3 Uniform observability
In this section we �rst provide necessary and su�cient
conditions for both uniform MO and uniform SMO.
Then we prove the decidability of both these proper-
ties.
Let us �rst demonstrate an important lemma.

Lemma 25. Let hN;M0i be a net system. A place p 2
P is observable in hN;M0i i� at least one element in
the semi{linear set

Ap = fM 2 Nm jM(p) = 0g[�S
t2p�fM 2 Nm jM(p) = Pre(p; t); M � Pre(�; t)g

�
(3)

is reachable.
Proof: (if) Let w be a word in L(N;M0). Let us
consider two subcases.

i) If Mw 2 fM 2 Nm jM(p) = 0g, then 0 =
Mw(p) � �w(p) � 0, thus Mw(p) = �w(p).

ii) If Mw 2 fM 2 Nm jM(p) = Pre(p; t); M �
Pre(�; t)g where t 2 p�, then tmay �re atMw and
since Mw(p) = Pre(p; t) the updated estimate is
�0w(p) =Mw(p), hence Mwt(p) = �wt(p).

(only if) We prove this by contradiction.

If no marking with M(p) = 0 is reachable, then
Mw(p) > 0 8w 2 L(N;M0), thus the initial place
estimation error is strictly positive. It may decrease
only during step 4 of algorithm 9. However, if 8w and
8 t 2 p�, Mw(p) > Pre(p; t), then �0w(p) < Mw(p), thus
the place estimation error keeps positive.

By virtue of the previous lemma, the study of uniform
marking observability reduces to the study of m home
space problems.

Proposition 26. A net system hN;M0i is uniformly
marking observable i� the semi{linear set Ap given by
eq. (3) is a home space 8 p 2 P .
Proof: It follows from the previous lemma and the
fact that a net system hN;M0i is uniformly marking
observable i� each place p 2 P is observable in hN;Mi,
8M 2 R(N;M0), i.e., i� the semi{linear set (3) is a
home{space 8 p 2 P .

Let us now consider the uniform SMO property. We
�rst demonstrate, as an intermediate result, that the
repeated �ring of a repetitive sequence does not de-
crease the estimation error.

Lemma 27. Let hN;M0i be a net system and let us
assume that there exists a �ring sequence w0 that en-
ables a repetitive sequence w, i.e., M0[w

0iMw0 [wiMw0w

with Mw0w � Mw0 . Then 8 i > 1, e(Mw0wi ; �w0wi) =
e(Mw0w; �w0w).



Proof: While observing a sequence w, the error may
decrease only during step 4 of algorithm 9, i.e., when
we compute the updating estimate.
Let t be the �rst transition in the sequence w. If t �res
after w0wi, in step 4 of algorithm 9 we have

�0w0wit(p) � Pre(p; t); 8p 2 P:

Using proposition 14 it is easy to show that for all i � 1

(Mw0wi+1 � �w0wi+1) � (Mw0wi � �0w0wit):

thus

�w0wi+1 �
(Mw0wi+1 �Mw0wi) + �0

w0wit
� �0

w0wit
� Pre(p; t):

Therefore, �0
w0wi+1t

= �w0wi+1 , i.e., the estimate is not
updated and the error remains constant each time w is
repeated after it has �red once.

Proposition 28. A net system hN;M0i is uniformly
strongly marking observable only if its reachability set
is �nite.

Proof: If the reachability set is not �nite, then
(by fact 3) there exist words w0 and w such that
M0[w

0iMw0 [wiMw0w with Mw0w  Mw0 , thus w 2
L(N;Mw0) \ L(N;Mw0w) is not marking complete wrt
hN;Mw0wi (by proposition 21). Also, we can have
words of in�nite length wi (for all i > 1) that are
not marking complete (by lemma 27) thus the sys-
tem hN;Mw0wi is not SMO and �nally hN;M0i is not
uSMO.

Example 29. The net systems in �gure 1.a, b and c
are uMO. In fact, in the �rst two cases, 8 p 2 P the
set fM 2 Nm j M(p) = 0g is always a home space. In
the third case the sets fM 2 Nm j M(p1) = 0g and
fM 2 Nm j M(p2) = 1; M(p1) = 0g are home space.
On the contrary, the net system in �gure 1.d is not
uMO since the net system hN;Mi is not MO at M =
[0 2] 2 R(N;M0).
The net systems in �gure 1.a and c are uSMO. Obvi-
ously, the net system in �gure 1.b is not uSMO, be-
ing not SMO. Analogously, being the net system in �g-
ure 1.d not uMO, it is also not uSMO. �

Theorem 30. It is decidable if a net system hN;M0i is
uniformly and strongly uniformly marking observable.
Proof: Let us �rst prove the decidability of uniform
marking observability. Because of proposition 26 it is
su�cient to prove that the home-space property for the
set Ap is decidable. Let us observe that 8 p 2 P the
semi{linear set in eq. (3) is given by the �nite union
of linear sets having the same periods. In fact, if we
consider a generic place pk 2 P ,

fM 2 Nm j M(pk) = 0g =

8<
:
X
i6=k

ai~"i j ai 2 N

9=
;

fM 2 Nm j M(pk) = Pre(pk ; t); M � Pre(�; t)g =8<
:Pre(�; t) +

X
i6=k

bi~"i j bi 2 N

9=
;

where ~"i is the i{th canonical basis vector of dimension
m. Thus, the decidability of the home-space property
for Ap immediately follows by theorem 7.

Secondly, let us prove the decidability of strongly uni-
form marking observability. Let us observe that if the
necessary requirement stated by proposition 28 is sat-
is�ed, then the reachability set is �nite and the uni-
form strongly marking observability can be veri�ed by
proving the strongly marking observability | that is
decidable [3] | for a �nite set of initial markings.

4.4 Structural observability
In this subsection we provide necessary and su�cient
conditions for both structural and strongly structural
marking observability and we prove the decidability of
these properties.
Proving structural observability, requires the study of
the system properties for all possible initial markings.
Next two lemmas show that to prove that a place is
observable for all initial markings in Nm , just a �nite
subset of Nm needs to be checked.

Lemma 31. If a place p 2 P is observable in hN;Mi
then it is also observable in hN;Mi 8M � M with
M(p) =M(p).

Proof: A place p is observable in hN;Mi if and only
if 9w 2 L(N;M) such that M [wiM 0 and �w(p) =
M 0(p). In this case 8M � M with M(p) = M(p),
w 2 L(N;M) (by fact 1) and M [wiM 0 with M 0(p) =
M 0(p) = �w(p) (by fact 2), i.e., p is also observable in
hN;Mi.

Lemma 32. Let N be a Petri net and let rp =
maxt2T Pre(p; t). Let

M
p
i =

�
M

p
i (p

0) = 0 if p0 6= p
M

p
i (p) = i:

(4)

A place p 2 P is observable in hN;Mp
i i 8 i 2 N, i� p is

observable in hN;Mp
i i for i = 1; � � � ; rp + 1.

Proof: If p is observable in hN;Mp
rp+1

i then 9w and

t 2 p� such that Mp
rp+1

[wiM , M(p) = Pre(p; t), i.e.,

the �ring of the word w reduces the number of tokens in
p. This implies that for allMp

i with i > rp+1 the word

w may also �re until we reach a marking M
0
such that

M
0
� Mp

%i
and M

0
= %i � rp. Since p is observable

in hN;Mp
�i
i, then it is also observable in hN;M

0
i by

lemma 31.

Proposition 33. A Petri net N is structurally mark-
ing observable i� 8 p 2 P , p is observable in hN;Mp

i i,
where M

p
i is de�ned as in equation (4) and i =

1; � � � ; rp + 1.

Proof: By de�nition a Petri net N is sMO i� 8 p 2 P ,
p is observable in hN;Mi 8M 2 Nm . By lemma 31 and
lemma 32 it is however su�cient to check that each p
is observable for the �nite number of initial makings
given in the statement.

Proposition 34. A Petri net N is strongly struc-
turally marking observable i�

(a) N has no repetitive sequences;

(b) 8 p 2 P , 9 t 2 T such that

Pre(p0; t) =

�
1 if p0 = p
0 if p0 6= p

:



Proof: (if) We will prove that (a) and (b) imply that
for any initial marking M0, in a �nite number of steps
the net looses all its tokens: this is a su�cient condi-
tion for SMO of hN;M0i by lemma 25. In fact, if no
repetitive sequences exist, for any initial marking the
length of all words �rable is bounded, i.e., after a �nite
number of �rings the net reaches a dead marking. Fur-
thermore, if assumption (b) is veri�ed, for each place
p 2 P there exists a transition t whose single input is
p and the corresponding arc weight is unitary, i.e., if t
cannot �re then place p must be empty. Thus the dead
marking must be the zero marking.

(only if) We prove this by contradiction.

Let us �rst assume that (a) is violated, i.e., 9M 2
Nm , 9w 2 L(N;M) such that M [wiM 0 with M 0 �
M . Thus w is not marking complete wrt hN;M 0i (by
proposition 21). Also, we can have words of in�nite
length wi (for all i > 1) that are not marking complete
(by lemma 27) thus the system hN;M 0i is not SMO.

Secondly, we assume that (a) is veri�ed while 9 p 2
P such (b) is violated. We �rst observe that we can
exclude the existence of transitions with no input arcs,
because this would violate condition (a). Then it is
obvious that given the marking Mp

1 as in equation (4)
(that contains one token in p and zero tokens elsewhere)
no transition is enabled, thus the marking of p cannot
be observed.

Theorem 35. It is decidable if a Petri net N is struc-
turally marking observable and structurally strongly
marking observable.
Proof: To prove that N is sMO it is su�cient to
prove (by propositions 33) that all places are observable
in hN;M0i for a �nite number of initial markings M0.
The property of being observable for a place is decidable
because of theorem 5 and of the characterization given
by lemma 25.

To prove that N is sSMO it is su�cient to check by
propositions 34 that no repetitive sequences exist (and
this may be checked with linear algebraic tools given
the net incidence matrix) and that the net structure
satis�es condition (b) (this may be checked by inspec-
tion).

Example 36. Being sMO and sSMO structural prop-
erties of the net, the same conclusions can be drawn for
nets in �gure 1.a, b and c, d, respectively.

In particular, the net in �gure 1.a is sMO by proposi-
tion 33. On the contrary, it is not sSMO. In fact, if we
consider the initial marking in �gure 1.b the net system
is not SMO.
The net N in �gure 1.c is not sMO (thus it is also not
sSMO). In fact, if we consider M0 = [0 2], hN;M0i is
not MO. �

A �nal remark regards the classes of nets that are
sSMO. Although this property is rather easy to prove,
the class of nets that satisfy this property is of little
practical interest (they must become empty and dead-
lock in a �nite number of steps). The property of struc-
tural MO, on the contrary, is more di�cult to prove but
is satis�ed by a wider (more interesting) class of nets.

5 Conclusions

In this paper we dealt with the problem of estimating
the marking of a Place/Transition net based on event

observation, assuming that the net structure is known
while the initial marking is unknown.

We de�ned several observability properties and showed
that they are decidable. In particular we considered
two main properties: marking observability and strongly
marking observability. The �rst one means that there
exists at least one word that is complete, while the sec-
ond one means that all words can be completed in a
�nite number of steps to a complete word.
We investigated the possibility that the two properties
above are satis�ed by a net N starting from an initial
marking M0, by a net N starting from any marking M
reachable from an initial marking M0 (uniform observ-
ability), or by a net N starting from any marking in
Nm (structural observability) where m is the number of
places of the net.
We �nally showed that many observability properties
can be proved by reducing them to other decision prob-
lems (e.g., home-space properties, marking reachability,
existence of repetitive sequences) that can be checked
using algorithms well known from the literature.
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