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Abstract

In this paper we realize the design of an active{passive
suspension system for the axletree of a road vehicle
based on a linear model with four degrees of freedom.
The optimal control law we propose aims to optimize the
suspension performance while ensuring that the magni-
tude of the forces generated by the two actuators and the
total forces applied between wheel and body never exceed
given bounds. We derive a solution that takes the form
of an adaptive control law that switches between di�er-
ent constant state feedback gains. The results of our
simulations show that the bound on the active forces is
a design parameter useful for establishing a trade-o�
between performance and power requirement.

1 Introduction

The suspension system of most vehicles is purely pas-
sive, i.e., can be schematized as composed of passive
elements, e.g., dampers and springs.

In an active suspension the interaction between vehicle
body and wheel is regulated by an actuator of variable
length. The actuator is usually hydraulically controlled
and applies between body and wheel a force that rep-
resents the control action generally determined with an
optimization procedure.

Active suspensions [2, 8, 9] have better performance
than passive suspensions. However, the associated
power, that must be provided by the vehicle engine,
may reach the order of several 10 KW [7] depending
on the required performance. As a viable alternative
to a purely active suspension system, the use of mixed
active{passive suspensions (an actuator in parallel with
a passive suspension) has been considered [1, 4, 7]. Such
a system requires a lower power controller. Further-
more, even in case of malfunctioning of the active sub-
system the vehicle needs not halt because the passive
suspension can still function.

In this paper we �rst consider a linear mathematical
model of the axletree suspension system schematized
in �gure 1. Then, we propose an optimal control law
for active-passive suspensions that aims to optimize the
system performance while ensuring that the magnitude
of the forces generated by the actuators never exceed
a desired value umax and the magnitude of the total
forces applied between wheel and body never exceed a
desired value uT;max.

This optimization problem takes the form:
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Figure 1: Mixed suspension.

min J =
P
1

k=0 x
T (k)Qx(k)

s.t.
(a) x(k + 1) = Gx(k) +Hu(k)
(b) jui(k)j � umax; i = 1; 2
(b0) jui(k)� upi(k)j � uT;max; i = 1; 2

(1)

where x is the system state, u is a vector whose compo-
nents are the control forces provided by the actuators,
up � �kpx is a vector whose components are the forces
generated by the passive suspensions, and uT � u�kpx
is the vector of total forces. The optimal solution of this
problem is denoted u�.

The performance of the suspension system is related to
the minimization of the term xTQx. The constraint
(b) on the active forces limits the maximal force re-
quired from each controller, i.e., it leads to the choice
of suitable actuators. The constraint (b') on the total
forces bounds the acceleration of the sprung masses so
as to ensure the comfort of passengers and to reduce
the risk of loss of contact between wheel and road.

The main problem with this approach is that in gen-
eral the law u� cannot be implemented as a feedback
law with constant gains and it is di�cult to compute
[10]. Thus its implementation on on-board controllers
is unfeasible.

A valid solution to an optimization problem of the form
(1) with only one constraint of the form (b) and with
scalar input u, has been proposed by Yoshida et al. in
[11]. The proposed methodology consists in the approx-
imation of the optimal law u� by means of an adaptive
controller that switches between di�erent constant state
feedback gains. Each k% is the state feedback gain that
gives the unconstrained optimal feedback law that min-



imizes a performance index of the form

J% =

1X
k=0

%xT (k)Qx(k) + ru2(k)

where % belongs to a discrete set. Yoshida provides a
simple algorithm for choosing the suitable % (i.e., suit-
able gains) as a function of the present system state
while always ensuring that juj � umax holds. When the
system state is far from the origin a large % (i.e., small
gains) is selected, while for small disturbances a small %
(i.e., large gains) may be used. Yoshida's procedure can
also ensure the stability of the gain{scheduled system:
this is an important issue because in general stability
of a system controlled by gain{scheduling is di�cult to
prove.

In this paper we use an extension of Yoshida's proce-
dure �rstly proposed by the authors in [6] where the
input is not necessarily a scalar entry and more than
one constraint is present, each constraint being in gen-
eral a linear combination of the input and of the state,
as it is the case with constraint (b') of (1). We call the
corresponding law Optimal Gain Switching (OGS) and
denote it uOGS .

When compared with the LQR controller [1, 2, 9],
the OGS controller has two fundamental advantages.
Firstly, it ensures a bound on the magnitude of the
forces that each actuator needs to provide. As we im-
pose more strict bounds on the magnitude of the active
forces, we have worse performance in terms of sprung
mass displacement. Thus, this bound can be seen as a
design parameter to establish a trade-o� between good
performance and power requirement. Secondly, while
LQR controllers realize a particular trade-o� between
performance (term xTQx) and comfort (that depends
on the total forces), the OGS controllers adapt the
trade-o� to di�erent road conditions and car velocities,
applying di�erent control laws depending on the mag-
nitude of the disturbance.

2 Optimal Gain Switching Procedure

Let
x(k + 1) = Gx(k) +Hu(k) (2)

be a linear time-invariant dynamic system, where x 2
R
n is the system's state, u 2 R

m is the system input,
G 2 Rn�n and H 2 Rn�m .

Let us consider the following optimization problem:

min J =

1X
k=0

xT (k)Qx(k);

s.t.
(a) x(k + 1) = Gx(k) +Hu(k)
(b) j�T

j u(k) + �
T
j x(k)j � 
j ; k � 0;

j = 1; : : : ; p;
(3)

where Q is positive semide�nite, �j 2 R
m and �j 2

R
n . In this problem, in addition to constraint (a) that

represents the system's dynamics, we have p constraints
of the form (b): each one limits the magnitude of a
linear combination of the input and of the state entries.

This optimal control problem has already been studied
in the particular case of a scalar input and a single con-

straint (p = 1) on the input magnitude (�1 = 1; �1 =
0). In such a case the constraint takes the simpler form:

ju(k)j � 
 k � 0: (4)

Wonham and Johnson [10] demonstrated that in this
case the optimal solution u�(�) does not correspond in
general to a feedback control law and furthermore, its
computation is quite burdensome. Yoshida et al. [11]
have proposed a simple procedure that approximates
such optimal control law u�(�) by switching among feed-
back control laws whose gains can be computed solving
a family of LQR problems.

In this paper we use an extension of Yoshida's proce-
dure to solve the more general problem (3) �rstly pro-
posed by the authors in [6]. We call this procedure
Optimal Gain Switching (OGS) and the corresponding
feedback law will be denoted as uOGS(�).

2.1 Single constraint
Let us consider a linear time-invariant system of the
form (2) and the corresponding optimization problem of
the form (3) with a single constraint (b). Furthermore,
let us consider a family of performance indexes J% of
the form

J% =

1X
k=0

%xT (k)Qx(k) + uT (k)Ru(k): (5)

For a given value of % the unconstrained control law
u%(�) that minimizes J% for system (2) can be written
as

u%(k) = �k%x(k) (6)

where the gain matrix k% can be computed by solving
an algebraic Riccati equation. Furthermore, for every
gain factor % it is possible to compute a linear region
�% in the state space such that for any point x0 within
this region the following equation holds 8k � 0:

j�Tu%(k) + �
Tx(k)j � j(��Tk% + �

T )Ĝ
k

%x0j � 
 (7)

where Ĝ% = G�Hk%. Thus, if we consider the system
(2) with control feedback law u% and an initial state
x0 2 �% we can be sure that in its future evolution the
value of the control input and of the state are such that
equation (3.b) is always satis�ed.

The following proposition and constructive algorithm
provide a simple procedure to determine if x0 2 �%.
Proofs are omitted here because they are similar to
those reported in [11] although we consider the case
of a more general constraint of the form (3.b).

Proposition 1. Let �% be a linear region de�ned as
above and x0 a generic initial state vector. There exists
a �nite q% 2 N such that x0 2 �% i� equation (7) is
satis�ed for k = 0; 1; � � � q%. �

The value of q% can be easily computed. In fact, let us
de�ne for k 2 N the sequence of vectors zTk = (��Tk%+

�T )Ĝ
k

% and let

C(z0; � � � ; zq) :=
fz = a0z0 + � � �+ aqzq j ja0j+ � � �+ jaqj � 1g

be the set of convex combinations of the vectors�z0,� � �
, �zq .



In [11] it was proved that q% is the smallest non negative
integer such that zq%+1 2 C(z0; � � � ; zq%). Furthermore,
to check if a vector z belongs to C(z0; � � � ; zq) we may
compute the n�(2q+2) matrixD := [ẑ0; ẑ1; : : : ; ẑ2q+1]
where�

ẑi := zi � z;
ẑi+q+1 := �zi � z;

i = 0; : : : ; q

and solve the following linear programming problem
(LPP) where we have denoted 1 a vector of 1's

max 1T y
s.t.�
Dy = 0
y � 0:

The vector z belongs to C(z0; � � � ; zq) i� the optimal
solution of this LPP is unbounded.

Thus, having computed the value of q%, if we choose

Z% =
1




2
6664
zT0
zT1
...
zTq%

3
7775 :

we have that x0 2 �% if and only if

�1 � Z% x0 � 1:

The control procedure can be brie
y summarized as
follows. A set of LQR optimal feedback gains corre-
sponding to di�erent weighting factors in the quadratic
function J% is chosen, and then, at each sampling in-
stant, the highest gain % such that the current state
x(k) belongs to �% is applied. Note that in Yoshida's
approach the switching of gains leads to a monotoni-
cally nondecreasing sequence of % if we assume no ex-
ternal disturbance is acting on the system. This is the
essential feature of the method and allows us to ex-
tend to the OGS law the stability property enjoyed by
LQR control laws, while reducing the performance in-

dex

1X
k=0

x(k)TQx(k) with respect to a �xed gain.

A �nal comment regarding the OGS procedure. Each
gain matrix is computed for an in�nite time horizon
solving an algebraic Riccati equation, but is used only
for a �nite time horizon (with the exception of the gain
matrix corresponding to the highest %). The idea of
computing the OGS gains for a �nite horizon (solving
a dynamic Riccati equation) is not practical, because
the switching times are not easy to compute and this
law would lead to time-varying gains.

2.2 Multiple constraints
Now, let us consider the multiple constraint optimiza-
tion problem of the form (3). In such a case the same
discussion as above can be repeated for every con-
straint. So we can de�ne:

Z% =

2
664
Z%;1

Z%;2

...
Z%;p

3
775 ; Z%;j =

1


j

2
6664

��T
j k% + �

T
j

(��T
j k% + �

T
j )Ĝ%

...

(��T
j k% + �

T
j )Ĝ

q%;j

%

3
7775 ;

where each matrixZ%;j is relative to the j{th constraint
of type (3.b). Note, however, that in general the matrix
Z% may have redundant rows (i.e., rows that belong to
the convex combination of the other ones) and that can
be determined solving an LPP as outlined above. We
discard the redundant rows thus obtaining a matrix of
~q rows that we call ~Z%. As in the single constraint
problem we have that

�1 � ~Z%x0 � 1 , x0 2

p\
j=1

�%;j :

We propose to choose, at each sampling instant, the
highest gain % from a given �nite set, such that the
current state x belongs to �% =

Tp

j=1 �%;j . Therefore,
the control procedure consists in two phases and can be
brie
y summarized with the following algorithm.

Algorithm 2. Optimal Gain Switching (OGS). The
algorithm is divided into o�-line and on-line portions.

O�-line phase

1. Choose a �nite set of r values for %, namely
f%1; %2; : : : ; %rg, with %1 < %2 � � � < %r.

2. Determine for each %i the corresponding gain ma-
trix k%i by solving an LQR problem with perfor-
mance index of the form (5).

3. Construct for each �i the corresponding matrix
~Z%, following the procedure described above.

On-line phase

1. Let k := 0.

2. Let % := maxif%i j x(k) 2
Tp

j=1 �%i;jg.

3. Set up the control according to u(k) = �k% x(k).

4. Put k := k + 1 and return to Step 2. �

If the initial state x(0) 2 �% for % 2 f%1; � � � ; %rg, then
we can be sure that, in the absence of external distur-
bances, at Step 3 of the on-line phase a value % always
exists. In fact, the value of % determined at the previ-
ous iteration can still be used if a higher value cannot
be found. Thus we can be sure that in the absence of
external disturbances the switching of feedback gains
leads to a monotonically nondecreasing value of %, so
stability is ensured.

It is important to highlight the advantages and lim-
its of the OGS control scheme. It has been shown by
Yoshida, in the case of a single constraint of the form
(4), that the control law uOGS(�) leads to values of the
performance index in (3) that are close to the absolute
minimum given by the optimal control law u�(�). In
the following we will show, by numerical simulations,
that the same conclusions are still valid in presence of
multiple constraints.

The computational complexity of the OGS control law
warrants comment. The most burdensome part of this
procedure is the o�-line phase, where the matrices Z%;j

are computed. During the on-line phase, it is necessary
to compute at most r � p matrix products Z%i;jx(k)
at each sampling instant k. The number of rows of the
di�erentZ%i;j is not constant and is equal to q%i;j+1. In
Section 5, we will discuss the computational complexity
relative to the determination of the OGS control law.
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Figure 2: Active suspension.

3 Dynamical model of the suspension system

We refer to the completely active suspension with four
degrees of freedom schematized in �gure 2. We used the
following notation: M1 is the equivalent unsprung mass
of the wheel and of the moving parts of the suspension
connected thereto; M2 is the sprung mass, i.e., the part
of the whole body mass and the load mass pertaining to
the axletree; J2 is the moment of inertia of the sprung
mass with respect to the barycentric axis perpendicu-
lar to the drawing plane; � is the elastic constant of
the tire; ft is the coe�cient that takes into account
the damping of the tire; 2d is the wheel{track; x1(t),
x3(t), x5(t), x7(t) represent the deformations with re-
spect to the static equilibrium con�guration, taken as
positive if they are elongations, of the left tire, left sus-
pension, right tire and right suspension, respectively;
x2(t), x6(t), x4(t) represent the absolute vertical ve-
locities, taken as positive if directed upwards, of the
barycentres of the unsprung left and right{hand mass
and sprung mass respectively; x8(t) represents the an-
gular velocity, taken as positive when clockwise, of the
sprung mass; uT1, uT2 represent the left and right total
control forces respectively.

The above system can be modeled with the following
equation

_x(t) = Ax(t) +BuT (t) (8)

where x(t) 2 R
8 is the state, uT (t) 2 R

2 is the control
input, A 2 R

8�8 and B 2 R
8�2 are constant matrices

[6].

4 Design of an active-passive suspension

A completely active suspension comprises numerous
parts, where the main component is an actuator that is
capable of supplying the entire control force, and its
dimension satis�es the system's maximum power re-
quirements. We examine the possibility of reducing the
power requirements, and hence the size of the active
part of the suspensions, using a combination of active
and passive components as shown in �gure 1, where
the passive components are assigned the task of pro-
viding part of the control actions thereby minimizing
the power absorbed by the active part.

The following notation has been used in the �gure: K is
the elastic constant of the spring; f is the characteristic

coe�cient of the damper; Kb is the elastic constant
of the stabilizing bar; u = [u1; u2]

T is the vector of
control forces that must be realized by the actuators.

The passive components are assumed to exhibit linear
behaviour.

It is easily shown that the passive suspension provides
a contribution up(t) to the total control forces uT (t)
which can be expressed as:

up(t) = �kpx(t) (9)

being:

kp =�
0 �f K +Kb f 0 0 �Kb d � f
0 0 �Kb f 0 �f K +Kb �d � f

�
:

(10)
So, at every instant, it is:

uT (t) = up(t) + u(t): (11)

Let us observe the dynamical system schematized in
�gure 1 and described by equation (8). It can also be
thought of as a system with only the active control in-
put and a di�erent dynamical matrix, so equation (8)
can be rewritten as:

_x(t) = (A�Bkp)x(t)+Bu(t) = Apx(t)+Bu(t): (12)

Note that the control law we will design in the follow-
ing sections requires the knowledge of the system state,
that is not directly measurable. However it can be re-
constructed through an appropriate state observer, as-
suming available the measurements of the suspension
deformations and the sprung mass velocity (via an ac-
celerometer) [5].

The control approach we will follow uses a discrete-time
state space model. Thus we choose a sampling interval
T and discretize equation (12) to obtain

x(k + 1) = Gpx(k) +Hu(k) (13)

where

Gp = eApT ; H =

 Z T

0

eAp�d�

!
B:

Now, let us consider a family of performance indexes:

J% =
1X
k=0

%xT (k)Qx(k) + u(k)Ru(k): (14)

We want to apply the OGS procedure to system (13)
and determine the corresponding feedback control law
such that the following constraints hold:

jui(k)j � umax; i = 1; 2; (15)

juTi(k)j � uT;max; i = 1; 2: (16)

This means that we can determine a control law whose
magnitude is bounded in order to reach a good trade-o�
between road holding and comfort of passengers. Under
appropriate assumptions on the maximum value of the



suspension deformation velocity, the bound on the ac-
tive control forces allows us to constrain the power sup-
plied by the actuators and can be used to design each
actuator in terms of the required power. Constraints
(15) and (16) are of the form (3.b) with �1 = e1,
�1 = 0, 
1 = umax, �2 = e2, �2 = 0, 
2 = umax,

�3 = e1, �
T
3 = �eT1 kp, 
3 = uT;max and �4 = e2,

�T4 = �eT2 kp, 
4 = uT;max, respectively, being ei the
i-th column of the 2nd order identity matrix.

5 Application example

In this section we discuss the results of some numerical
simulations.

The proposed procedure has been applied to the half{
car vehicle model shown in �gure 1, with values of the
parameters taken from [3]: M1 = 28:58Kg, M2 = 2 �
288:90Kg = 577:8Kg, � = 155900N/m, ft = 400Ns/m,
J2 = 108:3Kg m2 d = 0:75m. Matrices Q and R
have been chosen as in [3], as well as the values of
f = 1081Ns/m, K = 15438N/m, Kb = 5496N/m.

The control approach we have followed in this paper
makes use of a discrete-time state space model. A suit-
able choice of the sampling interval is T = 0:01s as
discussed in [5].

We have taken uT;max = 3000N that is slightly less
than the total weight resting on one wheel. A higher
total control force may cause the loss of contact between
wheel and road. Furthermore, this constraint also lim-
its the acceleration of the sprung mass and this is a
necessary condition for the comfort of passengers.

Another important aspect of the proposed design pro-
cedure deals with the choice of the weighting co-
e�cients f%1; %2; : : : ; %rg. The weighting coe�cient
%1 should be determined so that the linear region
�%1;1

T
�%1;2

T
�%1;3

T
�%1;4 contains all initial condi-

tions of interest. The weighting coe�cient %r should be
selected so that the region �%r;1

T
�%r;2

T
�%r;3

T
�%r ;4

covers small disturbances or very little system noises.
The other weighting coe�cients have been chosen, fol-
lowing Yoshida [11], so that the ratio of the 2-norm for
two adjacent total gains (k%i + kp) is ' 1:6� 1:8. We
have assumed r = 10 as it seems a good trade-o� be-
tween computational e�ciency and performance index.

In the following we provide the results of two series of
numerical simulations in order to underline the main
conclusions relative to the proposed procedure.

5.1 Simulation 1
In the �rst simulation we compare the performances
of a completely passive suspension system with active-
passive suspension systems characterized by di�erent
values of the constraint on the active forces.

The numerical values of the parameters relative to the
completely passive suspension are the same as those of
the passive part in the tandem suspension system. We
assume x1(0) = �x5(0) = 0:02m, x3(0) = �x7(0) =
0:1m, x2(0) = x4(0) = x6(0) = 0m/s, x8(0) = 0rad/s.

The main results of the comparison are reported in �g-
ure 3 where we can observe the variations of the system
evolution in presence of actuators of increasing size. We
have considered four di�erent values for umax: 400, 700,
1000, 1300N whose increasing value is denoted by an ar-
row. Figures 3.a and 3.c compares the deformation of
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Figure 3: The results of simulation 1.

the left and right tire, respectively, for the completely
passive suspension with those of the active-passive sus-
pensions. In these �gures we can note that as umax is
increased the unsprung mass reaches sooner the equi-
librium state albeit with a greater overshoot in the �rst
time instants. Figures 3.b and 3.d compare the defor-
mation of the left and right suspension respectively, for
the completely passive system, with those of the active{
passive suspensions. In these �gures we observe that as
umax is increased the sprung mass reaches sooner the
equilibrium state with decreasing overshoots. We can
also observe that the lessening of the suspension de-
formations are always less signi�cant as umax exceeds
700N. Therefore, we conclude that it is possible to guar-
antee good performances even with relatively small size
actuators which, furthermore, limit the overshoots of
the tires deformations.

5.2 Simulation 2
In this subsection we introduce an external disturbance
given by the road pro�le.

Let us �rst discuss how its presence modi�es the state
space equation (8). Let wL(t) and wR(t) reported in
�gures 1{2, be the absolute vertical velocities of the
points of contact with the road of the left and right tire
respectively. Such velocities are caused by the uneven
road pro�le and can be white noise signals, which is
equivalent to saying that any longitudinal road pro�le
can be represented by an integrated white noise [5, 8, 9].
Here, the road roughness characteristics are expressed
by a signal whose PSD distribution function is [8]:

	(!) =
cV

!2 + �2V 2
(17)

where c = (�2=�)�. Here �2 denotes the road rough-
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Figure 4: The results of simulation 2.

ness variance and V the vehicle speed, whereas the co-
e�cients c and � depend on the type of road surface.
The product is the power spectrum of the white noise.
The signal x0;L(t), whose PSD is given by (17), may be
obtained as the output of a linear �lter expressed by
the di�erential equation

_x0;L(t) = ��V x0;L(t) + wL(t) (18)

where the subscript L stands for left. The same holds
for the right disturbance.

By taking into account the above disturbances, state
equation (8) can be rewritten as

_x(t) = Ax(t) +BuT (t) +Lw(t) (19)

where w = [wL(t) wR(t)]
T is the disturbance vector

and L 2 R
8�2 [6].

In this simulation test we assume that the disturbance
acting on the system is caused by a very rough road
pro�le. Crosby and Karnopp [4] gave the power spectral
density for such an input disturbance. We were able [5]
to obtain a similar power spectral density by choosing
in equation (17) the following parameter values: � =
0:2m�1, �2 = 0:1m2 and V = 20m/s. Furthermore,
we assume umax = 500N and a null initial state.

The results of simulation 2 are shown in �gure 4. Fig-
ure 4.a (4.b) shows the left (right) road pro�le along
with the left (right) wheel and left (right) sprung mass
displacement. It is possible to observe that the suspen-
sion �lters the high frequencies smoothing the move-
ment of the sprung mass. Figure 4.c shows the active
forces u1 and u2, while the total forces uT1 and uT2 are
reported in �gure 4.d.

6 Conclusions

In this work we have presented a design methodology
for active-passive suspension systems. The design pro-
cedure is based on the minimization of a quadratic per-
formance index that penalizes the tires and the suspen-
sion deformations, while requiring that the total forces
applied between wheel and body and that the fraction
of the forces generated by the actuators never exceed
given bounds.

The constraint on the actuator forces can be used to
dimension the actuators, so that it is required to pro-
vide only a fraction of the total forces generated by the
suspension systems.

The constraint on the total forces bounds the accelera-
tion on the sprung masses so as to ensure the comfort of
passengers and to reduce the risk of loss of contact be-
tween wheels and road. Simulations showed that these
constraints are active only when the system state is far
from the origin.

The results of same numerical simulations for a half{car
vehicle model have also been presented.
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