
Petri Nets
as Discrete Event Models
for Supervisory Control

by Alessandro Giua

A Thesis Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute in
Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy. Major
Subject: Computer and Systems Engineering.

Rensselaer Polytechnic Institute (Troy, New York)

July 1992

ii

Este, que ves, engaño colorido,
que del arte ostentando los primores,
con falsos silogismos de colores
es cauteloso engaño del sentido.

This coloured counterfeit that thou beholdest,
vainglorious with the excellencies of art,
is, in fallacious syllogisms of colour,
nought but a cunning dupery of sense.

Inundación Castálida, II, 1-4

Juana de Asbaje y Ramírez,
Sor Juana Inés de la Cruz (1651-1695)

Contents

1 INTRODUCTION 1
1.1 Introduction . 1
1.2 Background and Motivation . 1

1.2.1 Discrete Event Systems and Models . 1
1.2.2 Evaluation of Discrete Event Models 3
1.2.3 Petri Net Models . 4
1.2.4 Supervisory Control . 6

1.3 Objectives of the Thesis . 7
1.4 Organization of the Thesis . 9

2 LITERATURE REVIEW 10
2.1 Supervisory Control Theory . 10
2.2 Logical Models for Discrete Event Systems . 11

2.2.1 Transition Models . 11
2.2.2 Temporal Logic . 11
2.2.3 Communicating Processes . 12
2.2.4 Controlled Petri Nets . 12

2.3 Petri Net Languages . 13
2.4 Incidence Matrix Analysis of Petri Nets . 13
2.5 Synthesis and Reduction of Petri Nets Models 14

3 BASIC NOTATION 15
3.1 Petri Nets . 15

3.1.1 Place/Transition Nets . 15
3.1.2 Marked Nets . 16

3.2 Formal Languages . 17
3.3 Petri Net Languages . 17
3.4 Supervisory Control . 18

4 ON THE EXISTENCE OF PETRI NET SUPERVISORS 19
4.1 Introduction . 19
4.2 Petri Nets and Blocking . 19
4.3 Supervisor . 22
4.4 Existence of Petri Net Supervisors . 22
4.5 Petri Net Languages and Supremal Controllable Sublanguage 25
4.6 Conclusions . 27

iii

CONTENTS iv

5 SUPERVISORY DESIGN USING PETRI NETS 28
5.1 Introduction . 28
5.2 Monolithic Supervisor Design . 28

5.2.1 Design Using Concurrent Composition 32
5.3 Monolithic Design Using Petri Nets . 32
5.4 Petri Nets and State Machines . 36
5.5 Conclusions . 37

6 INCIDENCE MATRIX ANALYSIS 38
6.1 Introduction . 38
6.2 Incidence Matrix Analysis for State Machines 39

6.2.1 State Equation . 40
6.2.2 Defining the Set of Reachable Markings 41

6.3 Composition of State Machines Modules . 44
6.3.1 State Equation . 45
6.3.2 Defining the Set of Reachable Markings 47

6.4 Supervisory Verification . 53
6.4.1 Blocking . 54
6.4.2 Controllability . 54

6.5 Conclusions . 55

7 GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 56
7.1 Introduction . 56
7.2 GMEC and Monitors . 57

7.2.1 Generalized Mutual Exclusion Constraints 57
7.2.2 Modeling Power of Generalized Mutual Exclusion Constraints 59
7.2.3 Monitors . 62
7.2.4 Nets With Uncontrollable Transitions 65

7.3 Generalized Mutual Exclusion Constraints on Marked Graphs 66
7.3.1 Marked Graphs with Monitors . 66
7.3.2 Control Subnet . 69
7.3.3 Control Safe Places . 70

7.4 Fully Compiled Models . 71
7.4.1 Model 1: Monitor-based Controller . 71
7.4.2 Model 2: Compiled Supervisor . 73

7.5 Partially Compiled Models . 74
7.5.1 Model 3: Non-Deterministic Partially Compiled Supervisor 75
7.5.2 Model 4: Deterministic Partially Compiled Supervisor 76

7.6 Comparison of the Models . 77
7.7 Conclusions . 78

8 CONCLUSIONS AND FUTURE RESEARCH 79
8.1 Original Contributions . 79

8.1.1 Petri Net Languages for Supervisory Control 79
8.1.2 Supervisory Design . 80
8.1.3 Validation of Petri Net Supervisors . 80
8.1.4 Efficient Construction of Control Structure 80

8.2 Future Research . 81
8.2.1 Petri Net Languages for Supervisory Control 81
8.2.2 Supervisory Design . 82

CONTENTS v

8.2.3 Validation of Petri Net Supervisors . 82
8.2.4 Efficient Construction of Control Structure 82

APPENDICES 90

A PETRI NET LANGUAGES 90
A.1 Petri Net Generators . 90
A.2 Classes of Petri Net Languages . 91
A.3 Deterministic Languages . 91
A.4 Closure Properties and Relations with Other Classes 92
A.5 Concurrent Composition and System Structure 93

B AN INTRODUCTION TO SUPERVISORY CONTROL 95
B.1 Discrete Event Systems and Properties . 95
B.2 Controllable Events and Supervisor . 96
B.3 Supervisory Control Problem . 100
B.4 Supremal Controllable Sublanguage . 101

C NOTATION 103

Acknowledgement

Frank DiCesare has guided me in a spirit of friendship through my Master’s and Ph.D. thesis,
providing learning, encouragement, and support all at once.

Manuel Silva has given me the wonderful opportunity of visiting the University of Zaragoza
and of working with his group. Part of this research has been inspired by him.

Alan A. Desrochers, David R. Musser, and Badrinath Roysam have provided additional guid-
ance as members of my doctoral committee.

The Petri net group meetings at Rensselaer have been a fruitful learning experience. I acknowl-
edge the many discussions with Padma Akella, Tiehua Cao, Xin Chen, Mu-Der Jeng, Jagdish
Joshi, Hauke Jungnitz, Jongwook Kim, Inseon Koh, Doo Yong Lee, Jim Watson, Mengchu Zhou.

I am grateful to the Computer Integrated Manufacturing project of the Center for Manufactur-
ing Productivity and Technology Transfer which has supported the research of this thesis during
the last two years.

The years of my graduate studies have been a period of freedom and carelessness, marking the
transition between youth and maturity. Never will love be more poignant or friends more dear; the
memories will last forever. For this I have to thank Philippe Jeanne, Thanos Tsolkas, Ermanno
Astorino, Antonio De Dominicis, Gloria-Deo Agbasi, Hauke Jungnitz, Giampiero Beroggi and
Penny Spring, Agostino Abbate and Josefina Quiles, Didier Laporte, Elisabetta Bruzzone, Nora
Si-Ahmed, Amitava Maulik, Persefone Vouyoukas, Doo Yong Lee, Josep Tornero, Markus Vincze,
Michael Eppinger, Rolf Münger, Keith Hanna, Alejandro Beascoechea, Markus Hoerler, Carlos
Garcia, Leonardo Lanari, Scott Bieber, Brady Richter, Cristina Gesto, Andreas Glatzl, Jose Neira,
Maria Angeles Salas, Antonio Ramírez, Enrique Teruel, Joaquin Ezpeleta, Bruno Gaujal, and
Rogerio Rodriguez.

vi

Abstract

Discrete event systemsrepresents a new field of control theory of increasing importance in the
domains of manufacturing, communications, and robotics.Supervisory Controltheory, based on
formal languages, is a well established framework for the study of discrete event systems.

The thesis discusses the use ofPetri netsin Supervisory Control. Place/Transition nets have
been used by several authors to represent discrete event systems. In our approach, thesupervisor,
i.e., the control agent that restricts the behavior of a system within a legal behavior, is represented
as a Place/Transition net as well. The advantage of such a supervisor, as opposed to a supervi-
sor given as a feedback function, is that a closed loop model of the controlled system may be
constructed and analyzed using the techniques pertaining to Petri net models.

We show that a Petri net supervisor may not exist if the system’s behavior or the legal behavior
are nonregular Petri net languages. By defining a new class of Petri net languages, calleddeter-
ministic P-closed, it is possible to derive necessary and sufficient conditions for the existence of
supervisors as nets.

The thesis presents an algorithm, based on theconcurrent compositionoperator, for the design
of Petri net supervisors and discusses how a composed net may be validated. In a first approach,
based on incidence matrix analysis, important properties of the net, such as controllability or such
as the absence of blocking states, may be studied by Integer Programming techniques. In a second
approach, we consider a class of specifications, calledgeneralized mutual exclusion constraints,
and discuss several possible structures for the supervisor capable of enforcing them.

vii

Chapter 1

INTRODUCTION

1.1 Introduction

The object of the study of traditional control theory have been systems of continuous and syn-
chronous discrete variables, modeled by differential or difference equations. However, as the
scope of control theory is being extended into the domains of manufacturing, robotics, computer
and communication networks, and so on, there is an increasing need for different models, capable
of describing systems that evolve in accordance with the abrupt occurrence, at possibly unknown
irregular intervals, of physical events. Such systems, whose states have logical or symbolic, rather
than numerical, values that change in response to events which may also be described in non-
numerical terms, are calleddiscrete event systems(DES) [Ramadge 89b] and the corresponding
models are calleddiscrete event models(DEM) [Inan 88].

These systems require control and coordination to ensure the orderly flow of events. As con-
trolled (or potentially controllable) dynamic systems, DES qualify as a proper subject for control
theory. Hence a twofold issue presents itself: we need apowerfulclass of DEM, capable of cap-
turing the essential features of discrete, asynchronous and possibly nondeterministic systems, and
aunifyingtheory for their control.

The goal of the present research is that of applying aPetri net modelwithin the framework
of Supervisory Control, a control theory for DES introduced recently by Ramadge and Wonham
[Ramadge 83, Ramadge 87]. We study how Petri net models may be used to solve supervisory
control problems, i.e, the design of a supervisor capable of restricting the behavior of a system
within a legal behavior.

1.2 Background and Motivation

In this section we rather informally discuss the motivation of this research. We want to show why
Petri nets are a good discrete event model and a powerful tool for Supervisory Control.

1.2.1 Discrete Event Systems and Models

A DES is a dynamic system with a discrete state space and piecewise constant state trajectories
(see Figure 1.1); the time instant at which state transitions occur, as well as the actual transitions,
will in general be unpredictable.

The state transitions of a DES are calledeventsand may be labeled with the elements of some
alphabetΣ. These labels usually indicate the physical phenomenon that caused the change in state.
For example, in a manufacturing environment typical event labels are“machine 1 starts working
on part A”, “machine 1 breaks down”, etc.

1

CHAPTER 1. INTRODUCTION 2

time
t1 t2 t3 t4

x1

x2

x3

x4

a

b

a c

state

Figure 1.1: State trajectories for a Discrete Event System.

Model Classification

The many areas in which DES arise and the different aspects of behavior relevant in each area have
led to the development of a variety of DEM. We have the following classification [Ramadge 86,
Ramadge 89b].

1. Logical DEM, in which a common simplifying assumption is to ignore the times of occur-
rence of the events and consider only the order in which they occur. This simplification is
justified when the model is to be used to study properties of the event dynamics that are
independent of specific timing assumptions.

2. Timedor performance DEM, which are intended for the study of properties explicitly de-
pendent on interevent timing. These models can be further classified as:

a) nonstochastic: if the timing is known a priori;

b) stochastic: if the timing is not known a priori due to random delays or random occur-
rences of events.

Logical Models

The behavior captured in a logical model is the sequences of discrete events ortracesthat a system
generates [Inan 88]. LetΣ be the set of discrete events labels and letΣ∗ be the set of all finite
sequences of events inΣ (including the empty traceλ). Thus a possible evolution of the system
may be represented, as in Figure 1.1, by

w = abac . . . ,

wherew ∈ Σ∗ anda, b, c ∈ Σ.
There are two main assumptions here.

1. We are interested in theorder in which the events occur but not in thereal timeat which
they occur;

2. An event isatomic, i.e., it is considered to occur in a single step, even if in the real system
it may be implemented as a sequence of instructions.

CHAPTER 1. INTRODUCTION 3

In a logical model, the behavior of a given system is thus given by a subset languageL ⊂ Σ∗,
consisting of all the traces (orstrings) that the system can generate. In most systems of interest,
L will be an infinite set so that it cannot be given simply by listing all the traces. We will study
systems that allow a logical model.

1.2.2 Evaluation of Discrete Event Models

A great number of logical DEM have been proposed. In order to evaluate and compare their
suitability for control applications, different properties have to be considered [Inan 88].

Descriptive power

The descriptive powerof a DEM has different facets. Inan and Varaya [Inan 88] have used the
terms language complexityand algebraic complexityto denote two aspects of the descriptive
power. We will call these two aspectslanguage powerandalgebraic power. Additionally, we
will consider a third aspect that we callrepresentational power.

A discrete event model must give a means to specify the set of admissible event trajectories.
This may be done using different formalisms.

• A state transition structureis used by automata and net models such as finite state machines,
Petri nets, Büchi automata [Ramadge 89a].

• A set of equationsis used by boolean models [Aveyard 74], communicating sequential pro-
cesses [Hoare 85], finitely recursive processes [Inan 88].

• Logical calculusis used in temporal logic models [Pnueli 79].

Two different models may represent the same behavior although they use different formalisms. It
is often the case, however, that some behavior can be easily modeled with one particular formalism
and not so easily modeled with a different one. We call this qualitative aspectrepresentational
power. In the following section, we will compare different models with Petri nets with the aim
of showing that the representational power of Petri nets is fairly large. In fact, Petri nets are not
subject to the representational shortcoming typical of other models.

We have seen that the logical behavior of a system is represented in the model by a language
L ⊂ Σ∗. In general, different formalisms generate different classes of languages, i.e., each model
has its ownlanguage power. As an example, the class of languages generated by finitely recursive
processes is a superset of Petri net languages that in turn are a superset of regular languages (the
class of languages generated by finite state machines). It is desirable that the language power of
a model be as large as possible, so that the model may be used to represent a large variety of
systems. However, formal language theory shows that the analysis complexity grows with the
language power of a model. The extreme case is that of Turing machines that have the largest
language complexity but whose languages have many undecidable properties.

Complex systems can be regarded as being built out of interacting subsystems. A modeling
formalism will be useful if it contains operators that combine one or more models in ways that
reflect the ways in which systems are connected. In our view of a DEM as a language generator,
these operators, union, intersection, concurrent composition, etc., are defined on languages. The
class of operators related to each model define itsalgebraic power.

Performance Evaluation

Once we are sure that a model has captured the essential features of a system, we want to use
that model for determining whether the system has the desired properties or whether it is free of
abnormal behavior.

CHAPTER 1. INTRODUCTION 4

This can be done in two steps. Firstly, “translate” the desirable properties of the system into
properties of the model. Secondly, “derive effective algorithmic, analytical, or simulation methods
to verify that the model possesses the desired properties” [Inan 88].

In this last step, the issue ofcomputational complexityis a key concern. For example, the num-
ber of states in a transition structure for specifying the admissible event trajectories may depend
exponentially on some system parameter. In such cases simple algorithms for verification or syn-
thesis, e.g., an exhaustive search over the state space, rapidly become computationally intractable.
Thus one tries to mitigate the complexity by the use of aggregation or modularity, or by exploiting
hierarchical or other special structures.

Control Implementation

The modeling and analysis of systems is only the first step in the study of DES. The final goal
is to modify (by control action) the set of admissible trajectories so that each event trajectory has
the desired properties. A model should then find application in the framework of a control theory.
It should also provide a guide to constructing a controller. At best, this is done by an automatic
compilation of the model into control code; at worst, “ad hoc” solutions must be studied.

1.2.3 Petri Net Models

In this work we study a particular Petri net (PN) model: Place/Transition (P/T) nets. Petri nets
satisfy all the requirements that a good DEM should have [Giua 92a].

1. Descriptive power
Petri nets have great descriptive power. They have been designed specifically to model sys-
tems with interacting components and as such are able to capture many characteristics of
an event driven system, namely concurrency, asynchronous operations, deadlocks, conflicts,
etc. Furthermore, the PN formalism permits description of logical models (P/T nets, Col-
ored PN), timed models (Timed PN) and performance models (Stochastic PN, Generalized
Stochastic PN).

When logical models are considered, classes of languages generated by Petri nets, called
Petri nets languages, may be defined. These classes are supersets of regular languages
and with the introduction of a great number of operators define an algebra. However, PN
languages do not have all the nice closure properties of, say, regular languages.

The basic P/T net cannot model a condition of the form: “Fire transitiont if place p is
empty”. Hence a P/T Petri net cannot simulate a register machine which in turn is equiv-
alent to a Turing machine [Ichikawa 88a]. It is possible to extend the formalism with the
introduction ofinhibitory arcs, i.e., arcs from places to transitions that prevent the firing of
a transition if the input place is marked. However we note that the descriptive power of P/T
nets is large enough for most common applications, and often even more restricted models
are considered, such as conservative PN.

Conservative PN are essentially equivalent to finite state machines, since the number of
reachable markings (i.e., the number of ’states’ of the model) is finite. However, they still
make use of the full representational power of Petri nets. In fact, since the states of a
PN are represented by the possible markings and not by the places, they allow a compact
description, i.e., the structure of the net may be maintained small in size even if the number
of the markings grows.

2. Performance Evaluation
The desired properties of a system map fairly well into properties of the corresponding Petri

CHAPTER 1. INTRODUCTION 5

net model. Many algorithms, with a well developed mathematical and practical foundation,
have been developed to study these properties.

The analysis techniques for Petri nets may be divided into the following groups (see [Silva 85]).

• Analysis by enumeration. It requires the construction of thereachability treerepre-
senting the set of reachable markings and transition firings. If this set is not finite, a
finite coverability treemay be constructed.

• Analysis by transformation. A net N1 is transformed, according to particular rules,
into a netN2 while maintaining the properties of interest. The analysis of the netN2

is assumed to be simpler than the analysis of the netN1. Examples of this analysis
technique arereduction methods, that permit the simplification of the structure of a
net.

• Structural analysis. It permits the demonstration of several properties almost indepen-
dently of the initial marking. Structural analysis may be based on the study of the state
equation of the net or on the study of the net graph.

• Simulation analysis. It is useful for timed nets and to study the behavior of nets that
interact with an external environment.

Petri nets also represent a hierarchical modeling tool and allow reduction of the compu-
tational complexity of analysis by exploitingmodular synthesis. With modular synthesis,
complex systems may be constructed by aggregation of simpler modules while preserving
the properties of interest.

3. Control Implementation
Petri nets languages offer a simple means of applying control-theoretical ideas and in this
thesis we will show that they are consistent with Supervisory Control theory.

Petri net based controllers may be implemented in both hardware and software. Programmable
Logic Controllers [Silva 89b, Silva 83] and Petri-net like languages [Murata 86] have been
used in different applications.

In [Crockett 87, Kasturia 88] a Petri net interpreter is implemented using a mixture of ap-
plication dependent and independent code. However, it is necessary to point out that there
exists no general technique for compiling a Petri net description into a control system.

It may be worth comparing therepresentational powerof PN with that of other models for
concurrent systems [Best 91]. It is possible to partition the current approaches into:a) models in
which the basic notion is that ofstate, such as state machines;b) models in which the basic notion
is that ofaction, such as interleaving models. Petri nets show more flexibility in this respect, since
states and actions are treated on equal footing and both step and interleaving semantics can be
defined on Petri nets [Best 91].

In the next example, we will see that Petri nets give a very compact description of systems
which, due to concurrent behavior, have a large state space.

Example 1.1. Suppose we have a cyclic process where five jobs may be in four different stages.
In Figure 1.2 we have a Petri net where each token represents a job and each place represents a
different stage. Although the number of reachable markings is 56, the PN model is very simple
compared to a state machine model where we need to explicitly represent all states.

Models based on actions do not suffer from this state space explosion, since they do not re-
quire the explicit enumeration of all the states. As an example, an interleaving model of the
system considered in this example may be described as follows. LetL1 be the behavior of the
cyclic process with a single job, i.e., a single token. Then possible evolutions of the system are:

CHAPTER 1. INTRODUCTION 6

Figure 1.2: Petri net in Example 1.1.

Figure 1.3: Petri net in Example 1.2.

λ, t1, t1t2, t1t2t3, . . ., i.e., L1 = (t1 t2 t3 t4)∗; here the bar stands for the prefix operator and∗
is the Kleene star operator. Then the behavior of the process when five jobs are been processed
concurrently is given by

L5 = L1 ‖ L1 ‖ L1 ‖ L1 ‖ L1,

where‖ is the concurrent composition operator.

The shortcoming of models based on actions lies in the cumbersome way in which specifica-
tions involving counters and semaphores are modeled.

Example 1.2. Consider the Petri net in Figure 1.3. Here we have two sequences(t2t1) and(t3t4)
that can be run up to a total ofn times,n being the number of tokens inp3. Using an interleaving
model to represent this process is awkward: we have to explicitly specify all concurrent firing
sequences. In fact, forn = 1 the behavior is

L1 = t2t1 + t3t4.

Forn = 2 we have
L2 = (t2t1)2 + (t2t1) ‖ (t3t4) + (t3t4)2.

For a genericn

Ln = (t2t1)n + (t2t1)n−1 ‖ (t3t4) + . . . (t2t1) ‖ (t3t4)n−1 + (t3t4)n.

CHAPTER 1. INTRODUCTION 7

1.2.4 Supervisory Control

Ramadge and Wonham provide a unifying framework for the control of discrete event systems
[Ramadge 89b], and so far theirSupervisory Control Theoryis the most general and comprehen-
sive theory presented for logical DES. An introduction to the theory is presented in Appendix B.
Here we simply discuss those aspects of Supervisory Control that have motivated this research.

We may distinguish three different areas of interest in the supervisory control approach.

1. The formal language levelis concerned with theoretical issues. Qualitative properties of
DES, such asstability [Brave 90],controllability [Ramadge 87],observability[Cieslak 91,
Özveren 90],nonblockingness[Ramadge 87], etc., are defined from a very general perspec-
tive as properties of languages. This “abstract” perspective has made possible the creation
of a model-independent theory.

At this level, new language operators, that will play a central role in solving the control
problem, are also defined. Examples of these operators are thesupremal controllable sub-
language(SCS) [Wonham 87],infimal controllable superlanguage(ICS) [Lafortune 90a],
etc. The closure properties of different classes of languages under these operators are also
discussed. The class of regular languages is closed under the SCS and ICS operators, as
shown by Ramadge and Wonham [Wonham 87], and Lafortune and Chen [Lafortune 90a].
No results have been published on Petri net languages.

Finally, language theory provides a rigorous formalism for proving important theorems on
the existence of supervisors. The existence of finite state supervisors have been discussed
by Ramadge and Wonhan [Wonham 87] and Ushio [Ushio 90]. Some results on Petri net
supervisors with inhibitory arcs have been presented by Sreenivas and Krogh [Sreenivas 92].

2. Thesystem leveldeals with the concept of DES, seen as a language generator over an al-
phabet of eventsΣ. One the most important features is the partition ofΣ into two disjoints
sets: the set ofcontrollableeventsΣc, and the set ofuncontrollableeventsΣu. The uncon-
trollable events are those which cannot be disabled by a control action.

The basic control problem is the following. We are given a DESG generating the language
L(G) and a specification, i.e., a legal languageL. We want to restrict the behavior of the
system, by disabling only controllable transitions, within the limits of the legal language.

The control structure that restricts the behavior of the system is called asupervisor. The
supervisor receives as input the sequence of events generated byG and determines a control
input that specifies which events are to be disabled inG. If we consider the systemG as
the plant (or the object to be controlled) and the supervisor as the controlling agent, it is
often possible to realize a supervisor simply as another DESS. S andG are supposed to
run in parallel and the closed loop structure is again a DES, denoted byS/G, theactionof
SonG. It has been noted [Cieslak 91] that this approach allows us to evaluate and compare
the effect of different control policies on the behavior of the uncontrolled system, since
open loop plant and controller are treated separately; previous approaches require a separate
model for each control policy and only permit models of closed loop systems.

Design algorithms have been devised to compute the control structure of a supervisor for a
given control problem, given the knowledge of the system and of the specification. These
algorithms are based on language operators, thus they are model independent.

3. At the model levela particular model is chosen to describe the physical device to be con-
trolled. In classical control theory there exist different models for, say, linear systems, such
as transfer function, state variables, matrix-fraction description, polynomial matrix descrip-
tion, etc., all capable of describing systems whose behavior is defined by a differential linear

CHAPTER 1. INTRODUCTION 8

equation. In the case of a discrete event system, the behavior is defined as a formal language;
hence the models used are language generators.

In Section 1.2.2, we have already discussed the good properties that a discrete event model
should feature.

1.3 Objectives of the Thesis

Supervisory Control is so far the most complete theory for the control of DES. It has a sound
mathematical foundation, based on formal languages; it provides exact algorithms to design a
supervisor for large classes of control problems; it captures the physical constraints the controller
must satisfy, since it assume that only a subset of the events is controllable; it is sufficiently general
to be applied to different models.

Another issue of paramount importance is the complexity involved in solving a control prob-
lem. Here the choice of one model rather than another one is a key factor that may drastically
affect the class of problems that can be solved.

Firstly, since the language power of each model is limited, there may exist systems whose
behavior may not be expressed with a given model. It is often assumed that physical systems have
a finite state space. However there are cases where it may be necessary to use a model such as
Petri nets, with a possibly infinite number of states.

Secondly, the representational power of a model may not be specifically tailored to represent a
given system’s behavior. The exponential growth of the state space of a model with the number of
interconnected modules is a well known blight in the study of concurrent systems which makes the
use of simple models, such as finite state machines, impracticable. We have seen, in the previous
discussion, that Petri nets reduce this complexity by means of its representation power. Thus Petri
nets may potentially be viewed as an effective means to realize supervisory controllers, allowed
by language theory but in practice until now unattainable because of the state space explosion
problem.

Thirdly, each model has its own tool-set of design and analysis techniques, which may be used
more or less efficiently for the solution of a control problem. Petri nets provide a compact represen-
tation of systems, but a brute force analysis of the model may often require the exhaustive search
of the reachability tree, thus making its computational complexity exponential as well. There are
ways to mitigate the complexity involved in the analysis of the model by using techniques that
are primarily based on the structure of a net rather than on its behavior. Examples of these tech-
niques areincidence matrix analysisandmodular synthesis. Although these techniques have been
extensively investigated in the Petri net literature, so far they have been used in the context of
Supervisory Control only by Holloway and Krogh [Holloway 90, Krogh 91, Holloway 92a].

We are finally ready to state the goal of this research:“Investigate the use of Petri nets models
within the framework of Supervisory Control.”

The fulfillment of this goal requires several steps.

1. At the formal language level, we need to study Petri net languages in the context of Super-
visory Control. This will allow us to characterize the class of control problems that may
be solved by Petri net models, i.e., the class of problems for which a Petri net supervisor
exists. In particular, we need to consider the closure properties of Petri net languages under
the operators used in Supervisory Control theory.

2. At the discrete event system level, we need to study the counterpart on a Petri net structure
of the linguistic operators required in the design of a supervisor. Wonham has proposed
an algorithm which uses three different operators: shuffle, selfloop and intersection. We
propose an alternative design that requires only one operator: concurrent composition. The

CHAPTER 1. INTRODUCTION 9

counterpart of this operator on the net structure can be easily defined and preserves the
modularity of the overall system.

It is often the case that once the coarse structure of a supervisor has been obtained, by
concurrent composition of the system and specification modules, we need to refine the net,
to avoid reaching a set of undesirable markings. We need to derive refinement procedures
which preserve the modular structure of the net in this step as well.

3. At the model level, we need to make full use of the Petri net analysis techniques to efficiently
validate a Petri net supervisor, i.e., to prove that the supervisor has the desired properties.

We will explore two different techniques. The first one is based on incidence matrix analysis,
in which the reachability set of a marked net is represented by the integer solutions of a set
of linear inequalities. Classic incidence matrix analysis is based on the solution of the state
equation of a net. This approach, however, has been shown useless [Colom 89] in determin-
ing some properties of net systems such as the existence of home markings, i.e., markings
that may be reached by any marking in the reachability set of a Petri net. Determining the
existence of home markings is a problem essentially equivalent to that of determining if a
net is nonblocking, which is an important property of discrete event systems. Thus, we need
to modify this approach in order to be able to use this analysis technique in the context of
Supervisory Control.

A second area of our research is the use of modular synthesis techniques for nets with
uncontrollable transitions, i.e., transitions that may not be prevented from firing by a control
agent. We will explore a class of specification, called mutual exclusion constraints, that
have also been considered in [Krogh 91]. Our aim is that of efficiently deriving a Petri net
structure for a supervisor for this class of problems.

1.4 Organization of the Thesis

This chapter has introduced the topic of the thesis and stated the objectives of research.
Chapter 2 discusses in depth the literature relevant to the present research.
Chapter 3 introduces the basic notation on Petri nets, formal languages and Supervisory Con-

trol.
Chapter 4 discusses the use of Petri nets in the framework of Supervisory Control. Firstly,

it is shown that the trimming of an unbounded Petri net is not always possible; this leads to the
definition of a class of Petri net languages, that may be generated by nonblocking generators.
Secondly, necessary and sufficient conditions for the existence of a Petri net supervisor under
the hypothesis that the system’s behavior and the legal behavior are both Petri net languages are
derived. Finally, by means of an example, it is shown that Petri net languages are not closed under
the supremal controllable sublanguage operator.

Chapter 5 shows how Petri nets may be used to design a supervisor. The design requires two
steps. In the first step, a coarse structure for a supervisor is synthesized by means of concurrent
composition of different modules. In the second step, the structure is refined to avoid reaching
forbidden markings. We show that for conservative Petri nets there exists a standard refinement
procedure that only requires introducing new arcs and possibly duplicating some transitions, i.e.,
no new places are introduced. In both steps, the use of Petri nets allows us to keep the structure of
the model ‘small’.

Chapter 6 discusses how incidence matrix analysis for Petri net models may be used to validate
supervisors. A new class of P/T nets, called Elementary Composed State Machine nets, is defined.
The reachability problem for this class can be solved by incidence matrix analysis. In fact it is
possible to derive a set of linear inequalities that exactly defines the set of reachable markings.

CHAPTER 1. INTRODUCTION 10

Thus, important properties of discrete event systems, such as the absence of blocking states or
controllability, may be analyzed by Integer Programming techniques.

Chapter 7 defines a class of specifications, called generalized mutual exclusion constraints, for
discrete event systems modeled using P/T nets. These specifications may be easily enforced on a
net system where all transitions are controllable, by a set of places called monitors. However, when
some of the transitions of the net are uncontrollable this technique is not always applicable. For
some classes of nets, we prove that mutual exclusion constraints may always be enforced by mon-
itors, even in the presence of uncontrollable transitions. For one of these classes, marked graphs
with control safe places, we compare a monitor-based solution of mutual exclusion problems with
several supervisory based solutions.

Chapter 8 concludes the thesis with a discussion of the original contributions and listing pos-
sible further directions of research.

Appendix A reviews some basic concepts of formal languages and Petri net languages.
Appendix B is a short introduction to Supervisory Control and supervisory design techniques.
Appendix C is a glossary of the notation used in the thesis.

Chapter 2

LITERATURE REVIEW

The literature of interest to this research covers different topics. Firstly, we review the work done in
Supervisory Control. This provides the theoretical basis of our research. Secondly, it is interesting
to compare PN with other logical models that have been used in Supervisory Control. Thirdly,
since our approach is based on formal languages, we review the work on Petri net languages.
Finally, we consider the efficient validation of PN models, using techniques based on incidence
matrix analysis, reduction rules, and synthesis operators.

2.1 Supervisory Control Theory

The supervisory theory by Ramadge and Wonham is so far the most comprehensive theory for
the control of discrete event systems. It is based on the concept of asupervisor[Ramadge 83,
Ramadge 87], i.e., an agent that is capable of disabling the controllable transitions of a DES in
response to the traces of events generated. The Supervisory Control Problem (SCP) consists in
designing a supervisor which restricts the traces generated by the system within a legal behavior.
If the legal behavior is acontrollable language[Wonham 87] a supervisor exists. If the legal
behavior is not controllable, we have to further restrict the system’s behavior to thesupremal
controllable sublanguagefor which a supervisor exists. The authors prove in these seminal papers
that the supremal controllable sublanguage always exists (but may be the empty language), and in
the regular case may be determined with a finite procedure.

In [Lafortune 90a] a new control problem is studied: theSupervisory Control Problem with
Blocking(SCPB). Here it is assumed that in some cases the solution to the SCP (supremal control-
lable sublanguage) may be too conservative. A dual concept is defined — theinfimal controllable
superlanguage— and is used to determine a supervisor that may also permit blocking in order
to achieve a larger behavior. In [Lafortune 90a] Lafortune and Chen introduce two performance
measures (in terms ofsatisficingandblocking), and techniques to improve each of these two con-
flicting measures. An extension of this work is [Lafortune 91] where theSupervisory Control
Problem with Tolerance(SCPT) is defined. Given a desired and tolerated behavior, the problem
is that of designing a controller such that the controlled system never goes beyond the tolerated
behavior and achieves as much as possible of the desired behavior. Under very general hypotheses
on desired and tolerated behavior, Lafortune and Lin show that a solution to SCPT exists and is
unique, but may be blocking. A non blocking solution exists but is not necessarily unique.

In [Cieslak 91] Cieslaket al., discuss and solve theSupervisory Control and Observation
Problem(SCOP) and theDecentralized Supervisory Control Problem(DSCP). In SCOP the as-
sumption is that a mask is present between the controlled system and supervisor, so that the super-
visor cannot observe all the transitions, or cannot distinguish between some of them. In DSCP it
is assumed that the control action is enforced by local supervisors that control only subsystems. In

11

CHAPTER 2. LITERATURE REVIEW 12

[Lin 88, Lin 90] Lin and Wonham discuss the Decentralized SCOP (DSCOP) where both partial
observations and decentralized control are incorporated into the control structure. However, the
only mask operator considered in this paper is the language projection operator.

In [Brave 90] Brave and Heymann definestabilizationas the ability of a discrete event process
to reach a set of target states from an arbitrary initial state and then remain there indefinitely. A
slightly different problem that the authors examine is recovery under control failure. In both cases
they present design algorithms for controllers that improve the stabilization of processes.

In [Ushio 90] Ushio discusses the conditions under which afinite state supervisor(FSS) may
be constructed to solve a SCP. From [Ramadge 87] it was known that a FSS exists when both
system’s behavior and specification language are regular. Here the author derives necessary and
sufficient conditions for the general case.

The case of the infinite state supervisor is discussed by Sreenivas and Krogh [Sreenivas 92].
They use Petri nets with inhibitory arcs (PNIA), which are known to have a modeling power
equivalent to Turing machines, to describe infinite state systems. Thus, they prove that a PNIA
supervisor exists if the system’s and specification behaviors are Turing computable languages.
However, important properties, such as determining if the behavior of a PNIA is controllable, are
undecidable.

In [Ramadge 86, Wonham 88b] amodular approach to the design of supervisors is consid-
ered. The specification language is composed of different specifications, each enforced by a single
supervisor. A global control law can be enforced by the conjunction of all the supervisors. Unfor-
tunately in the general case the resulting system may be blocking. When the languages controlled
by each supervisor are non-conflicting, however, the non-blocking condition is assured as well.

In [Ramadge 89b, Tadmor 89, Tsitsiklis 87] different problems of computation and the re-
lated issue of computational complexity are considered. A review of the theory is presented in
[Ramadge 88, Ramadge 89b, Wonham 88a].

2.2 Logical Models for Discrete Event Systems

Numerous approaches to the modeling of discrete event systems have appeared in the literature.

2.2.1 Transition Models

Aveyard [Aveyard 74] presents a Boolean matrix equation model for a class of DES in which
the state change associated with each event occurrence is deterministic, and in which all units or
entities are permanent. The model, one of the first to be presented, permits checking of simple
properties such as whether the system is deterministic and if it will hang or cycle.

Ramadge [Ramadge 89a] introduces Büchi automata in the modeling of DES. The model is
used to extend the concept of controllable language to non-finite strings and to derive conditions
for the existence of a supervisor to implement a prescribed closed-loop behavior. Several inter-
esting control synthesis problems have a computationally tractable solution when Büchi automata
models are used.

2.2.2 Temporal Logic

Hailpern and Owicki [Hailpern 83] usetemporal logic(a formalism introduced by Pnueli [Pnueli 79]
for formalizing the semantics of concurrent programs) to model computer communication proto-
cols. The model is used for the modular verification of safety and liveness for parallel processes.

The temporal logic formalism is applied by Ostroff and Wonham [Ostroff 90b, Ostroff 90a]
to the control of real-time discrete event systems. Temporal logic is a useful tool in the formal-

CHAPTER 2. LITERATURE REVIEW 13

ization of the control problem. However the validation of the model is based on theorem proving
techniques and is difficult to perform.

2.2.3 Communicating Processes

Milne and Milner [Milne 79] define concurrent processes by means of a net algebra and define a
minimal set of operations for composing processes. The final result of this research is presented
in [Milner 80], where the Calculus of Communicating Systems (CCS) is introduced. CCS is one
of the standard models for concurrent systems on which recent and on-going research is focused.
In [De Cindio 83] De Cindioet al. compare CCS with Petri nets. They prove that CCS defines a
class of concurrent systems composed of interacting sequential automata. In fact the CCS models
are isomorphic to a subclass of Petri nets, Superposed Automata Nets defined in [De Cindio 82].

Inan and Varaiya [Inan 88] present a class of discrete event models calledfinitely recur-
sive processeswhose formal structure is based on Hoare’s communicating sequential processes
[Hoare 85]. The descriptive power of the model and its use in performance evaluation is also in-
vestigated. The authors prove that their formalism can easily model any Petri net. However the
proof is limited to ordinary Petri nets: when the multiplicity of the arcs is greater than one, the
complexity of the finitely recursive process grows and nondeterminism needs to be introduced.

2.2.4 Controlled Petri Nets

Several authors have used a particular Petri net model, calledcontrolled Petri nets, within the
framework of Supervisory Control. Controlled PN have been introduced by Ichikawa and Hi-
raishi [Ichikawa 88a] to study the input-output behavior of discrete event models. This model is
a standard PN with the addition ofexternal input places, whose marking is given by an external
function. It is furthermore assumed that only the marking of a set of so calledexternal output
placesmay be observed. In the paper, Ichikawa and Hiraishi restrict the firing policy on the net to
be decision-free, i.e., all enabled transitions should fire simultaneously. Under these hypotheses
the modeling power of the net is increased by the capability of detecting whether a place is empty;
they can prove that this model is equivalent to Turing machines.

Krogh [Krogh 87] applies controlled PN to Supervisory Control. He assumes that each tran-
sition is associated to at most one external input place and studies how the behavior of the net
can be restricted within a certain behavior by a particular marking function for the external input
places, i.e., a particular control law. This control law is implementing a state feedback rather than
a trace feedback, i.e., it is a function of the actual marking of the system rather than a function of
the string of events generated by the system. The author defines the control law that generates the
supremal controllable sublanguage as themaximally permissible feedback. He also notices that
the maximally permissible feedback may not be unique because of the particular firing policy that
permits the simultaneous firing of enabled transitions.

Ushio and Matsumoto [Ushio 88] derive necessary and sufficient conditions for the uniqueness
of the maximally permissible feedback on controlled PN. In a subsequent paper [Ushio 89], Ushio
also derives necessary and sufficient conditions for the existence of a control law that satisfies a
given specification.

Holloway and Krogh [Holloway 90, Krogh 91] show that, for restricted classes of nets and
restricted specifications, the control problem may be solved with great computational efficiency
by analysis of the net structure. The class of controlled Petri nets considered is cyclic marked
graphs and the admissible specifications consist of forbidden markings that simultaneously assign
tokens to one or more set of places. Although these restrictions are certainly heavy, the authors
show an interesting manufacturing example that requires the coordination of automated guidance
vehicles. Liveness properties under control are discussed in [Holloway 92a].

CHAPTER 2. LITERATURE REVIEW 14

The main characteristic of the controlled PN approach to supervisory control is the fact that
no transition structure for a controller is given. The control law is a function of the actual marking
of the net, but need to be computed at each step, whereas if a transition structure is given for a
supervisor, a closed-loop model can be constructed and analyzed to ensure that it has the desired
properties.

2.3 Petri Net Languages

Baker [Baker 72] is one of the first to introduce the basic idea of associating a language with a Petri
net and using this language to describe the behavior of the net. In his Master’s thesis [Baker 73],
Petri nets are considered in the context of formal language theory, and their prefix language is
studied.

In Hack [Hack 75a, Hack 75b], two basic language classes are distinguished: the prefix lan-
guage and the marked language. Different languages which result from different types of transition
labeling are also considered. For each of these classes, simple closure properties, characterizations
and decidability problems (e.g., for membership, emptiness, and finiteness) are obtained.

A survey and tutorial on Petri net languages is presented in [Peterson 81] Chapter 6. Here
the definition and classification of these languages is given; the closure properties of Petri net
languages under several form of composition (union, intersection, concatenation, concurrency,
and substitution) and under some operations (reversal, complement, and indefinite concatenation)
are examined; the relationship between Petri net languages and other classes of formal languages
are investigated.

Another comprehensive tutorial on Petri net languages is a paper by Jantzen [Jantzen 87].
Closure properties and relationship among the different classes of Petri net languages are reported
with additional results, not presented by Peterson.

Parigot and Peltz [Parigot 86] have characterized PN languages in terms of logical formalism.
The language power of Petri nets is shown to be greater than that of finite automata as a result
of the additional ability of Petri nets to test if a string of parentheses is well formed. The logical
formalism may be used to prove that a given language is a Petri net language and to construct a
Petri net having a givenfinite behavior. Peltz [Peltz 86] has also extended the study to theinfinite
sequentialbehavior of Petri nets.

2.4 Incidence Matrix Analysis of Petri Nets

Incidence matrix and related analysis techniques are used by several authors to validate properties
of P/T nets.

Colom [Colom 89] develops a methodology for the verification of assertions on P/T nets in
terms of markings and firing count vectors. This approach is extremely general, i.e., can be applied
to any P/T net but, unfortunately, can only guarantee necessary or sufficient conditions. There
exists assertions, such as determining if a marking is a home state, for which neither a necessary
nor a sufficient condition can be given. Within this framework, Silva and Colom [Silva 89a] give
algorithms to efficiently compute the structural synchronic invariants of P/T nets.

Berthomieu [Berthomieu 87] uses the set of linear equations given by the P-semiflows to rep-
resent the space of reachable markings. In this case, only properties that depend on the markings
can be proved. However, the author also shows that it is possible to prove some properties that
depend on the firing count vector by adding to the net new places whose marking indicates the
number of times a given transition has fired.

Johnen [Johnen 87] uses an hybrid approach, based partly on incidence matrix analysis and
partly on the analysis of the state space, to verify that a given marking is a home state.

CHAPTER 2. LITERATURE REVIEW 15

Ichikawa and Hiraishi study under which conditions a firing count vector~σ, satisfying the state
equation of a Petri net, yields a firing sequence. In [Ichikawa 88b], as reported in [Murata 89], they
prove that in acyclic nets,~σ always yields a firing sequence. In [Ichikawa 88a, Murata 89] other
classes of nets, such as trap-circuit nets, trap-containing-circuit nets, etc., are considered. For these
classes, there exist necessary and sufficient conditions, based on the analysis of the firing subnet,
to determine if~σ gives a firing sequence. Murata also discusses reachability in marked graphs in
[Murata 77].

Avrunin et al. [Avrunin 91] use a formalism similar to Petri net incidence matrix analysis for
verifying properties of concurrent systems described as finite state automata.

2.5 Synthesis and Reduction of Petri Nets Models

In thesynthesisof Petri net models there are two main approaches:bottom-upandtop-down. Fol-
lowing the first approach a complete net is constructed combining subnets under given operators;
in the second approach, transition and places in a net can be replaced by a more detailed subnet.
In both cases the synthesis rules are such as to preserve some properties of the original modules.

A complementary approach is that of definingreduction rulesthat preserve the properties of
interest, while simplifying the structure of the net to make analysis easier.

Berthelot [Berthelot 86, Berthelot 87] has presented several reduction rules. In [Berthelot 86]
he also discusses the composition of nets by common transitions as a complementary technique to
the reduction methods. The classes of reduction rules include:place transformations, that reduce
the net structure by eliminating redundant places but do not modify the state space;transition
transformations, which by fusing transitions reduce both structure and state space of the net. The
properties preserved by these transformations are: covering with P-semiflows (i.e., conservative-
ness), proper termination, home states and liveness. The author also proves that there are classes
of nets to which these transformations can be repeatedly applied to reduce the net to a single tran-
sition. Two such classes are: live and bounded marked graphs (a structural class); live, bounded,
and persistent nets (a behavioral class).

Best and Fernández [Best 86] define the notion ofS-net, a net in which each transition has at
most one input place and one output place. AnS-decompositionis a partition of a net into S-net
components.

Hack [Hack 72, Hack 74] studies the composition of state machines, defining astate machine
decomposable netas a net constructed by composition of strongly connected state machines along
common transitions.

The class of nets obtained by composition of state machine modules is namedSuperposed
Automata Netsby De Cindio,et al. [De Cindio 82].

Narahari and Viswanadham [Narahari 85] define aunion operator1 for pure Petri nets, i.e., PN
with no selflooping transitions. Two theorems are presented, stating that the P-semiflows and/or
the T-semiflows of the union of two Petri nets can be immediately expressed — in specific cases
— in terms of the invariants of the two subnets. The invariants are used to analyze important
qualitative aspects of the system such as absence/existence of deadlocks. Finally, the authors
illustrate how this technique may be applied to the modeling of flexible manufacturing systems.

Beck and Krogh [Krogh 86] present a methodology for constructing a class of P/T nets for
modeling discrete processes. The synthesis of Petri nets is realized by joining subnets along
commonsimple elementary paths. This composition maintains the properties ofsafenessand
liveness; the P-semiflows of the resulting net can also be easily found in term of the P-semiflows

1This operator is different from the union operator as defined in [Peterson 81], which given two Petri nets generating,
respectively, languagesL1 andL2 constructs a Petri net generating the languageL = L1 ∪ L2.

CHAPTER 2. LITERATURE REVIEW 16

of the subnets. The authors introduce a modified Petri net model [Beck 86] more suitable for the
modeling of manufacturing systems by means of the synthesis approach they propose.

Datta and Gosh [Datta 84, Datta 86] present a technique for the modular synthesis of PN. The
nets being considered areregular nets, i.e., nets where forks and joins are symmetrical, and where
the subnets between a fork and a join are marked graphs. The modules are connected through a
set of input/output places, that act as mailboxes. Finally, it is possible to give rules to connect the
modules in a way that preserves liveness and boundedness.

Zhou [Zhou 90] has studied a formal methodology for the synthesis of Petri nets in manu-
facturing. The approach followed is calledhybrid, in the sense that it is partially top-down and
partially bottom-up. The author has also discussed how liveness properties for systems with shared
resources depend on the value of the initial marking of the net.

Koh [Koh 92] has studied the compositions of live and bounded circuits along paths. The
composition allows the fusion of overlapping paths, and has been extended to colored Petri nets.
The author has studied under which conditions the composed system is live and bounded.

Chapter 3

BASIC NOTATION

3.1 Petri Nets

3.1.1 Place/Transition Nets

A Place/Transition net(P/T net) is a structureN = (P, T, Pre, Post) where:

• P is a set ofplacesrepresented by circles,|P| = m;

• T is a set oftransitionsrepresented by bars,|T| = n;

• Pre : P ×T → IN is thepre-incidence functionthat specifies the arcs directed from places
to transitions;

• Post : P × T → IN is thepost-incidence functionthat specifies the arcs directed from
transitions to places.

HereIN = {0, 1, 2, . . .}. It is assumed thatP ∩ T = ∅ andP ∪ T 6= ∅.
A net ispure if it has no selfloops, i.e., if[Pre(p, t) = 0 ∨ Post(p, t) = 0] for every placep

and for every transitiont. If a net is pure the incidence functions can be represented by a single
matrix, theincidence matrixof the net, defined asC(p, t) = Post(p, t)− Pre(p, t).

Thepresetandpostsetof a transitiont are respectively

•t = {p ∈ P | Pre(p, t) > 0},
t• = {p ∈ P | Post(p, t) > 0}.

Thepresetandpostsetof a placep are respectively

•p = {t ∈ T | Post(p, t) > 0},
p• = {t ∈ T | Pre(p, t) > 0}.

A trap is a set of placesT ⊆ P such that
⋃

p∈T
p• ⊆

⋃

p∈T

•p.

A trap isminimal if it is not the superset of another trap. A trap isbasic if it is not the union of
other traps.

A siphonis a set of placesS ⊆ P such that
⋃

p∈S

•p ⊆
⋃

p∈S
p•.

17

CHAPTER 3. BASIC NOTATION 18

A P-semiflow(or nonnegative P-invariant) is a vectorY : P → IN , such thatY ≥ ~0 and
Y T · C = ~0. Thesupportof Y is QY = {p ∈ P | Y (p) > 0}.

The reversalof N = (P, T, Pre, Post) is the netNR = (P, T, Post, Pre), i.e., a new net
where the direction of all arcs ofN is reversed.

A state machineis a P/T net such that each transition has exactly one input arc and one output
arc. A marked graphis a P/T net such that each place has exactly one input arc and one output
arc.

A P/T net isconnectedif in the underlying graph1 there exists a path (not necessarily directed)
from any vertex to all others;strongly connectedif there exists a directed path from any vertex to
all others;acyclic if no directed path forms a cycle.

3.1.2 Marked Nets

A markingis a vectorM : P → IN that assigns to each place of a P/T net a non-negative integer
number of tokens, represented by black dots.M(p) denotes the number of tokens assigned by
markingM to placep. The set of all markings defined on a netN = (P, T, Pre, Post) is IN |P |.

A net systemor marked net〈N, M0〉 is a netN with an initial markingM0.
A transitiont ∈ T is enabledat a markingM if M ≥ Pre(·, t). If t is enabled atM , thent

may fire yielding a new markingM ′ with M ′ = M + C(·, t). We will write M [t〉 M ′ to denote
thatt may fire atM yieldingM ′.

A firing sequencefrom M0 is a (possibly empty) sequence of transitionsσ = t1 . . . tk such
thatM0 [t1〉 M1 [t2〉 M2 · · · [tk〉 Mk. We will also writeM0 [σ〉 Mk to denote that we may fire
σ atM0 yieldingMk.

A markingM is reachablein 〈N, M0〉 if there exists a firing sequenceσ such thatM0 [σ〉 M .
Given a marked net〈N, M0〉, the set of firing sequences (also calledlanguageof the net) is

denotedL(N, M0) and the set of reachable markings (also calledreachability setof the net) is
denotedR(N, M0).

Let markingM be reachable from markingM0 by firing a sequence of transitionsσ. Then
the following state equationis satisfied:M = M0 + C · ~σ, where~σ : T → IN is a vector of
non-negative integers, called thefiring count vector. ~σ(t) represents the number of times tran-
sition t appears inσ. The set of markingsM such that there exists a vector~σ satisfying the
previous state equation is called thepotentially reachable setand is denotedPR(N,M0). Note
thatPR(N,M0) ⊇ R(N, M0).

Thefiring subnetgiven by a firing count vector~σ consists of all the transitionst 3 ~σ(t) ≥ 0,
and of their input and output places.

Let B be a basis of P-semiflows of the netN . A markingM ∈ PR(N, M0) satisfies the fol-
lowing system of equations:BT ·M = BT ·M0. The set of markings satisfying the previous system
of equations is denotedPRB(N, M0) [Colom 89]. Note thatPRB(N, M0) ⊇ PR(N, M0).

A marked net〈N, M0〉 is:

• Bounded, if there exists a nonnegative integerk such thatM(p) ≤ k for every placep and
for every markingM ∈ R(N, M0);

• Safe(or 1-bounded), if M(p) ≤ 1 for every placep and for every markingM ∈ R(N, M0);

• Conservative, if there exists a vector of positive integersY such thatY T ·M = Y T ·M0

for every markingM ∈ R(N, M0);

• Live, if from every markingM ∈ R(N, M0) there exists a firing sequence containing all
transitions;

1The graph underlying a Petri net has as vertices places and transitions, and as directed edges the arcs specified by
Pre andPost.

CHAPTER 3. BASIC NOTATION 19

• Reversible, if the initial marking M0 is reachable from every reachable markingM ∈
R(N, M0).

A placep of a marked net〈N, M0〉 is implicit [Silva 85] if L(N,M0) = L(N ′,M ′
0), where

〈N ′,M ′
0〉 is the marked net obtained from〈N, M0〉 by removing placep and all its input/output

arcs. A placep of a netN is structurally implicit if there exists an initial markingM0 such thatp
is implicit in 〈N,M0〉.

3.2 Formal Languages

Let Σ be an alphabet, i.e., a set of symbols. A languageL overΣ is a set of strings composed with
symbols inΣ, i.e.,L ⊆ Σ∗.

Let Σ1, . . . , Σn be alphabets and letΣ = Σ1∪ . . .∪Σn. Given a stringw ∈ Σ∗, theprojection
(or restriction) of w on Σi is the stringw ↑i obtained fromw by deleting all the symbols not
belonging toΣi. Formally the projection operator is a mapping fromΣ∗ to Σ∗i .

Let Σ1, . . . , Σn be alphabets; letL1, . . . , Ln be languages defined on them; letΣ = Σ1∪ . . .∪
Σn. Theconcurrent composition(or synchronization) of L1, . . . , Ln, denotedL = L1 ‖ . . . ‖ Ln,
is the language overΣ defined as

L = {w ∈ Σ∗ | w ↑i= wi ∈ Li, i = 1, . . . , n}.

As a particular case, when the alphabetsΣ1, . . . ,Σn are disjoint, i.e.,Σi ∩ Σj = ∅ (i 6= j), L
is called ashuffle languageand is denoted byL = L1 ‖d . . . ‖d Ln.

Let L be a language onΣ, and letΣe be a disjoint alphabet. Theselfloopof L with respect to
Σe is the language

L′ = L ‖d Σ∗e.

Let Σ1, . . . , Σn be alphabets; letL1, . . . , Ln be languages defined on them; letΣ = Σ1∩ . . .∩
Σn. The intersectionof L1, . . . , Ln, denotedL = L1 ∩ . . . ∩ Ln, is the language overΣ defined
as

L = {w ∈ Σ∗ | w ∈ Li, i = 1, . . . , n}.

3.3 Petri Net Languages

This section presents the notation used for Petri net languages. A more detailed review of Petri net
languages is presented in Appendix A.

We will represent a discrete event system (DES) as alabeled Petri net(or Petri net generator)
[Jantzen 87, Peterson 81], i.e., as a 4-tupleG = (N, `, M0, F) where

• N = (P, T, Pre, Post) is a Petri net structure;

• ` : T → Σ is a labeling function that assigns to each transition a label from the alphabet of
eventsΣ and will be extended to a mappingT ∗ → Σ∗ as shown in Appendix A.1;

• M0 is an initial marking;

• F is a finite set of final markings.

The two languages associated withG are theL-language(also calledmarked behaviorin
the context of Supervisory Control) and theP-language(also calledclosed behavior) defined as
follows [Peterson 81].

CHAPTER 3. BASIC NOTATION 20

Given a DESG = (N, `, M0, F), theL-type languageof G is

Lm(G) = {`(σ) ∈ Σ∗ | σ ∈ T ∗,M0 [σ〉 M ∈ F},

and theP-type languageof G is

L(G) = {`(σ) ∈ Σ∗ | σ ∈ T ∗,∃M ′ 3 M0 [σ〉 M ′}.

Note that in this definition of labeled net we are assuming that` is aλ-free labeling function,
according to the terminology of [Peterson 81], i.e., no transition is labeled with the empty stringλ
and two (or more) transitions may have the same label. The classes of L-type and P-type languages
generated by labeled nets is denotedL andP respectively.

A deterministicPN generator [Jantzen 87] is such that the string of events generated from
the initial marking uniquely determines the sequence of transitions fired. Formally, a DESG =
(N, `,M0, F) is deterministic if∀t, t′ ∈ T , with t 6= t′ and ∀M ∈ R(N,M0), M [t〉 ∧
M [t′〉 =⇒ `(t) 6= `(t′). We will always assume that the generators considered here are determin-
istic. The classes of L-type and P-type PN languages generated by deterministic PN generators are
denoted, respectively,Ld andPd. Note thatPd ⊂ P andLd ⊂ L (strict inclusion) [Jantzen 87].

3.4 Supervisory Control

This section presents the language notation used for Supervisory Control. A more detailed review
of Supervisory Control is presented in Appendix B.

Let L be a language on alphabetΣ. Its prefix closureis the set of all prefixes of strings inL:
L = {σ ∈ Σ∗ | ∃τ ∈ Σ∗ 3 στ ∈ L}. A languageL is said to beclosedif L = L.

Two languagesL1 andL2 are said to benon-conflicting[Wonham 88b] ifL1 ∩ L2 = L1∩L2.
In the following, letG = (N, `, M0, F) be a DES with alphabet of eventsΣ.
G is nonblockingif any string that belongs to its closed behavior may be completed to a

string that belongs to the marked behavior. A deterministic DES is non-blocking if and only if
L(G) = Lm(G).

A languageK ⊂ Σ∗ is said to beLm(G)-closedif K∩Lm(G) = K∩Lm(G). In the case that
K ⊆ Lm(G), this definition is reduced to the usual definition ofLm(G)-closed:K = K∩Lm(G)
[Ramadge 89b].

The alphabet of eventsΣ is partitioned into two disjoint subsets:Σc, the set ofcontrollable
events, andΣu, the set ofuncontrollable events. The controllable events may be disabled by a
controlling agent in order to restrict the behavior of the system within a legal behavior, while
uncontrollable events may never be disabled.

A languageK ⊂ Σ∗ is said to becontrollablewith respect toL(G) if KΣu ∩ L(G) ⊆ K
[Ramadge 87]. The set of all languages controllable wrtL(G) is denotedC(G).

If a languageL ⊂ Σ∗ is not controllable with respect toL(G) we may compute itssupremal
controllable sublanguage[Wonham 87] defined as:L↑ = sup{K ⊆ L | K ∈ C(G)}.

Chapter 4

ON THE EXISTENCE OF PETRI NET
SUPERVISORS

4.1 Introduction

This chapter discusses some theoretical issues related to the use of Petri nets in Supervisory Con-
trol Theory. We are interested in obtaining necessary and sufficient conditions for the existence of
a Petri net supervisor under the hypothesis that the system’s behavior and the legal behavior are
both Petri net languages.

In the case of systems and specifications modeled by finite state machines (i.e., by generators
of regular languages), Ramadge and Wonham [Wonham 87] have proved that the supervisor may
also be modeled as a finite state machine. The PN models generally considered in Supervisory
Control are conservative PN, a subclass of P/T nets whose set of reachable markings is finite. Thus
the class of languages generated by these models is equivalent to the class of regular languages,
and all the results for regular languages may apply to them as well.

Here we discuss the use of more general models with a possibly infinite set of reachable
markings. We consider three problems [Giua 92c].

• The first problem regards the trimming of a blocking system, i.e., the modification of its
structure in order that no blocking state may be reached while preserving its marked behav-
ior. We prove that the trimming of a PN is not always possible and we define a new class of
PN languages that may be generated by nonblocking generators.

• The second problem regards the existence of a PN supervisor, i.e., a supervisor whose con-
trol action is implicit in its net structure. The advantage of such a supervisor, as opposed to a
supervisor given as a feedback function, is that a closed loop model of the controlled system
may be constructed and analyzed using the same PN analysis techniques that are used to
analyze the system. By suitable modification of the results given by Ramadge and Wonham
[Ramadge 87, Ramadge 89b] we are able to derive necessary and sufficient conditions for
the existence of supervisors as net systems.

• The final problem regards the closure of PN languages under extraction of the supremal
controllable sublanguage. In this case, by means of an example, we show that PN languages
are not closed under this operator.

4.2 Petri Nets and Blocking

A first issue when using Petri nets as discrete events models for supervisory control regards the
trimming of blocking net systems. The problem is the following: given a PN generatorG with

21

CHAPTER 4. ON THE EXISTENCE OF PETRI NET SUPERVISORS 22

Figure 4.1: Blocking system in Example 4.1.

Figure 4.2: Trimmed system in Example 4.1.

marked behaviorLm(G) and closed behaviorL(G) ⊃ Lm(G) we want to modify the structure
of the net so that no blocking markings may be reached, i.e., so thatL(G) = Lm(G).

On a simple model such as a state machine this may be done, trivially, by removing all states
that are reachable but not coreachable (i.e., no final state may be reached from them) and all their
input and output transitions.

On Petri net models the trimming may be more complex. In Chapter 5 is discussed the case of
conservative nets. If the Petri net is conservative the trimming may be done without major changes
of the net structure, in the sense that we have to add new arcs and possibly duplicate transitions
without introducing new places.

As the following example shows, unbounded Petri net models may require more extensive
changes of the net structure.

Example 4.1. Let G be the PN generator in Figure 4.1, withM0 = (100)T and set of final
markingsF = {(001)T }. The behaviors of this system are:Lm(G) = {amcbn | m = rn, n ≥ 0}
and L(G) = {amcbn | m ≥ rn, n ≥ 0}. The system is clearly blocking, since the string
w = ar+1c ∈ L(G), for example, cannot be completed to a string inLm(G) (assumingr > 1).
To avoid reaching a blocking state we require thatp2 contain a multiple ofr tokens when the
transition labeledc is allowed to fire. A possible solution is shown in Figure 4.2, where we have
introducedr − 1 new places and new transitions labeleda.

There are some cases, furthermore, in which the trimming of a net system is not possible. The
reason for this is given by the following theorem.

Theorem 4.1. There exist L-type Petri net languages whose prefix closure is not a P-type Petri net
language, i.e.,∃L ∈ L 3 L 6∈ P.

The proof of this theorem will be given by means of the next example and the following
proposition.

CHAPTER 4. ON THE EXISTENCE OF PETRI NET SUPERVISORS 23

Figure 4.3: Blocking systemG in Example 4.2.

Example 4.2. Let G be the PN generator in Figure 4.3.(a), withM0 = (1000)T and set of final
markingsF = {(0001)T }. The behaviors of this system are:Lm(G) = {ambamb | m ≥ 0}
andL(G) = {ambanb | m ≥ n ≥ 0}. From the reachability tree of the system, shown in
Figure 4.3.(b), it is clear that the system is blocking. To avoid reaching a blocking state we require
that p2 be empty before firing the transition inputting intop4. However, sincep2 is unbounded
this may not be done with a simple P/T structure. It is possible to introduce an inhibitor arc from
p2 to the transition inputting intop4. Inhibitor arcs increase the modeling power, and the analysis
complexity, of Petri nets to that of a Turing machine, thus we cannot properly consider these
models as P/T nets. Petri nets with inhibitory arcs have been studied in the context of Supervisory
Control by Sreenivas and Krogh [Sreenivas 92].

We may formally prove that the prefix closure of the marked language of the systemG dis-
cussed in Example 4.2 is not a P-type Petri net language. The proof is based on the pumping
lemma for P-type PN languages, given in [Jantzen 87].

Lemma 4.1 (Pumping lemma).Let L ∈ P. Then there exist numbersk, l such that any string
w ∈ L, with | w |≥ k, has a decompositionw = xyz with 1 ≤| y |≤ l such thatxyiz ∈ L,∀i ≥ 1.

Proposition 4.1. L = {ambamb | m ≥ 0} is not a P-type Petri net language.
Proof. Givenk andl according to the pumping lemma, letw = akbakb. Consider a partition

w = xyz, with 1 ≤| y |≤ l. Clearly b 6∈ y, since in this casexyiz 6∈ L for i 6= 1. However
if w = an︸︷︷︸

x

ap︸︷︷︸
y

aqbakb︸ ︷︷ ︸
z

, (n + p + q = k), or if w = akban︸ ︷︷ ︸
x

ap︸︷︷︸
y

aqb︸︷︷︸
z

, (n + p + q = k), then

xyiz 6∈ L for i 6= 1. HenceL is not a P-type Petri net language. ¦
We conclude this section with the definition of a new class of L-type Petri net languages whose

prefix closure can be generated by a deterministic nonblocking Petri net generator. This class will
play an important role in characterizing the existence of Petri net supervisors, as we will discuss
in the next section.

Definition 4.1. A languageL ∈ L (not necessarily deterministic) is said to bedeterministic P-
closed(DP-closed for short) if and only if its prefix closure is a deterministic P-type Petri net
language, i.e.,L ∈ Pd. The class of DP-closed Petri net languages is denotedLDP .

CHAPTER 4. ON THE EXISTENCE OF PETRI NET SUPERVISORS 24

As a side note, we point out that the classLDP that we have defined does not coincide with
any of the classes of PN languages generally considered in the literature [Jantzen 87]. The proof
follows from the fact thatLDP is not closed under intersection, as we show in Example 4.5, while
all previously defined classes of PN languages are closed under intersection.

4.3 Supervisor

A supervisor[Ramadge 87] is an agent that disables the controllable transitions of a system in
order to restrict its behavior within a legal behavior. Here we recall the fundamental definitions,
pointing to Appendix B.2 for a more detailed discussion.

Let us define acontrol inputas a subsetγ ⊆ Σ satisfyingΣu ⊆ γ (i.e., all the uncontrollable
events are present in the control input). Ifa ∈ γ, the eventa is enabled byγ (permitted to occur),
otherwisea is disabled byγ (prohibited from occurring); the uncontrollable events are always
enabled. LetΓ ⊆ 2Σ denote the set of all the possible control inputs. Formally, a supervisor is
a mapf : L(G) → Γ specifying, for each possible string of eventsw ∈ L(G) generated by
the systemG, the control inputγ = f(w) to be applied at that point. It is often the case that a
supervisor is given as another discrete event systemS that runs in parallel withG. The control
input at a given moment is represented by the events that are enabled inS, thus the functionf is
implicit in the structure ofS.

The objective is to design a supervisor that selects control inputs in such a way that the con-
trolled system’s behavior is restricted within a legal specification language. We consider the case
in which both the systemG and the supervisorS are given as discrete event systems. The closed
loop system under control is denotedS/G. Its closed behavior isL(S/G) = L(S) ∩ L(G) and
its controlled behavior isLm(S/G) = L(S/G) ∩ Lm(G) = L(S) ∩ Lm(G). Note that we are
assuming that the supervisor does not mark strings, i.e., the marked strings of the system under
control are all and only the marked strings of the uncontrolled system that survive under control.

The following two theorems, also reported in Appendix B.3, are due to Ramadge and Wonham
[Ramadge 87, Ramadge 89b] and give necessary and sufficient conditions for the existence of a
supervisor.

Theorem 4.2 ([Ramadge 87], P. 5.1).For nonemptyL ⊆ L(G) there exists a supervisorS such
thatL(S/G) = L if and only ifL is prefix closed and controllable.

Theorem 4.3 ([Ramadge 87], T. 6.1).For nonemptyL ⊆ Lm(G) there exists a nonblocking
supervisorS such thatLm(S/G) = L if and only ifL is Lm(G)-closed and controllable.

If the system and the supervisor are Petri net generators, it is possible to construct a PN model
of the closed loop system under controlS/G using the net counterpart of the intersection oper-
ator on languages [Peterson 81]. IfS andG are deterministic generators (as we always assume)
S/G is deterministic as well. Note also that while the closed behavior ofS/G is L(S/G), the
marked behavior ofS/G is not defined since the controlled behaviorLm(S/G) is not necessarily
a deterministic L-type PN language.

4.4 Existence of Petri Net Supervisors

In this section, we present some theorems which give necessary and sufficient conditions for the
existence of PN supervisors. In fact, although Theorem 4.2 and Theorem 4.3 specify under which
conditions there exist supervisors for a given control problem, it may well be the case that these
supervisors cannot be represented as Petri net generators, even if the system’s behavior and the
legal behavior are Petri net languages.

CHAPTER 4. ON THE EXISTENCE OF PETRI NET SUPERVISORS 25

Figure 4.4: SystemG in Example 4.3 and Example 4.5.

The first two theorems regard the case in which we want to restrict the closed behavior ofG
within the limits of a legal behaviorL.

Theorem 4.4. Let G be a nonblocking PN and letL ⊆ L(G) be a nonempty language. There
exists a PN supervisorS such thatL(S/G) = L if and only ifL is a controllable deterministic
P-type PN language, i.e.,L ∈ Pd ∩ C(G).

Proof. (If) SinceL ∈ Pd then there exists a PN generatorS 3 L(S) = L. S is the desired
supervisor. In fact, sinceL ∈ C(G) thenS, running in parallel withG, will never block an
uncontrollable transition ofG andL(S/G) = L(S) ∩ L(G) = L. (Only if) SinceL(S/G) = L
thenL is a P-type language for the PN representing the closed loop system andL ∈ Pd. AlsoL is
controllable according to Theorem 4.2. ¦

It may be interesting to consider the case in which the legal behaviorL is not a subset ofL(G).
In this case we are interested in restricting the system’s behavior toL∩L(G), and we simply need
to check whetherL ∩ L(G) satisfies the conditions of the previous theorem. It may well be the
case thatL 6∈ Pd ∩ C(G) butL ∩ L(G) ∈ Pd ∩ C(G), i.e., a PN supervisor for this problem may
exist even ifL is not a PN language or ifL is not closed and controllable. However, ifL ∈ Pd we
have the following theorem.

Theorem 4.5. Let G be a nonblocking PN and letL ⊆ Σ∗, with L(G) ∩ L 6= ∅, andL ∈ Pd.
There exists a PN supervisorS such thatL(S/G) = L ∩ L(G) if and only ifL ∈ C(G).

Proof. (If) The setsPd andC(G) are closed under intersection, as proved, respectively, in
[Jantzen 87, Ramadge 87]. HenceL ∩ L(G) ∈ Pd ∩ C(G) and by Theorem 4.4 there exists a PN
supervisorS 3 L(S/G) = L∩L(G). (Only if) SinceL(S/G) = L∩L(G) thenL∩L(G) ∈ Pd.
Also L∩L(G) is controllable by Theorem 4.2, i.e.,[L ∩ L(G)]Σu∩L(G) ⊆ L ∩ L(G) ⊆ L =⇒
[L∩L(G)]Σu ∩L(G) ⊆ L (since languages inPd are prefix closed)=⇒ LΣu ∩L(G) ⊆ L,=⇒
LΣu ∩ L(G) ⊆ L (sinceL ∈ Pd), henceL ∈ C(G). ¦

Let us consider now the case in which we want to restrict the marked behavior ofG within
the limits of a legal behaviorL. In this case, unfortunately, the necessary requirements thatL be
controllable andLm(G)−closed (by Theorem 4.3) are not sufficient to insure the existence of a
nonblocking PN supervisor even ifL ∈ Ld. The following example discusses this case.

Example 4.3. Let G be the PN generator in Figure 4.4, withΣu = ∅, M0 = (100)T , and set
of final markingsF = {(001)T }. The marked behavior of this system is:Lm(G) = {a∗ba∗b}.
Assume now that we want to restrict the marked behavior ofG to L = {ambamb | m ≥ 0} that is
clearly controllable andLm(G)−closed. However, sinceL 6∈ LDP (Proposition 4.1) there exists
no PN whose P-type language isL. L is the L-type language of the systemE in Figure 4.3.(a)
with set of final markingF = {(0001)}, that however does not qualify as a supervisor for this
problem, sinceLm(E/G) = L(E) ∩ Lm(G) ⊃ L.

CHAPTER 4. ON THE EXISTENCE OF PETRI NET SUPERVISORS 26

captionSystemG in Example 5.2.

The example shows the need to introduce the further requirement that the legal behaviorL be
DP-closed for insuring the existence of a PN supervisor.

Theorem 4.6. Let G be a nonblocking PN and letL ⊆ Lm(G) be a nonempty language. There
exists a nonblocking PN supervisorS such thatLm(S/G) = L if and only ifL ∈ LDP ∩ C(G)
andL is Lm(G)−closed.

Proof. (If) SinceL ∈ LDP then there exists a PNS 3 L(S) = L ⊆ L(G). S is the desired
supervisor. In fact: sinceL ∈ C(G), then clearlyL ∈ C(G); sinceL is Lm(G)−closed, then
Lm(S/G) = L(S) ∩ Lm(G) = L ∩ Lm(G) = L; S is nonblocking, sinceL(S/G) = L(S) ∩
L(G) = L ∩ L(G) = L = L(S/G). (Only if) SinceS is a nonblocking supervisor, thenL ∈
C(G) andL is Lm(G)−closed, by Theorem 4.3. We need to prove thatL = Lm(S/G) = L(S)∩
Lm(G) ∈ LDP . First note thatL(S) ∈ Pd, henceL(S) ∈ L ⊃ P ⊃ Pd [Jantzen 87]. (Note
thatL(S) although a deterministic P-type language may be a nondeterministic L-type language.)
SinceL is closed under intersection [Jantzen 87], thenL ∈ L. Also L = L(S/G) by the non
blocking hypothesis, henceL ∈ Pd (since it is the deterministic P-type language of closed loop
PN generator). It follows thatL ∈ LDP . ¦

Theorem 4.6 does not requireL to be deterministic. In fact we want to restrict the marked
behavior ofG to L by means of anon markingdeterministic supervisor, that effectively solely
constrains the closed behavior ofG. Hence it is sufficient thatL be a deterministic P-type language
in order to construct a deterministic supervisor. The following example will clarify this point.

Example 4.4. Let G be the PN generator in Figure 4.5, withΣu = {b}, M0 = (10)T , and set
of final markingsF = {(01)T }. The marked behavior of this system is:Lm(G) = {a∗ba∗}.
Assume now that we want to restrict the marked behavior ofG to L = {amban | m ≥ n ≥ 0}.
L is an L-type PN language and it can be proved that it is not deterministic, i.e., it cannot be
accepted by a deterministic generator with a finite set of final statesF . HoweverL ∈ LDP , since
L is the deterministic P-type language of the marked netS in Figure 4.6. SinceL is controllable
andLm(G)−closed,S is a proper supervisor and is such thatLm(S/G) = L.

We would like to extend Theorem 4.6 to the case in which the legal behaviorL is not a subset
of Lm(G). Unfortunately in this case the hypotheses of Theorem 4.6 are not sufficient to insure
the existence of a PN supervisor. In fact, it may be possible that, althoughL ∈ LDP , L∩Lm(G) 6∈
LDP .

Proposition 4.2. The class of DP-closed PN languagesLDP is not closed under intersection.

The proof of the proposition follows from the following example.

Example 4.5. Let G be the PN generator in Figure 4.4,M0 = (100)T , and set of final markings
F = {(001)T }. The marked behavior of this system is:Lm(G) = {a∗ba∗b} ∈ LDP . Consider the
languageL = {amb(bc)∗(a(bc)∗)mb | m ≥ 0}. ClearlyL ∈ LDP since it is the marked behavior
of the nonblocking generatorE in Figure 4.7, with the set of final markingsF = {(0001)T }.
UnfortunatelyL ∩ Lm(G) = {ambamb | m ≥ 0} 6∈ LDP , as we have shown in Proposition 4.1.

CHAPTER 4. ON THE EXISTENCE OF PETRI NET SUPERVISORS 27

Figure 4.5: SupervisorS in Example 5.2.

Figure 4.6: GeneratorE in Example 4.5 and Example 4.6.

CHAPTER 4. ON THE EXISTENCE OF PETRI NET SUPERVISORS 28

The problem in the previous example is thatL andLm(G) areconflicting, i.e.,L∩Lm(G) ⊃
L ∩ Lm(G). Hence, whileL ∩ Lm(G) ∈ Pd (sincePd is closed under intersection) it may be
the case thatL ∩ Lm(G) 6∈ Pd. If however the two languages arenot conflicting, we have that
L ∩ Lm(G) = L ∩ Lm(G) ∈ Pd.

Theorem 4.7. Let G be a nonblocking PN and letL ⊆ Σ∗, with Lm(G) ∩ L 6= ∅. There exists
a nonblocking PN supervisorS such thatLm(S/G) = L ∩ Lm(G) if L ∈ LDP ∩ C(G), L is
Lm(G)−closed,L andLm(G) are not conflicting.

Proof. The classL and the setC(G) are closed under intersection [Jantzen 87, Ramadge 87].
Also, by the non-conflicting hypothesis,L ∩ Lm(G) ∈ Pd. HenceL ∩ Lm(G) ∈ LDP ∩ C(G).
Finally sinceL is alsoLm(G)−closed we can write:L ∩ Lm(G) ∩ Lm(G) = L ∩ Lm(G) ∩
Lm(G) = L∩Lm(G) = L∩Lm(G), i.e.,L∩Lm(G) is Lm(G)−closed. By Theorem 4.6 there
exists a nonblocking supervisorS 3 Lm(S/G) = L ∩ Lm(G). ¦

The last theorem gives a sufficient, but not necessary, condition for the existence of a PN
supervisor. In fact while:L ∈ C(G) =⇒ L ∩ Lm(G) ∈ C(G) andL is Lm(G)−closed=⇒
L ∩ Lm(G) is Lm(G)−closed, the converse is not true. A necessary and sufficient condition for
the existence of a PN supervisor in the case the legal behaviorL is not a subset ofLm(G) may be
given, as a trivial corollary of Theorem 4.6, requiring thatL ∩ Lm(G) ∈ LDP ∩ C(G) and that
L ∩ Lm(G) beLm(G)−closed.

4.5 Petri Net Languages and Supremal Controllable Sublanguage

Our final result regards the closure of PN languages under thesupremal controllable sublanguage
operator↑ [Wonham 87]. This result has been known, at least partially, by the control community
but has never been published before to the best of our knowledge.

Proposition 4.3. The classesPd andLDP of PN languages are not closed under the↑ operator.

The proof of this proposition will be given by means of the following example.

Example 4.6. Let G be the PN generator in Figure 4.8, withΣu = {a}, M0 = (1000)T , and
set of final markingsF = {(0001)T }. Consider now the generatorE in Figure 4.7 with the set
of final markingsF = {(0001)T }. The two languagesL(E) ∈ Pd andLm(E) ∈ LDP are
not controllable. To show this we have drawn, in Figure 4.9, the reachability tree of the two
systems; sinceE refinesG, we have represented the arcs that belong to the reachability tree of
both marked nets with continuous lines, while the arcs that only belong to the reachability tree of
G have been represented by dotted lines.L(E) andLm(E) are not controllable because of the
presence of the dotted arcs associated to the uncontrollable transitiona. If we apply the↑ operator,
we obtain the two supremal controllable sublanguages:L(E)↑ = {ambam(bc)∗b | m ≥ 0} and
Lm(E)↑ = {ambam(bc)∗b | m ≥ 0}, that are the closed and marked behavior of the generator in
Figure 4.10.L(E)↑ 6∈ Pd, as can be proved using the pumping lemma in the same way we have
done in Proposition 4.1 (the stringw = akbakb may be used to prove that no pumping is possible).
Lm(E)↑ 6∈ LDP , sinceLm(E)↑ = L(E)↑ 6∈ Pd.

4.6 Conclusions

The results of this chapter show that although unbounded PN do not have all desirable properties
from the point of view of supervisory control, there are cases in which PN supervisors may be
constructed.

CHAPTER 4. ON THE EXISTENCE OF PETRI NET SUPERVISORS 29

Figure 4.7: GeneratorG in Example 4.6.

Figure 4.8: Reachability tree ofG andE in Example 4.6.

Figure 4.9: Generator ofL(E)↑ andLm(E)↑ in Example 4.6.

CHAPTER 4. ON THE EXISTENCE OF PETRI NET SUPERVISORS 30

The main difficulties when using Petri nets as discrete event models for supervisory control
stems out from the fact that not all L-type PN languages are DP-closed and from the fact that the
classLDP of DP-closed languages is not closed under intersection. Another undesirable property
is given by the fact that the classesPd andLDP are not closed under the↑ operator.

In the remaining part of the thesis we will consider simpler Petri net models, whose reachabil-
ity set is finite.

Chapter 5

SUPERVISORY DESIGN USING
PETRI NETS

5.1 Introduction

In this chapter we discuss how Petri net models may be used to design supervisors within the
framework of Supervisory Control. The purpose is that of applying a model that has a great
representational power in the theoretical approach of Ramadge and Wonham. The discussion is
focused at the model level: we discuss the supervisory design algorithm and its counterpart on the
structure of a Petri net [DiCesare 91, Giua 91]. The design requires two steps. In the first step, a
coarse structure for a supervisor is synthesized by means of concurrent composition of different
modules. In the second step, the structure is refined to avoid reaching undesirable markings.

The chapter is structured as follows. In Section 5.2, we review the monolithic supervisory
design as formulated by Wonham and present a design based on the concurrent composition op-
erator. In Section 5.3, we show that this design is well suited for Petri nets models. In particular,
we discuss how to refine a coarse structure for a supervisor, by introducing new arcs (and possibly
duplicating transitions) to avoid reaching undesirable markings. This procedure may always be
applied when the net is conservative. In Section 5.4, we discuss the advantages of PN over state
machines, as far as the transition structure of the model is concerned.

5.2 Monolithic Supervisor Design

A supervisory design algorithm has been presented by Wonham [Wonham 88a]. The algorithm
is based on language operators and it may be implemented using different models. The only
requirement is that the model specify the closed and marked behavior of a system. We also require
that the linguistic operators introduced in Section 3.2 be extended to the model. For example,
given two DESG1,G2, with closed behaviorsL(G1), L(G2) and marked behaviorsLm(G1),
Lm(G2) we denote:G = G1 ‖ G2 the DES whose behaviors are:L(G) = L(G1) ‖ L(G2) and
Lm(G) = Lm(G1) ‖ Lm(G2). In a similar fashion, we can extend other linguistic operators to
operators on the systems.

Assume we are givenm nonblocking DESG1, . . . ,Gm working concurrently. The alphabet
of these systems areΣ1, . . . , Σm and they are disjoint, i.e.,Σi ∩Σj = ∅ for everyi 6= j. We want
to enforce some specifications on the joint behavior of these systems, represented byn different
nonblocking generatorsH1, . . . ,Hn. Each specification generatorHj is defined on an alphabet
ΣHj ⊆ Σ1 ∪ . . . ∪ Σm and effectively constrains only the events that belong to its alphabet.

A monolithic supervisormay be constructed using the following algorithm [Wonham 88a].

Algorithm 5.1. Wonham Supervisory Design

31

CHAPTER 5. SUPERVISORY DESIGN USING PETRI NETS 32

1. Construct by shufflingG = G1 ‖d . . . ‖d Gm. G models the joint concurrent behavior
of the overall system under the assumption that the actions of the single subsystems are
asynchronous and independent. The alphabet ofG is Σ = Σ1 ∪ . . . ∪ Σm.

2. Augment the specifications, selflooping eachHj with the event labels present inG but un-
constrained byHj , i.e., the labels inΣej = Σ\ΣHj . Call these new generatorsH′

1, . . . ,H
′
n.

3. Construct by intersectionH = H′
1 ∩ . . . ∩H′

n. H represents the global specification we
want to enforce on the behavior ofG.

4. Construct by intersectionE = H ∩ G. E represents the largest behavior of the overall
system that satisfies all the constraints imposed by the specifications.

5. The generatorE obtained through the above construction, in the general case does not rep-
resent a proper supervisor, since the following two properties are not automatically ensured:

• nonblockingness, i.e., the generatorE may contain blocking states from which a final
state cannot be reached;

• controllability, i.e., the languageL(E) may not be controllable with respect toL(G).
This means that whenG andE run in parallel it may be possible to reach a state from
which an uncontrollable event is enabled inG but is not enabled inE.

We have to further minimally restrict the behavior ofE, to obtain a nonblocking and control-
lable generatorS. This is the counterpart, on the DES structure, of the supremal controllable
sublanguage operator.

The systemSobtained through this procedure gives us the transition structure of a supervisor.
We will give an example of this construction using state machine models.

Example 5.1. Consider the systemsG1 andG2 in Figure 5.1 and the specificationH. We may
think of G1 as a robot that picks up one part (eventa) and loads the part on a machine (eventb).
G2 is a machine that may start working (eventc) and may output the produced part on conveyor A
or B (respectively eventsd ande) before returning to the idle state. The specification we consider,
represented by the generatorH, specifies that the machine may start working only after it has been
loaded (eventsb andc must occur alternatively), and that the robot may load a new part on the
machine only after the previously loaded part has been outputted on conveyor A (eventsd andb
must occur alternatively). We will assume that the only uncontrollable event for this problem is
eventb.

The first step of design requires the construction ofG = G1 ‖d G2, shown in Figure 5.2.
In the second step we construct the augmented specificationH′, shown in Figure 5.3, by

selfloopingH with the unconstrained events, i.e., witha, e. SinceH is the only specification
generator, step 3 is not required in this example.

In the fourth step we construct the systemE = G ∩H′, shown in Figure 5.4. The systemE
is not a supervisor, because it contains blocking states (from which the final marking may not be
reached), and also non controllable states. As an example, afterG has executed the string of events
w = aba, eventsb andc may occur inG while the control pattern computed byE contains only
the eventc. Sinceb is an uncontrollable event, the language generated byE is not controllable.

If we remove the blocking and noncontrollable states, we obtain the nonblocking and control-
lable generatorS in Figure 5.5, which is a proper supervisor for this problem.

The supervisorS constructed using Algorithm 5.1 is calledmonolithic, because it represents
both asupervisorand aclosed loop modelof the system under control. In factL(S) = L(S/G).
It is often the case that a simpler supervisor exists. For the control problem in Example 5.1, a

CHAPTER 5. SUPERVISORY DESIGN USING PETRI NETS 33

Figure 5.1: Systems and specification for the control problem in Example 5.1.

Figure 5.2: Shuffle systemG = G1 ‖d G2 in Example 5.1.

Figure 5.3: Specification generatorH′ in Example 5.1.

CHAPTER 5. SUPERVISORY DESIGN USING PETRI NETS 34

Figure 5.4: SystemE = G ∩H′ for the control problem in Example 5.1.

Figure 5.5: Monolithic supervisorS for control problem in Example 5.1.

Figure 5.6: A reduced structure supervisorS’ for the control problem in Example 5.1.

CHAPTER 5. SUPERVISORY DESIGN USING PETRI NETS 35

reduced structure supervisorS′ is shown in Figure 5.6. We may easily check thatL(S/G) =
L(S′/G) ⊂ L(S′).

Note also that since we have associated a final state with the specificationH, the supervisor
we have constructed is amarking supervisoraccording to the terminology in Appendix B.2.

5.2.1 Design Using Concurrent Composition

We propose an alternative design for a supervisor, where only one operator, theconcurrent com-
positionoperator, is used to construct the generatorE. The algorithm is the following.

Algorithm 5.2. Concurrent Composition Supervisory Design

1. Construct by concurrent composition

E = G1 ‖ . . . ‖ Gm ‖ H1 ‖ . . . ‖ Hn;

2. RefineE so that it is nonblocking and controllable.

It is easy to see that the two approaches are equivalent. In fact with Algorithm 5.1 we construct
a system generating the language

E1 = [L(G1) ‖d . . . ‖d L(Gm)] ∩ [L(H1) ‖d Σ∗e1
] ∩ . . . ∩ [L(Hn) ‖d Σ∗en

],

and with Algorithm 5.2 we construct a system generating the language

E2 = L(G1) ‖ . . . ‖ L(Gm) ‖ L(H1) ‖ . . . ‖ L(Hn).

Since(∀w ∈ Σ∗) w ∈ [L(Hj) ‖d Σ∗ej] ⇐⇒ w ↑Hj∈ L(Hj) (herew ↑Hj is the projection of
stringw on alphabetΣHj), we can see that:

E1 = {w | w ∈ [L(G1) ‖d . . . ‖d L(Gm)], w ∈ [L(Hj) ‖d Σ∗ej] (j = 1, . . . , n)}
= {w | w ↑i∈ L(Gi) (i = 1, . . . , m), w ↑Hj∈ L(Hj) (j = 1, . . . , n)}
= E2.

The concurrent composition design is simpler, since it requires only one operator. We will
show in the following section how it may be easily implemented using Petri net models.

5.3 Monolithic Design Using Petri Nets

In this section, we will use Petri net models in the design of a supervisor, following the Algo-
rithm 5.2. The coarse structure for a supervisor, i.e., the systemE, may be efficiently constructed
and the properties of nonblockingness and controllability may be expressed as properties of the
net systemE. Secondly, we will discuss howE may be refined to obtain a supervisorS without
major changes in its structure.

The net counterpart of the concurrent composition operator, described in Appendix A.5, re-
quires merging transitions with the same label. This construction is based on the structure of the
net and does not require the explicit enumeration of its state space.

Example 5.2.For the control problem discussed in Example 5.1 we have represented in Figure 5.7
the systems and specification as Petri nets. The systemE = G1 ‖ G2 ‖ H obtained by concurrent
composition is shown in Figure 5.8.

CHAPTER 5. SUPERVISORY DESIGN USING PETRI NETS 36

Figure 5.7: Systems and specifications as Petri nets for the control problem in Example 5.2.

Figure 5.8: SystemE = G1 ‖ G2 ‖ H as a Petri net for the control problem in Example 5.2.

CHAPTER 5. SUPERVISORY DESIGN USING PETRI NETS 37

It is important to note how the properties of interest, namely nonblockingness and controllabil-
ity, may be expressed in terms of net properties. We will use the notation for concurrent systems
presented in Appendix A.5. LetG = G1 ‖ . . . ‖ Gm andH = H1 ‖ . . . ‖ Hn, be the system
and specification components ofE. Assume thatE = (N, `,M0, F), G = (N1, `1,M0,1, F1),
andH = (N2, `2,M0,2, F2).

The systemE is nonblocking if and only if a final marking may be reached from any reachable
marking, i.e., if and only if

(∀M ∈ R(N, M0)) (∃Mf ∈ F) [Mf ∈ R(N, M)].

Conversely, any reachable markingM ′ such that(6 ∃Mf ∈ F) [Mf ∈ R(N,M ′)] is a blocking
marking, and we should prevent the system from reaching it.

Let Tu ⊆ T be the set of uncontrollable transitions ofE, i.e., the transitions labeled by uncon-
trollable events. Given a markingM ∈ R(N, M0), letM ↑1 (M ↑2) be the restriction ofM to the
places ofG (H). ThenE will be controllable if and only if it is not possible to reach a marking
M such that an uncontrollable transitiont is enabled byM ↑1 in G, but it is not enabled byM ↑2

in H. In other words,E is controllable if and only if

(∀t ∈ Tu) (6 ∃M ∈ R(N, M0)) [M ↑2 6≥ Pre2(·, t) ∧M ↑1≥ Pre1(·, t)].
Once the coarse structure of a candidate supervisor is constructed by means of concurrent

composition, we need to refine it to obtain a nonblocking and controllable generator. We have to
remove a set of undesirable states and all the transitions leading to them. We assume in this section
that the knowledge of which states are undesirable, and which are the transitions leading to them,
is given.

The next example shows the problems involved in the refinement of a net.

Example 5.3. Let us consider the systemE constructed in Example 5.2. Here the controllable
event set isΣc = {a, c, d, e} and the uncontrollable event set isΣu = {b}. E is blocking and
uncontrollable. The undesirable markings, that should be removed, are those shown in the reach-
ability tree in Figure 5.9, equivalent to the state machine model in Figure 5.4. Refining the PN
is complex. First, we should certainly remove the transition labeled bye since its firing always
leads to an undesirable state and it is controllable. After removal of this transition, the transition
labeled bya will be enabled by the following reachable markings:M ′ = (1010010)T ,M ′′ =
(1001010)T ,M ′′′ = (1000101)T . We want to block the transition labeleda when the markings
M ′′ andM ′′′ are reached. Since

M ′(p3) = 1 > M ′′(p3) = M ′′′(p3) = 0,

we can add an arc fromp3 to a and froma to p3 as in Figure 5.10.

The following algorithm can be given for the refinement of a net.

Algorithm 5.3. Let t be a transition to be controlled, i.e., a transition leading from an admissible
marking to an undesirable marking. Leta be its label.

1. Determine the set of admissible reachable markings that enablet, and partition this set
into the disjoint subsetsM e (the markings from whicht should be allowed to fire), andMd

(the markings from whicht should not be allowed to fire, to avoid reaching an undesirable
marking). IfM e = ∅ removet and stop, else continue.

2. Determine a construct in the form:

U(M) = [(M(p1
1) ≥ n1

1) ∧ . . . ∧ (M(p1
k1) ≥ n1

k1)]∨
. . .
∨[(M(pl

1) ≥ nl
1) ∧ . . . ∧ (M(pl

kl) ≥ nl
kl)],

such thatU(M) = TRUE ifM ∈ M e, andU(M) = FALSE ifM ∈ Md.

CHAPTER 5. SUPERVISORY DESIGN USING PETRI NETS 38

Figure 5.9: Reachability tree of the systemE in Example 5.2 and Example 5.3.

Figure 5.10: SupervisorSas a Petri net for the control problem in Example 5.2 and Example 5.3.

CHAPTER 5. SUPERVISORY DESIGN USING PETRI NETS 39

3. Replace transitiont with l transitionst1, . . . , tl labeleda. The input (output) arcs of transi-
tion tj , j = 1, . . . , l, will be those of transitiont plusnj

i arcs inputting from (outputting to)
placepj

i , i = 1, . . . , kj .

It is clear that following this construction there is an enabled transition labeleda for any
marking inM e, while none of these transitions are enabled by a marking inMd. We also note that
in general several constructs of this form may be determined. The one which requires the minimal
number of transitions, i.e., the one with smallerl, is preferable.

The following theorem gives a sufficient condition for the applicability of the algorithm.

Theorem 5.1. The construct of Algorithm 5.3 can always be determined if the net is conservative.
Proof: A net is conservative if there exists an integer vectorY > ~0 such that for any two

markingsM andM ′ reachable from the initial markingY T M = Y T M ′. Hence ifM 6= M ′ there
exists a placep such thatM(p) > M ′(p). Also the set of reachable markings is finite.

On a conservative net, considerMi ∈ M e, Mj ∈ Md. We have thatM e andMd are finite
sets and also there exists a placepij such thatMi(pij) = nij > Mj(pij). Hence

U(M) =
∨

i∈Me

 ∧

j∈Md

(M(pij) ≥ nij)

is a construct for Algorithm 5.3. ¦
According to this Theorem we may always find a refinement construct for conservative nets.

Unfortunately, the construct may contain up to|M e|ORclauses, i.e., up to|M e| transitions may be
substituted for a single transition to control. Note, however, that it is often possible to determine a
simpler construct as in Example 5.3, where the construct for the transition labeleda wasU(M) =
[M(p3) ≥ 1].

5.4 Petri Nets and State Machines

The design using concurrent composition appears to be highly efficient when using Petri net struc-
tures. Here we would like to discuss the main advantages of using Petri nets rather than state
machines in the supervisory design.

1. PN have a higher language complexity than state machines. Hence they have the possibility
of describing a larger class of systems.

The concurrent composition design algorithm may be used to construct the systemE even if
we consider Petri net models with infinite state space, since it is based on the finite structure
of the net. However, as suggested by Theorem 5.1, since systems with infinite state space are
not conservative it may be impossible to refine the net in step 2 of the algorithm. This was
also expected from the results of Chapter 4 since the nonblocking generator of the supremal
controllable sublanguage ofE may not have a Petri net representation.

2. Suppose we restrict ourselves to consider only conservative Petri net models. Conservative
PN are essentially equivalent to state machines, since the number of reachable markings
(i.e., the number of “states” of the model) is finite. However, since the states of a PN are
represented by the possible markings and not by the places, they allow a compact descrip-
tion, i.e., the structure of the net may be maintained small in size even if the number of the
markings grows.

To express the difference between the two approaches in quantitative terms, assume that we
start with bottom level modules that are state machines. Furthermore assume that in each

CHAPTER 5. SUPERVISORY DESIGN USING PETRI NETS 40

module each symbol labels at most one transition. Considerk modulesG1, . . . ,Gk, and let
mi andni be the number of states (i.e., places) and transitions of each of them. The system
G = G1 ‖ . . . ‖ Gk can be constructed as a state machine or as an ordinary Petri net.

• WhenG is constructed as a state machine the numberm of states and the numbern of
transitions will be:

m ≤
k∏

i=1

mi, n ≤
k∑

i=1

ni

∏

j 6=i

mj

The upper bound is reached when the alphabets of the modules are disjoint; in this case
the coupling of the modules is so weak that the overall state set will be identical to the
cartesian product of the states of the modules. The bound gives however a clear idea
of the exponential growth of the model even in the general case when the alphabets of
the modules are not disjoint [Tadmor 89].

• WhenG is constructed as an ordinary Petri net, following the algorithm in Appendix A.5,
we have a number of places equal to:m =

∑k
i=1 mi and a number of transitions:

n = ‖Σ‖ ≤ ∑k
i=1 ni whereΣ is the alphabet associated toG.

However, it is necessary to point out that in the phase of the refinement of the coarse
structure of the supervisor the number of transitions introduced in Algorithm 5.3 may
in the worst case approach the size ofM e as suggested by Theorem 5.1.

3. Petri nets allow modular synthesis, i.e., the net can be considered as composed of inter-
related subnets, in the same way as a complex systems can be regarded as composed of
interacting subsystems. In Figure 5.8, e.g., we may still recognize the individual modules
that compose the systemE, while in the state machine representation in Figure 5.4 this is
not possible. This permits us to express controllability as a property of the generatorE.

5.5 Conclusions

We can summarize the results of this chapter as follows:

• For regular languages, Ramadge and Wonham have proved that it is always possible to
determine the supremal controllable sublanguage of a given configuration of systems and
specifications with a finite procedure (See Appendix B, Theorem B.3).

• For DES modeled with conservative Petri nets (that generate regular languages) we can
always refine the net in order that the supremal controllable behavior is achieved. In the
refinement, following Algorithm 5.3, the modular structure of the net is preserved (but in
some cases it may be necessary to introduce a large number of transitions).

Hence conservative Petri nets may be used within the framework of supervisory control, providing
a more compact representation in terms of transition structure when compared with state machine
models.

There is, however, another problem to be addressed. In this chapter we have assumed that
the set of undesirable markings is given. In practice, a brute force approach to determine this set
requires the construction of the reachability tree. PN may offer means to solve this problem in
more efficient ways.

• Use incidence matrix analysis to determine whether undesirable markings are reachable.
Although in the general case this analysis gives only a necessary condition for reachabil-
ity, there are classes of nets such that a necessary and sufficient condition may be derived
[Giua 90b, Murata 89].

CHAPTER 5. SUPERVISORY DESIGN USING PETRI NETS 41

• Derive synthesis procedures that insure the desired properties for the composed system.
In this case we have efficient “closed form solutions” at the cost of limiting our design to
special classes of nets [Datta 84, Datta 86, Krogh 86, Krogh 91].

These approaches will be investigated in the next chapters.

Chapter 6

INCIDENCE MATRIX ANALYSIS

6.1 Introduction

This chapter discusses how incidence matrix analysis for Petri net models may be used to validate
supervisors for the control of discrete event systems. We will consider a class of P/T nets called
Elementary Composed State Machines(ECSM). The most interesting property of this class of nets
lies in the fact that the set of reachable markings is an (integer) convex set and that the set of linear
inequalitiesA ·M ≥ A ·M0 which defines it may be computed from the analysis of the simple
state machine modules that compose the net.

In classic incidence matrix analysis, the set of reachable markings of a system〈N, M0〉 is
approximated by the solutions of thestate equation, i.e., by the set

PR(N, M0) = {M ∈ IN |P | | (∃~σ ∈ IN |T |)[M = M0 + C · ~σ]},

whereC is the incidence matrix of the net. In another approach, abasis of P-semiflowsB is used
to approximate the reachability set, defining the set

PRB(N,M0) = {M ∈ IN |P | | BT ·M = BT ·M0}.

The first approximation is generally better, in the sense that

R(N, M0) ⊆ PR(N, M0) ⊆ PRB(N,M0)

However, the computation ofPRB(N, M0) does not involve the firing count vector~σ, and this
feature has additional advantages that we will discuss in the following.

We propose an approach similar to the computation ofPRB(N,M0) where we use, in addition
to the equations derived from the P-semiflows, inequalities derived from the basic traps of the net
and we define

PRA(N, M0) = {M ∈ IN |P | | A ·M ≥ A ·M0}.
The matrixA is computed from the analysis of the structure of netN . Furthermore, we show
that for ECSM, the class of nets that we consider here,PRA(N, M0) = R(N,M0), i.e., the set
of integer solutions of the inequalityA · M ≥ A · M0 is exactly the set of reachable markings
[Giua 92d].

There are significant differences between our approach and the analysis based on the state
equation.

• The use of the incidence matrix does not permit verifying propositions such as

(∀M ∈ PR(N, M0))[Mf ∈ PR(N, M)]

42

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 43

with a linear algebraic formalism; this proposition, as we will see, expresses the nonblocking
property of a system. This is because the setPR(N,M0) is defined in terms of linear
equations containing the variablesM and~σ. We define the set of reachable markings as the
solution of a set of inequalities which do not contain the firing count vector~σ, and we will
be able to write simple integer programming problems to study nonblocking properties of
systems.

• For the class of ECSM nets, the state equation gives only necessary but not sufficient condi-
tions for reachability, since it may contain spurious solutions (solutions which do not corre-
spond to reachable markings), i.e., in general it holdsPR(N,M0) ⊃ R(N,M0). However,
for the same class of nets there exists a matrixA such thatPRA(N, M0) = R(N, M0), i.e.,
the reachability set of an ECSM may be exactly described by a set of linear inequalities,
without spurious solutions.

• Note that since the domainPRA(N,M0) represents the integer solutions of a set of lin-
ear inequalities, it is a convex set of integers. Thus, there exists a matrixA such that
PRA(N,M0) = R(N, M0) if and only if the reachability set of system〈N,M0〉 is a con-
vex set. If a net is such that the state equation does not contain spurious solutions, this does
not imply that its reachability set is a convex set. As an example, it has been proved that
the state equation of acyclic nets does not contain spurious solutions [Murata 89]. The net
we will discuss in Example 6.2 is acyclic but does not have a convex reachability set. This
means that there are classes of nets such thatPR(N,M0) = R(N, M0) and such that there
does not exist a matrixA such thatPRA(N, M0) = R(N, M0).

In our approach determining if a marking is reachable requires the use of Integer Programming.
Integer Programming problems may not be solved, in general, in polynomial time. However, it is
possible to relax the constraint that the solution ofA ·M ≥ A ·M0 be integer to obtain a sufficient
condition for the validation of the net. Thus, we may use Linear Programming techniques to prove
that a given undesirable marking is not reachable.

The model considered in this chapter is based on state machine P/T nets with multiple tokens.
State machines may model choice, since a place may have more that one outgoing arc, but strongly
limit the possibility of modeling concurrency, since the only concurrent behavior is given by the
presence of multiple tokens in the net. To describe concurrent systems, the model is extended by
composing the state machine modules through concurrent composition, an operator that requires
the merging of common transitions.

In this approach it is necessary to restrict the type of compositions considered, in order to
guarantee some important properties [Giua 90b]. The final model, called Elementary Composed
State Machines (ECSM nets), can model both choice and concurrent behavior, and at the same
time has the property that the space of reachable markings is a linear integer convex set, i.e., it is
given by the integer solutions of a set of linear inequalities.

Section 2 deals with state machines and reachability using incidence matrix analysis and shows
how it is possible to derive the set of linear inequalities that defines the space of reachable mark-
ings. In Section 3 is defined the class of Elementary Composed State Machine nets and the results
derived in Section 2 are extended to this class. Section 4 finally shows how this approach may be
applied to the validation of supervisors for the control of discrete event systems.

6.2 Incidence Matrix Analysis for State Machines

In this section we discuss two ways of determining if a marking of a state machine is reachable
from the initial marking. In the first approach we consider the state equation of the net. In the

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 44

second we show how the reachability set may be described by a set of equations that do not
involve the firing count vector.

State machines represent a very simple PN model that has been extensively investigated. For
instance, Murata [Murata 89] reports several results on the liveness and reachability characteri-
zation of this class of nets. However, the focus is generally on live state machines (i.e., strongly
connected state machines). In the framework of Supervisory Control, the requirement that the
model be live is not important, while it is required that the system benonblocking, i.e., that from
any reachable marking it may be possible to reach a final marking. This motivates the attention
given in this chapter to state machines that are not necessarily live.

6.2.1 State Equation

The use of the state equation for characterizing the reachability set of a PN is based on the follow-
ing observation.

Note 6.1. Let 〈N, M0〉 be a marked net andC its incidence matrix.

M ∈ R(N,M0) =⇒ (∃~σ ∈ INm) [M = M0 + C · ~σ].

The existence of a vector~σ satisfying the previous state equation gives a necessary but not
sufficient condition for the reachability of a given marking. In the general case, a solutionM and
~σ may exist for the previous equation, but~σ yields no firable sequence of transitions andM cannot
be reached.

For state machines, however, the following theorem holds.

Theorem 6.1. Let 〈N,M0〉 be a marked state machine.

M ∈ R(N,M0) ⇐⇒ (∃~σ ∈ INm) [M = M0 + C · ~σ].

Proof: Only ⇐= needs to be proved. At least one of the transitions given by~σ may fire if
M0 6= M . In fact, consider a placepi 3 M0(pi) > M(pi) ≥ 0. (The existence of such a place is
ensured because state machines are conservative.) Since

M(pi)−M0(pi) =
m∑

j=1

cij~σj < 0,

there exists a transitiontj such thatσ(tj) > 0 andcij = −1 , i.e., tj outputs frompi. Since
M0(pi) > 0, tj may fire reaching a markingM ′ such that:M = M ′ + C · ~σ′, where~σ′ < ~σ.
Repeating the previous reasoning it is possible to conclude that eventuallyM will be reached. ¦

In [Murata 89] is presented the same result in the case ofstrongly connectedstate machines.
Ichikawa and Hiraishi [Ichikawa 88b] have shown that for acyclic nets, i.e., nets whose un-

derlying graph has no directed circuits, a vector~σ solution of the state equation yields a firable
sequence of transitions. Theorem 6.1 does not imply this stronger property.

Example 6.1. Consider the net in Figure 6.1, whereM0 = (2 0 0 0 0)T andM = (1 0 1 0 0)T .
The incidence matrix of the net is

C =

−1 0 −1 0 0 0
1 −1 0 0 0 0
0 1 0 1 0 0
0 0 1 −1 −1 1
0 0 0 0 1 −1

.

The state equation is satisfied by:~σ = (1 1 0 0 1 1)T . While ~σ does not yield a firable sequence
of transitions,M can always be reached: just consider the vector~σ′ = (1 1 0 0 0 0)T (< ~σ) that
yields the firable sequence:σ′ = t1t2.

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 45

Figure 6.1: State machine in Example 6.1.

Figure 6.2: Firing subnet in Example 6.1.

The problem, as the previous example shows, is that the firing count vector could be counting,
in addition to the sequence of transitions that needs to be fired to go fromM0 to M , a cycle that
cannot be fired because it is not marked by a token. Hence the following two theorems hold.

Theorem 6.2. Let 〈N, M0〉 be a marked state machine andM be a marking ofN . A vector
(~σ ∈ INm) [M = M0 + C · ~σ] yields a firable sequence of transitions fromM0 if (6 ∃~σ′ ∈
INm) [M = M0 + C · ~σ′, ~σ′ < ~σ].

Proof: If ~σ is the minimal vector satisfying the state equation forM andM0, then the firing
subnet given by~σ is acyclic and all transitions may fire, as proved in [Ichikawa 88b]. ¦

Note that Theorem 6.2 gives a sufficient but not necessary condition. In Example 6.1, consider
the vector~σ = (0 0 1 1 1 1)T solution of the state equation.~σ is not minimal but yields a firable
sequenceσ = t3t5t6t4.

Theorem 6.3. Let 〈N, M0〉 be a marked state machine andM be a marking ofN . A vector
(~σ ∈ INm) [M = M0 + C · ~σ] yields a firable sequence of transitions fromM0 if and only if in
the firing subnet given by~σ each connected component is marked byM0.

Proof: The presence of a token in each connected component ensures that the cycles eventually
present in~σ can be executed. ¦

The firing subnet for Example 6.1 is in Figure 6.2; here there are two connected components
{p1, p2, p3} and{p4, p5}, the second of which is not marked; hence its transitions cannot fire.

6.2.2 Defining the Set of Reachable Markings

Theorem 6.4. Let 〈N,M0〉 be a marked state machine. The set of reachable markingsR(N, M0)
is an integer linear convex set, i.e., can be defined as the integer solutions of a set of linear

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 46

Figure 6.3: Net in Example 6.2, with a non convex reachability set.

inequalities.
Proof: Follows from Algorithm 6.1 presented below. ¦
This property does not hold in general for ordinary P/T nets.

Example 6.2. On the net in Figure 6.3, an ordinary conservative PN,M = (0 1 0 2) can be
reached fromM0 = (2 1 0 0) butM ′ = M0+M

2 = (1 1 0 1), which is a linear convex combination
of M0 andM , cannot be reached.

To determine the set of linear inequalities that the set of reachable markings of a state machine
must satisfy, the following algorithm may be used. Note first that a connected (not necessarily
strongly connected) state machine has a single P-semiflow whose support contains all the places.

Algorithm 6.1. Let 〈N,M0〉 be a marked state machine, andT i = {pi
1, . . . , p

i
k} a trap of N .

DefineM(T i) = M(pi
1) + . . . + M(pi

k).

1. Consider allbasictraps1 of the net along with the support of the P-semiflowT 0.

2. For each trapT i write the inequality:M(T i) ≥ ni, whereni is the number of tokens
assigned toT i by the initial marking. ForT 0 write the equation:M(T 0) = n0, wheren0

is the total number of tokens in the net.

3. If for a trap T i (i 6= 0) the number of tokens isni = 0, the inequality forT i can be
removed.

4. If T i ⊂ T j (j 6= 0) andni = nj , the inequality forT j can be removed, since it is implied
by the inequality forT i.

5. The remaining set of inequalities plus the inequalities:M ≥ ~0, gives the set of markings
reachable from the initial marking. These inequalities will be indicated asA(N).

According to this Algorithm, the reachability set of a state machine〈N, M0〉 can be represent
by the setPRA(N, M0) = {M ∈ IN |P | | A ·M ≥ A ·M0}, where each row of the matrixA is
the characteristic vector of the P-semiflow of the net or of one of the basic traps of the net.

Here is an example of application for the algorithm.

Example 6.3. Consider the net in Figure 6.4. Here the basic traps are:

T 0 = {p1, p2, p3, p4, p5, p6},
T 1 = {p2},
T 2 = {p5},
T 3 = {p6},
T 4 = {p1, p2, p5},
T 5 = {p3, p5, p6},
T 6 = {p3, p4, p5, p6}.

1A trap is basic if it is not the union of other traps.

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 47

Figure 6.4: State machine in Example 6.3.

Note, e.g., that the trap{p2, p5} is not considered, since it is given by the union ofT 1 andT 2.
The corresponding set of linear inequalities is:

(1) M(p1) + M(p2) + M(p3) + M(p4) + M(p5) + M(p6) = 4,
(2) M(p2) ≥ 0,
(3) M(p5) ≥ 0,
(4) M(p6) ≥ 1,
(5) M(p1) + M(p2) + M(p5) ≥ 2,
(6) M(p3) + M(p5) + M(p6) ≥ 2,
(7) M(p3) + M(p4) + M(p5) + M(p6) ≥ 2.

Inequality(2) and(3) will be removed in step 3 of the algorithm, inequality(7) will be removed
in step 4 as it is implied by(6). Finally the set of markings reachable from the initial marking is
given by:

M(p1) + M(p2) + M(p3) + M(p4) + M(p5) + M(p6) = 4,
M(p6) ≥ 1,
M(p1) + M(p2) + M(p5) ≥ 2,
M(p3) + M(p5) + M(p6) ≥ 2,

M ≥ ~0.

Note 6.2. Given a trapT , the complementP \ T is a siphon, i.e., there is a siphonSi = P \ T i

corresponding to each trapT i, (i 6= 0) considered in the Algorithm 6.1. Hence the inequality
for T i may be rewritten asM(Si) ≤ n0 − ni.

In fact siphons and traps are dual concepts and a dual algorithm, in terms of siphons, may be
given for determining the linear inequalities satisfied by the reachable markings.

Note 6.3. Let 〈N, M0〉 be a marked strongly connected state machine. Then the set of equations
A(N) trivially reduces to:

M(T 0) = n0,

M ≥ ~0.

Finally, it is necessary to discuss the correctness of the algorithm, i.e., the fact that the set of
markings that satisfy the linear inequalities required by Algorithm 6.1 is exactly the reachability
set. The idea is to show that a description of a state machine in term of traps captures the behavior
of the net. This will be proven through the following propositions.

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 48

Proposition 6.1. LetT be a trap of a state machine. The number of tokens inT is nondecreasing.
Proof: On state machines, the firing of any transition preserves the total number of tokens.

Also a transition has a single input and output arc. Hence no transition may output from a place in
T to a place not inT . ¦
Proposition 6.2. LetT be aminimal trap2 of a state machine. Then a token inT can move to any
place inT .

Proof: For state machines, it is sufficient to prove that all places inT are strongly connected,
i.e., there is a path from any place to all others. This is trivially true ifT consist of a single place.
AssumeT consists ofk places. Consider a placep1 ∈ T . There must be a transition fromp1

to some placep2 ∈ T , otherwise{p1} is a trap andT is not minimal. Consider{p1, p2}. With
the same reasoning it is possible to infer that there must be a transition leading from{p1, p2} to a
placep3 ∈ T . This reasoning can be carried out until{p1, p2, ...pk} = T is reached. Hencep1 is
connected to all places inT . Since this reasoning can be applied to any placepi ∈ T , the proof is
complete. ¦
Proposition 6.3. LetT be a trap, and letT ′ = {p ∈ T | p ∈ T ′′, T ′′ ⊂ T , T ′′ is a trap}. Then
a token inT \ T ′ can move to any place inT .

Proof: Similar to the proof of Proposition 6.2. ¦
The soundness of the algorithm is then proved by the following reasoning. The marking of the

traps is strictly nondecreasing (Proposition 6.1). The tokens initially present in a minimal trap may
freely move to any place of the trap (Proposition 6.2). The tokens initially present in a trap that
is not minimal are free to move to any place of the trap provided they also satisfy the constraints
enforced by the traps contained in the non minimal trap (Proposition 6.3). These are the only
constraints that the set of reachable markings must satisfy and these constraints are captured by
Algorithm 6.1.

We point out that while in general the number of basic traps of Petri net may be exponential in
the number of places, for state machines the number of basic traps is at most equal to the number
of places. This may be proved by the following inductive reasoning. Consider a state machine with
n places and no transitions; clearly there aren basic traps each one containing a single place. Now
assume we have a state machine with its set of basic traps, and assume we add a new transition
from placep to placep′. Then all the basic traps that do not containp or that containp′ are still
basic traps. All the basic traps that containp and do not containp′ will not be traps in the new
net and we need to add to each of them the minimal trap containingp′ (there is only one such
minimal trap) to obtain new basic traps. After the new traps are computed, it may well be the case
that two of them are identical, that is the number of basic traps may only decrease when we add a
transition.

6.3 Composition of State Machines Modules

The section discusses how the properties studied in Section 2 for state machines are preserved by
concurrent composition. We will consider a restricted class of compositions.

Let us first introduce the following definitions.

Definition 6.1. A simple pathof a netN is a sequenceθ = t0p1t1 . . . prtr of transitions and
places such that

(∀i = 1, . . . , r) [•pi = {ti−1}, p•i = {ti}, t•i−1 = {pi},• ti = {pi}].
We assume that(∀i, j = 0, . . . , r ∧ i 6= j)[ti 6= tj]. Note also that a single transition may be
considered as a simple path with no places.

2A trap is minimal if it is not the superset of another trap.

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 49

Figure 6.5: Two state machines composed along a simple path in Example 6.4.

Definition 6.2. Given a netN , andk simple pathsθi = ti,0 . . . , ti,ri (i = 1, . . . , k), thek paths
are looped inN if

(∃p ∈ P) (∀i = 1, . . . , k) [•ti,0 = t•i,ri
= {p}, P re(p, ti,0) = Post(p, ti,ri) = 1].

In simple words, thek paths are looped if there exists a placep such that the initial (and final)
transitions of all paths only input from (and only output to) placep with a single arc.

In this chapter, we will consider compositions of subnets that share: 1) a simple path; 2) a set
of simple paths provided all paths are looped in one of the nets. We assume that the marking of
the places along the composed paths are the same on all subnets.

For this class of compositions we will slightly change the definition of composition given in
Appendix A.5. In fact here we are looking at composition based on the structure of the net rather
that on the language generated by the net.

Example 6.4. The two nets in Figure 6.5 are composed along the simple pathθ1 = t1p2t2. The
composed net is shown in Figure 1.b.

The two nets in Figure 6.6 are composed along the simple pathsθ1 = t1p2t2 andθ2 = t3p3t4.
Pathsθ1 andθ2 are looped inN2.

A netN obtained by composition of subnetsN1 andN2 is denotedN = N1 ‖ N2.
We also recall the notation used for composed systems. LetN be a composed systemN =

N1 ‖ . . . ‖ Nn, and letM be a marking,~σ be a firing count vector, andσ a firing sequence defined
on it. Theprojection ofM on Ni, denotedM ↑i, is the vector obtained fromM by removing all
the components associated to places not present inNi. Theprojection of~σ on Ni, denoted~σ ↑i,
is the vector obtained by~σ removing all the components associated to transitions not present in
Ni. Theprojection ofσ onNi, denotedσ ↑i, is the firing sequence obtained byσ removing all the
transitions not present inNi.

6.3.1 State Equation

Let N = N1 ‖ . . . ‖ Nn be a composed net, and let~σ be the firing count vector solution of
M = M0 + C · ~σ, whereC is the incidence matrix ofN . Assume that on each moduleNi

(∀i = 1, . . . , n), the firing count vector~σ ↑i yields a firable sequenceσi, i.e.,M0 ↑i [σi〉 M ↑i

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 50

Figure 6.6: Two state machines composed along two simple paths in Example 6.4.

, (i = 1, . . . , n). This does not imply, however, that on the composed net~σ yields a firable
sequenceσ such thatM0 [σ〉 M .

There exist particular compositions, however, such that the reachability of a marking of the
overall net may be determined simply by the analysis of the modules that compose it. These
compositions, called elementary, are used to define the following class of P/T nets.

Definition 6.3. Elementary Composed State Machine(ECSM) nets are the minimal class of P/T
nets that is a superset of the class of state machines and is closed under the following composi-
tions:

1. Composition of two nets sharing a single transition (or a simple path);

2. Composition of two nets through a setTs of k transitions (or a setΘ of k simple paths) when
the transitions (or simple paths) are looped in one of the nets.

Although the two compositions we used to define ECSM may appear exceedingly simple, they
permit the modular synthesis of realistic systems. As an example, the first kind of compositions
may be used to construct the model of several systems connected through buffers or channels. The
second kind of composition may be used to represent shared resources.

Theorem 6.5. Let 〈N,M0〉 be a marked net whereN = N1 ‖ N2 and assume thatN1 andN2

have been composed by means of one of the compositions used to define the class of ECSM. A
firing count vector forN yields a firable sequence if and only if on each moduleNi the projection
of the firing count vector yields a firable sequence~σi.

Proof: The “only if” part is trivial. Let us prove the “if” part for single transitions (i.e., not
simple path) composition. In the case of simple path compositions the proof is substantially the
same (see also [Giua 90b]).

• Composition of two nets sharing one transitiont.
Consider a solution~σ of the state equationM = M0 + C · ~σ. By hypothesis onN1 and

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 51

N2, ~σ ↑i yields a firable sequenceσi such thatM0 ↑i [σi〉 M ↑i, (i = 1, 2). Let the
component of~σ associated to the transitiont have the valuek, i.e., there arek occurrences
of t in eachσi. Thenσi may be written as

σi = x0
i t x1

i t . . . xk−1
i t xk

i , (i = 1, 2).

Now let
σ = x0

1 x0
2 t x1

1 x1
2 t . . . xk−1

2 t xk
1 xk

2.

Clearlyσ is a firable sequence given by the firing count vector~σ.

• Composition of two net sharing a set of transitionsTs looped in one of the nets.
Consider a solution~σ of the state equationM = M0 + C · ~σ. By hypothesis onN1 andN2,
~σ ↑i yields a firable sequenceσi such thatM0 ↑i [σi〉 M ↑i, (i = 1, 2). Let tji be thej-th
occurrence inσi of a transition inTs. Thenσi may be written as

σi = x0
i t1i x1

i t
2
i . . . xk−1

i tki xk
i , (i = 1, 2).

Let N2 be the looped net. Then any time a transitiont ∈ Ts fires any other transition inTs

may fire. Hence the following is a firable sequence forN2 as well

σ′2 = x0
2 t11 x1

2t
2
1 . . . xk−1

2 tk1 xk
2.

Now let
σ = x0

1 x0
2 t11 x1

1 x1
2 t21 . . . xk−1

2 tk1 xk
1 xk

2.

Clearlyσ is a firable sequence given by the firing count vector~σ. ¦
Corollary 6.1. Let 〈N, M0〉 be a marked ECSM net whereN = N1 ‖ · · · ‖ Nn andNi, (i =
1, . . . n), is a state machine. A firing count vector forN yields a firable sequence if and only if on
each moduleNi the projection of the firing count vector yields a firable sequence.

Proof: By recursive application of Theorem 6.5. ¦
Theorem 6.2 and Theorem 6.3 may be restated in this form for ECSM nets.

Theorem 6.6. Let 〈N, M0〉 be a marked ECSM net andM be a marking ofN . N = N1 ‖ . . . ‖
Nn andNi, (i = 1, . . . , n), is a state machine.

A vector(~σ ∈ INm) [M = M0 + C · ~σ] yields a firable sequence of transitions if

(∀i = 1, . . . , n)(6 ∃~σ′i) [M ↑i= M0 ↑i +Ci · ~σ′i, ~σ′i < ~σ ↑i].

Proof: Under these hypotheses, on each module~σ ↑i yields a firable sequence (by Theo-
rem 6.2). Hence by Corollary 6.1~σ yields a firable sequence forN . ¦
Theorem 6.7. Let 〈N, M0〉 be a marked ECSM net andM be a marking ofN . N = N1 ‖ . . . ‖
Nn andNi, (i = 1, . . . , n), is a state machine.

A vector(~σ ∈ INm) [M = M0 + C · ~σ] yields a firable sequence of transitions if and only if
in the firing subnet given by~σ ↑i (i = 1, . . . , n) each connected component is marked byM0.

Proof: On moduleNi, the firing count vector~σ ↑i yields a firable sequence if and only if in the
firing subnet all connected components are marked (by Theorem 6.3). Hence by Corollary 6.1~σ
yields a firable sequence forN if and only if in the firing subnet for each moduleNi all connected
components are marked. ¦

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 52

6.3.2 Defining the Set of Reachable Markings

This subsection will show how it is possible to derive the set of linear inequalities that defines
the set of reachable markings in ECSM nets. Firstly, the case of two state machines, composed
through a single transition or a set of looped transitions, is discussed. Then these results will be
extended to the composition of ECSM through simple paths.

Definition 6.4. Let〈N, M0〉 be a marked state machine whereM0 assigns all the tokens to a place
p0, and letMp be a marking that assigns a single token to placep and no token elsewhere. Given
a transitiont, it is possible to define the following two sets of places on the net:

Pt = {p ∈ P | (∃σ) [σ(t) > 0, Mp0 [σ〉 Mp]},

Pt = {p ∈ P | (∃σ) [σ(t) = 0, Mp0 [σ〉 Mp]}.
In simple words, the setPt contains the places that may be marked by firingt at least once by

an initial marking that assigns a token to the initial placep0 and no tokens to the other places. The
setPt contains the places that may be marked without firingt by an initial marking that assigns a
token to the initial placep0 and no tokens to the other places.

Similarly, given a set of transitionsTs, it is possible to define the following two sets of places
on the net:

PTs = {p ∈ P | (∃σ) (∃t ∈ Ts) [σ(t) > 0, Mp0 [σ〉 Mp]},
PT s

= {p ∈ P | (∃σ) (∀t ∈ Ts) [σ(t) = 0, Mp0 [σ〉 Mp]}.
Proposition 6.4. (Firing Bounds) Let 〈N, M0〉 be a marked state machine whereM0 assigns all
the tokens to a placep0. Now given a markingM ∈ R(N, M0), the number of timest has fired to
reach M may vary and can assume any integer value in the range[ρmin(M, t), ρmax(M, t)], where

ρmin(M, t) =
∑

p∈Pt\Pt

M(p);

ρmax(M, t) =

∑

p∈Pt

M(p) if there is no cycle containingt,

0 if there is a cycle containingt
and

∑
p∈Pt

M(p) = 0,

∞ if there is a cycle containingt
and

∑
p∈Pt

M(p) > 0.

ρmin(M, t) andρmax(M, t) are called thefiring boundsof t for markingM .
Proof: For each token inPt \Pt transitiont must have fired at least once, while for each token

in Pt transitiont may have fired once if there is no cycle containingt or an arbitrary large number
of times if there is a cycle containingt. ¦

Note, also, that
ρmin(M, t) ≤

∑

p∈P

M0(p),

and that when there is a cycle containingt a good approximate bound — that will be used in the
following — for ρmax(M, t) is

ρ′max(M, t) = h
∑

p∈Pt

M(p) ≤ ρmax(M, t),

whereh is any integer large enough.

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 53

Figure 6.7: State machine in Example 6.4.

Proposition 6.4 is restricted to the case of an initial marking that assigns all tokens to a single
place. This requirement is fair, in the sense that in the application cases of interest here, such as
manufacturing systems, etc., the presence of multiple tokens in a state machine module indicates a
multiplicity of identical resources, such as buffer spaces or identical machines. Hence the multiple
tokens initially should be assigned to the same place. The following example will clarify the
necessity for this restriction.

Example 6.5. In the netN1 in Figure 6.7,ρmax cannot be expressed as a simple linear function
of a markingM but may be defined as

ρmax(M, t) = min{ M(p2), M(p2) + M(p3)− 1,
M(p2) + M(p4)− 1, M(p2) + M(p3) + M(p4)− 2}.

The problem here is that the setsPt andPt are different for the different places marked by the
initial marking. However, whenever these sets are identical for all the places marked by the initial
marking, even if they are more than one, the results of Proposition 6.4 are valid. We will assume
in the following, unless explicitly stated otherwise, that this initial marking condition is verified
on all state machine modules considered.

When two netsNi (i = 1, 2) are composed through a single transitiont, the marking of the
overall net will be a subset of the cartesian product of the markings of the two modules. Given
a reachable markingMi on the netNi, the markingM = [MT

1 MT
2]T will be reachable on the

composed net if and only if there is a sequenceσi reachingMi on the netNi (i = 1, 2), and
σ1(t) = σ2(t). If N1 andN2 are state machines, this requires that

[ρ1
min(M1, t), ρ1

max(M1, t)]
⋂

[ρ2
min(M2, t), ρ2

max(M2, t)] 6= ∅.

where the exponenti in ρi
min(Mi, t) andρi

max(Mi, t) denotes that the firing bound is computed on
the netNi. Clearly the two intervals will not be disjoint if and only if:ρ1

min(M1, t) ≤ ρ2
max(M2, t),

andρ2
min(M2, t) ≤ ρ1

max(M1, t).

Theorem 6.8. When two state machinesN1 andN2 are composed through a single transitiont
the set of markings reachable from the initial markingM0 for the composed netN = N1 ‖ N2 is
given by the following set of linear inequalitiesA(N):

A(N1),

A(N2),
∑

p∈P 1
t \P 1

t

M(p) ≤ h2

∑

p∈P 2
t

M(p),

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 54

Figure 6.8: ECSM net in Example 6.6.

∑

p∈P 2
t \P 2

t

M(p) ≤ h1

∑

p∈P 1
t

M(p),

where:

• A(Ni) (i = 1, 2), is the set of inequalities for the netNi (as derived with Algorithm 6.1);

• the set of placesP i
t andP i

t
belongs toNi (i = 1, 2), and are determined as in Definition 6.4;

• h1 = 1 (h2 = 1), if there is no cycle containingt in N1 (N2), elseh1 (h2) is equal to the
number of tokens contained in netN2 (N1). As noted before, we are using an approximated
linear bound forρi

max(Mi, t).

Proof: Follows from Proposition 6.4 and the fact that if the last two inequalities are satisfied
there exists a firable sequenceσi for both modules that reachesM ↑i firing t an equal number of
times. Hence the vector

(~σ ∈ INm) [~σ ↑1= ~σ1, ~σ ↑2= ~σ2]

is a firing count vector forN and by Theorem 6.5 there exists a firable sequence for the overall
net. ¦
Example 6.6. Consider the composed system of Figure 6.8. The set of places of interest are:

P 1
t = {p2},

P 1
t = {p1},

P 2
t = {p4, p5, p6, p7},
P 2

t = {p3, p4, p7}.
Since there is no cycle containingt in N1, thenh1 = 1, while, since there is a cycle containingt
in N2, h2 = 3. The linear inequalities that define the space of reachable markings onN1 is:

M(p1) + M(p2) = 3,

M(p1),M(p2) ≥ 0,

and onN2:
M(p3) + M(p4) + M(p5) + M(p6) + M(p7) = 2,

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 55

M(p3),M(p4),M(p5), M(p6),M(p7) ≥ 0.

Hence the set of reachable markings on the composed system is defined by:

M(p1) + M(p2) = 3,

M(p3) + M(p4) + M(p5) + M(p6) + M(p7) = 2,

M(p2) ≤ 3(M(p4) + M(p5) + M(p6) + M(p7)),

M(p5) + M(p6) ≤ M(p2),

M ≥ ~0.

Note 6.4. The inequalities derived in Theorem 6.8 may not always be necessary. Suppose that on
one of the modules, sayN1, one of the following conditions holds:

1. P 1
t \ P 1

t
= ∅. Hence

0 =
∑

p∈P 1
t \P 1

t

M(p) ≤ h2

∑

p∈P 2
t

M(p)

is always verified.

2. P 1
t = P1. HereP1 is the set of places ofN1. In this case there is a cycle containingt andp0

(the place marked byM0), andt may fire infinitely often inN1 for each reachable marking.
Hence ∑

p∈P 2
t \P 2

t

M(p) ≤ h1

∑

p∈P 1
t

M(p)

is always verified.

In the following example we will show an example of a system in which the initial marking
marks more than one place.

Example 6.7. In the netN1 in Figure 6.7, discussed in Example 6.5, we have

ρ1
max(M, t) = min{ M(p2), M(p2) + M(p3)− 1,

M(p2) + M(p4)− 1, M(p2) + M(p3) + M(p4)− 2},
ρ1
min(M, t) = 0.

Hence, when composing the module through transitiont with another moduleN2 the following
inequalities should be considered

A(N1),

A(N2),

ρ2
min(M, t) ≤ M(p2),

ρ2
min(M, t) ≤ M(p2) + M(p3)− 1,

ρ2
min(M, t) ≤ M(p2) + M(p4)− 1,

ρ2
min(M, t) ≤ M(p2) + M(p3) + M(p4)− 2.

The case of a composition of two state machines through a set of transitionsTs is now consid-
ered.

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 56

Theorem 6.9. When two state machinesN1 andN2 are composed through a setTs of transitions
and these transitions are looped in one of the nets, sayN2, the set of markings reachable from the
initial marking M0 for the composed netN = N1 ‖ N2 is given by the following set of linear
inequalitiesA(N):

A(N1),

A(N2),
∑

p∈P 1
Ts
\P 1

Ts

M(p) ≤ h
∑

p∈P 2
Ts

M(p),

where:

• A(Ni) (i = 1, 2), is the set of inequalities for the netNi (as derived with Algorithm 6.1);

• the sets of placesP i
Ts

andP i
T s

(i = 1, 2), belongs toNi, and are determined as in Defini-
tion 6.4;

• h is equal to the number of tokens contained inN1.

Proof: Given the special structure ofN2, any reachable markingM2 of N2 may be reached
without firing any transition inTs. Hence it is never possible, as suggested by the previous note,
that a firing sequence onN2 may require the firing of more transitions inTs than a firing sequence
onN1. Also, if a markingM ′

2 of N2 may be reached by firing a transition inTs, then any sequence
of transitions inTs may also be fired. Hence the only constraint imposed by the composition of the
two modules is that for any markingM = [MT

1 MT
2]T , if reachingM1 requires the firing of one

or more transition inTs, M2 may be also be reached by firing a transition inTs. This constraint is
expressed by the third inequality ofA(N). ¦

The following two theorems generalize Theorem 6.8 and Theorem 6.9 to the composition
of two ECSM (not only state machines) along simple paths (not only single transitions). These
theorems will be given without proof.

When two ECSM nets are composed along a simple path it is necessary to consider the pos-
sibility that the path may belong to more than one state machine module on each net. Also the
places determined in Definition 6.4 are computed with respect to the first transition of the path.

Theorem 6.10.LetN1 andN2 be two ECSM nets, i.e.,Ni = Ni,1 ‖ . . . ‖ Ni,ni (i = 1, 2), where
Ni,j is a state machine. AssumeN1 andN2 are to be composed through a simple path of transitions
θ = t0p1t1 . . . prtr that belongs to modulesN1,q (q ∈ J1) and to modulesN2,s (s ≤ J2). The set
of markings reachable from the initial markingM0 for the composed netN = N1 ‖ N2 is given
by the following set of linear inequalitiesA(N):

A(N1),
A(N2),

∑

p∈P 1,q
t0
\P 1,q

t0

M(p) ≤ hq,s
2

∑

p∈P 2,s
t0

M(p), (q ∈ J1, s ∈ J2),

∑

p∈P 2,s
t0
\P 2,s

t0

M(p) ≤ hq,s
1

∑

p∈P 1,q
t0

M(p), (q ∈ J1, s ∈ J2),

where:

• A(Ni) is the set of inequalities for the netNi;

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 57

• the sets of placesP i,j
t andP i,j

t
(i = 1, 2; j ∈ Ji),belongs toNi,j , and are determined as in

Definition 6.4;

• hq,s
1 = 1 (hq,s

2 = 1) if there does not exist a cycle containing the pathθ in the netN1,q

(N2,s). Elsehq,s
1 (hq,s

2) is equal to the number of tokens contained in the netN2,s (N1,q).

When two ECSM nets are composed alongk simple paths, the paths are looped in one of
the nets, hence they belong to only one state machine module of the looped net. However, it is
necessary to consider the possibility that each path may belong to more than one state machine
module on the net that is not looped.

Theorem 6.11. Let N1 and N2 be two ECSM nets, i.e.,Ni = Ni,1 ‖ . . . ‖ Ni,ni (i = 1, 2),
whereNi,j is a state machine. AssumeN1 andN2 are to be composed through ak simple path
of transitionsθj = tj0p

j
1t

j
1 . . . tjrj (j = 1, . . . , k), and letTs = {t10, . . . , tk0}. Assume furthermore

that pathθj belongs to modulesN1,q (q ∈ Jj) and that all paths are looped in the moduleN2,1.
The set of markings reachable from the initial markingM0 for the composed netN = N1 ‖ N2 is
given by the following set of linear inequalitiesA(N):

A(N1),
A(N2),

∑

p∈P ′1

M(p) ≤ h
∑

p∈P ′2

M(p),

where:

• A(Ni) is the set of inequalities for the netNi;

• P ′
1 is the set of places inN1 that may be marked only by firing a transitiont ∈ Ts:

P ′
1 =

k⋃

j=1

⋃

q∈Jj

(
P 1,q

tj0
\ P 1,q

t
j
0

)
,

whileP ′
2 is the set of places inN2 that may be marked firing a transitiont ∈ Ts:

P ′
2 = P 2,1

Ts
;

• h is equal to the sum of the tokens contained in the netsN1,q (q ∈ Jj) (j = 1, . . . , k).

We conclude this section pointing out that when state machines modules are composed to form
an ECSM, the number of equations of that defines the reachability set grows, in the worst case,
more than linearly. In the case of Theorem 6.10 we have to add2× |J1| × |J2| equations.

6.4 Supervisory Verification

In this section the results developed so far are applied to the validation of supervisors for the
control of discrete event systems (DES).

Considerm discrete event systems, represented by the state machinesN1, . . . , Nm, working
concurrently. It is generally assumed that the set of transitions of all these systems are disjoint.
The specifications to be enforced on the joint behavior of these systems are represented byn
different state machinesH1, . . . , Hn, whose transitions are a subset of all the transitions of theN ’s.
The procedure for determining amonolithic supervisorrequires the construction, by concurrent

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 58

composition, of the netE = N1 ‖ . . . ‖ Nm ‖ H1 ‖ . . . ‖ Hn. Recall that there exists a set of
final markings associated to theN ’s andH ’s.

E and the netsNi (i = 1, . . . , n) will run in parallel, i.e., whenever a transition fires on
one of the netsNi, it is also fired inE. Furthermore, the transitions enabled inE at a given
marking represent the transitions that are allowed to fire in the netsNi, while all other transitions
are disabled. The netE will represent a proper supervisor, if the following two properties are
ensured.

• Nonblockingness:the reachability set of the netE does not contain blocking markings, i.e.,
markings from which a final marking cannot not be reached;

• Controllability: it is not possible to reach a marking from which an uncontrollable transition,
belonging to the netNi, is enabled inNi but is not enabled inE.

In the following subsection it is discussed how these properties may be verified by Integer
Programming techniques in the case thatE is an ECSM net. Clearly these restrictions heavily limit
the class of control problems that can be solved by our approach. However, it is possible to check
for these properties in more efficient ways than by brute force state space search. Additionally,
as will be shown below, it may be the case that the model may be validated by simple Linear
Programming.

6.4.1 Blocking

Let 〈N, M0〉 be a marked net, andMf be a final marking associated to it. For the sake of simplicity
assume thatMf is the only final marking of the net. The netN will be blocking if and only if

(∃M) [M ∈ R(N, M0),Mf 6∈ R(N,M)]

Now the setR(N, M0) of an ECSM net can be given as a convex linear set, as shown in
Section 3. Similarly thecoreachability setof Mf , i.e., the set{M | Mf ∈ R(N, M)}, can be
given in this form, according to the following proposition.

Proposition 6.5. LetN = (P, T, I,O) be a net. Given a markingMf of N , the coreachability set
of Mf is identical to the reachability set fromMf in the reversed netNR = (P, T, O, I), that is,

{M | Mf ∈ R(N, M)} = R(NR,Mf).

Finally it is possible to check for the existence of blocking markings as follows.

Proposition 6.6. Let 〈N, M0〉 be a marked ECSM net and letMf be the final marking associated
with it. Assume the reachability set ofM0 is given by the setPRA0(N,M0) = {M ∈ IN |P | |
A0 ·M ≥ A0 ·M0}, and the coreachability set ofMf is given by the setPRAf (N,Mf) = {M ∈
IN |P | | Af ·M ≥ Af ·Mf}, where

Af =

~a1
f

. . .
~ak

f

 .

Then there exist a blocking markingM if and only if one or more of the following Constraint Sets
has an integer feasible solution(∀i = 1, . . . , k):

A0 ·M ≥ A0 ·M0, CS1i

~ai
f ·M ≤ ~ai

f ·Mf − 1,

M ≥ ~0.

Proof: M is a blocking marking⇐⇒ M ∈ R(N, M0) ∧ Mf 6∈ R(N, M) ⇐⇒ [A0 · M ≥
A0 ·M0] ∧ ¬[Af ·M ≥ Af ·Mf] ⇐⇒ [A0 ·M ≥ A0 ·M0] ∧ [

∨k
i=1 ~ai

f ·M < ~ai
f ·Mf] ⇐⇒

(∃i)[(A0 ·M ≥ A0 ·M0) ∧ (~ai
f · ~ai

f ·Mf − 1)]. ¦

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 59

Note that each constraint~ai
f ·M < ~ai

f ·Mf has been rewritten in the equivalent form~ai
f ·M ≤

~ai
f ·Mf − 1.

It is possible to relax the constraint that the vectorM be integer and obtain a sufficient con-
dition for the validation of the net. In fact, if no real vectorM satisfies the previous systems of
inequalities no blocking marking may be reached.

Note also that some of the constraints~ai
f ·M ≥ ~ai

f ·Mf may be trivially verified by any marking
in R(N, M0). This is the case, for instance, for the constraints coming from the P-semiflows of
the net that are satisfied by the reachable and coreachable markings. Thus, we need not solve the
correspondingCS1i, as it clearly has no feasible solution.

6.4.2 Controllability

Consider the netE constructed by concurrent composition of all the systems and specification
modules. Lettq ∈ Tu be an uncontrollable transition and assume thattq belongs to the system net
Ni. (By the hypothesis that all the systems have disjoint transitions, a transition may belong to
only one netN , although it may belong to more than one specification netH.) Let the preset oftq
be: •tq = {p0

q , . . . , p
kq
q }, wherep0

q is a place ofNi andpj
q (j > 0) is a place of some specification

netH.
E is not controllable if and only if it is possible to reach a markingM such that an uncontrol-

lable transitiontq is enabled byM ↑i in Ni, but it is not enabled byM in E. In other words,E is
not controllable if and only if

(∃tq ∈ Tu) (∃M) [M ∈ R(E,M0) ∧M(p0
q) ≥ 1 ∧ (

kq∨

j=1

M(pj
q) ≤ 0)].

Proposition 6.7. Let the reachability set ofE be given by the setPRA(E, M0) = {M ∈ IN |P | |
A·M ≥ A·M0}. ThenE will not be controllable if and only if one or more of following Constraint
Sets has an integer feasible solution (∀tq ∈ Tu and∀pj

q ∈ •tq j > 0)

A ·M ≥ A ·M0, CS2q,j

M(p0
q) ≥ 1,

M(pj
q) ≤ 0,

M ≥ ~0.

Proof: E is not controllable⇐⇒
(∃tq ∈ Tu) (∃M) [M ∈ R(E, M0) ∧M(p0

q) ≥ 1 ∧ (
∨kq

j=1 M(pj
q) ≤ 0)]⇐⇒

(∃tq ∈ Tu) (∃M) (∃j) [A ·M ≥ A ·M0 ∧M(p0
q) ≥ 1 ∧M(pj

q) ≤ 0]. ¦
Also if the constraint thatM be integer is relaxed, we may use Linear Programming to derive

a sufficient condition forE to be controllable.

6.5 Conclusions

In this chapter we have defined a class of P/T net, called Elementary Composed State Machine
nets. The reachability problem for this class can be solved by incidence matrix analysis. We
have shown how it is possible to derive a set of linear inequalities that exactly define the set of
reachable markings. Important properties of the net, such as the absence of blocking states or
controllability, may be studied by Integer Programming techniques. This approach may be used
to validate supervisors for the control of discrete event systems.

The main drawbacks of this approach is summarized as follows:

CHAPTER 6. INCIDENCE MATRIX ANALYSIS 60

• Integer Programming problems may be not be solved, in general, in polynomial time. How-
ever we have also shown that it is possible to use Linear Programming techniques to derive
sufficient conditions for supervisory validation.

• The model is limited, in the sense that there exist monolithic supervisors that cannot be
modeled as ECSM nets.

• Although a procedure to validate a supervisor is given here, the control problem is not di-
rectly solved, in the sense that if the model does not have the desired properties the approach
does not directly lead to the construction of a proper supervisor.

Chapter 7

GENERALIZED MUTUAL
EXCLUSION CONSTRAINTS

7.1 Introduction

Mutual exclusion constraints are a natural way of expressing the concurrent use of a finite number
of resources, shared among different processes. In the framework of Petri nets and from a very
general perspective, we define a generalized mutual exclusion constraint (GMEC) as a condition
that limits a weighted sum of tokens contained in a subset of places [Giua 92b]. Let〈N,M0〉 be a
net system with set of placesP . A constraint(~w, k) defines a set oflegalmarkings:

M(~w, k) = {M ∈ IN |P | | ~wT ·M ≤ k},

where~w is a weight vector of nonnegative integers, andk is a positive integer. Markings inIN |P |

that are not legal will be denotedforbiddenmarkings.
In the first part of this chapter we present a methodology, based on linear algebraic techniques

[Silva 92], to compare and simplify GMEC. An equivalence notion among GMEC is introduced
and studied from the point of view of structural net theory.

In traditional Petri net modeling all transitions are assumed to becontrollable, i.e., may be
prevented from firing by a control agent. A problem addressed for those systems with shared
resources has been that of deadlock prevention or avoidance [Banaszak 90, Viswanadham 90,
Zhou 91]. A single GMEC may be easily implemented by amonitor, i.e., a place whose initial
marking represents the available units of a resource and whose outgoing and incoming transitions
represent, respectively, the acquisition and release of units of the resource.

In the framework of Supervisory Control [Golaszewski 88], the complexity of enforcing a
GMEC is enhanced by the presence ofuncontrollabletransitions, i.e., transitions that may be
observed but not prevented from firing by a control agent. To enforce a given GMEC, it is nec-
essary to prevent the system from reaching a superset of the forbidden markings, containing all
those markings from which a forbidden one may be reached by firing a sequence of uncontrollable
transitions. Unfortunately, in this case we prove that the set of legal markings cannotalwaysbe
represented by a linear domain in the marking space, thus there exist problems which do not have
a “monitor-based” solution.

In this context, the second part of this chapter discusses GMEC for systems represented as
marked graphs. The goal is that of constructing a supervisor capable of enforcing the constraints.
A solution to this problem has been given by Holloway and Krogh [Holloway 90, Holloway 92a,
Krogh 91]. In their approach, which may be defined asfully interpreted, the control policy is
efficiently computed by an on-line controller as a feedback function of the marking of the system.
In this work, instead, we are interested in deriving a net based structure for the supervisor. We

61

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 62

will discuss and compare several solutions. Some of these models will befully compiled, i.e., the
corresponding supervisor is represented by a P/T net, others will bepartially compiled, i.e., the
corresponding supervisor is given as an interpreted net in which the firing of some transitions not
only depends on the marking of the net but on the value of some boolean expressions as well.

The advantages of fully compiling the supervisor action in a net structure are:

• The computation of the control action is faster, since it does not require separate on-line
computation.

• The same Petri net system execution algorithms may be used for both the original system
and the supervisor.

• A closed-loop model of the system under control may be built with standard net composition
constructions, and analyzed for properties of interest. Moreover, the structural theory of
Petri nets may be used to prove, without an exhaustive state space search, that the system
under control enjoys the properties.

On the other hand, partially compiled models are more flexible in the sense that some inter-
pretations may be used to implement complex control policies, whose corresponding net structure
may be exceedingly large.

The chapter is structured as follows. In Section 7.2, generalized mutual exclusions constraints
are defined. If all transitions of the net are controllable, these constraints may be enforced by a
monitor place. If some of the transitions are uncontrollable, it is possible to prove that a monitor-
based solution may not exist. In Section 7.3, we study the properties of marked graphs with the
addition of monitor places. In particular, we discuss a sub-class of marked graphs for which there
is always a monitor-based solution, corresponding to a set of GMEC, even when some transitions
are uncontrollable. In Section 7.4, we present two different P/T structures for the supervisor
capable of enforcing GMEC for this sub-class of marked graphs. In Section 7.5, we present two
different partially compiled net structures for the supervisor capable of enforcing GMEC for this
sub-class of marked graphs. In Section 7.6, we compare the advantages and disadvantages of the
different control structures.

7.2 GMEC and Monitors

In this section we define ageneralized mutual exclusion constraint(GMEC) as a condition that
limits the weighted sum of tokens in a set of places. We discuss the modeling power of this kind
of constraint and prove that only for restricted classes of systems aforbidden marking problem
may be expressed as a mutual exclusion problem. Then we study how GMEC may be enforced by
adding additional control structure, in the form of new places calledmonitors, to the net.

7.2.1 Generalized Mutual Exclusion Constraints

Definition 7.1. Let 〈N, M0〉 be a net system with set of placesP . A singlegeneralized mutual
exclusion constraint(~w, k) defines a set of legal markings

M(~w, k) = {M ∈ IN |P | | ~wT ·M ≤ k},
where~w : P → IN is a weight vector, andk ∈ IN+. Thesupportof ~w is the setQw = {p ∈ P |
w(p) > 0}.

A set of generalized mutual exclusion constraints(W,~k), with W = [~w1 . . . ~wm] and~k =
(k1 . . . km)T , defines a set of legal markings

M(W,~k) =
m⋂

i=1

M(~wi, ki) = {M ∈ IN |P | | W T ·M ≤ ~k}.

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 63

As a particular case, when~w ≤ ~1, i.e.,w(p) = 1 (∀p ∈ Qw), theunweightedGMEC (~w, k)
is reduced to theset conditionconsidered in [Krogh 91].

In the following we will discuss the redundancy and equivalence between constraints.

Definition 7.2. Let 〈N,M0〉 be a system. A GMEC(~w, k) is redundantwith respect to (wrt) a set
of markingsA ⊆ IN |P | if A ⊆M(~w, k).

A GMEC(~w, k) is redundant wrt a system〈N, M0〉 if R(N, M0) ⊆M(~w, k).
A set of GMEC(W,~k), whereW = [~w1 . . . ~wm] and~k = (k1 . . . km)T , is redundant wrt

〈N, M0〉 if (~wi, ki) is redundant for alli = 1, . . . ,m.

Linear programming techniques may be used to derive sufficient conditions for redundancy.

Proposition 7.1. If the following Linear Programming Problem (LPP) has optimal solutionx∗ <
k + 1 then the GMEC(~w, k) is redundantwrt 〈N,M0〉:

x = max ~wT ·M
s.t. M = M0 + C · ~σ,

M,~σ ≥ ~0.

Proof: If x∗ < k + 1 then PR(N, M0) ⊆ M(~w, k) and this implies thatR(N, M0) ⊆
M(~w, k). ¦

The proposition gives a sufficient condition for redundancy. There are classes of nets, such as
marked graphs (see Proposition 7.3), for which the condition is necessary and sufficient [Colom 89].
Also for the nets for whichPR(N,M0) = PRB(N,M0) we may equivalently check for redun-
dancy solving the following linear programming problem:

x = max ~wT ·M
s.t. BT ·M = BT ·M0,

M ≥ ~0.

whereB is a basis of P-semiflows of the net.

Definition 7.3. Two sets of GMEC(W1,~k1) and(W2,~k2) areequivalentwrt 〈N,M0〉 if R(N,M0)∩
M(W1,~k1) = R(N, M0) ∩M(W2,~k2).

We may check for equivalence between constraints using the same approach we used to check
for redundancy. In fact from the definition it follows that two sets of GMEC(W1,~k1) and(W2,~k2)
are equivalent wrt〈N, M0〉 if and only if (W1,~k1) is redundant wrtR(N, M0)∩M(W2,~k2), and
(W2,~k2) is redundant wrtR(N,M0) ∩M(W1,~k1).

Example 7.1.Consider the system in Figure 7.1a whose set of reachable markings isR(N, M0) =
{M | ~1 T ·M = 3}. Let (~w1, k1) and(~w2, k2) be two GMEC with:~w1 = (1330)T , k1 = 5, and
~w2 = (0110)T , k2 = 1.

To prove that the two constraints are equivalent wrt the system considered we may proceed as
follows. The LPP

x1 = max ~wT
1 ·M

s.t. ~1 T ·M = 3,

~wT
2 ·M ≤ 1,

M ≥ ~0,

has optimal valuex∗1 = 5 < k1 + 1, hence by Proposition 7.1R(N, M0) ∩ M(~w2, k2) ⊆
M(~w1, k1). The LPP

x2 = max ~wT
2 ·M

s.t. ~1 T ·M = 3,

~wT
1 ·M ≤ 5,

M ≥ ~0,

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 64

Figure 7.1: System in Example 7.1.

has optimal valuex∗2 = 5
3 < k2 + 1, henceR(N, M0) ∩M(~w1, k1) ⊆ M(~w2, k2). This proves

that the two constraints are equivalent for the given system.

The equivalence between constraints leads to the idea ofsimplificationof a constraint. Given
a constraint(~w, k), we may look for a simpler, but equivalent, constraint. A constraint(~w′, k′)
is simpler than(~w, k) if ~w′ < ~w. In the next subsection we will see that simpler constraints
require simpler control structure to be enforced. The next example shows another advantage of
simplifying constraints.

Example 7.2. For the system in Figure 7.1a consider, in addition to the two constraints discussed
in Example 7.1, the constraint(~w3, k3) with: ~w3 = (0330)T , k3 = 5. By definition, (~w2, k2)
is simpler than(~w3, k3) that is simpler than(~w1, k1). It is immediate to see thatM(~w3, k3) =
M(~w2, k2), i.e.,(~w3, k3) is equivalent to(~w2, k2) wrt 〈N, M0〉. Since we have proved in Exam-
ple 7.1 that(~w1, k1) is equivalent to(~w2, k2), the equivalence between(~w1, k1) and(~w3, k3) also
follows.

Note, however, that if we try to use a LPP to prove that(~w1, k1) is redundant wrtR(N,M0)∩
(~w3, k3) we have an inconclusive answer. In fact the LPP

x1 = max ~wT
1 ·M

s.t. ~1 T ·M = 3,

~wT
3 ·M ≤ 5,

M ≥ ~0,

has optimal value:x∗1 = 19
3 > 6, hence we cannot conclude that(~w1, k1) is redundant wrt

R(N,M0) ∩ (~w3, k3).

It is important, in the previous example, to pinpoint the advantage of using the simpler un-
weighted constraint(~w2, k2) rather than the weighted one(~w3, k3) to prove equivalence to(~w1, k1).
The system considered in the example is a live marked graph, and the constraint set that defines
the set of reachable markings has integer extremal points, hence any optimal solution of the Lin-
ear Programming Program is also a solution of the corresponding Integer Programming Problem.
This property is preserved if we add any number of unweighted constraints to the constraint set
that defines the set of reachable markings.

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 65

Figure 7.2: Reachable markings in Example 7.5.

7.2.2 Modeling Power of Generalized Mutual Exclusion Constraints

In this subsection we discuss the modeling power of GMEC, both weighted and unweighted.
The use of weights in the definition of(~w, k) may be a useful way to compactly express

more than one unweighted constraint, i.e., it may be the case that a weighted constraint may be
decomposed into a set of unweighted ones.

Example 7.3. In the case of safe (i.e., 1-bounded) systems, the constraint(~w, k) with ~w =
(1234)T andk = 5 is equivalent to the set of constraints(W,~k) with

W =

1 1 1 0
0 1 0 1
0 0 1 1

 ,

and~k = (211)T . In factM(~w, k) ∩ {0, 1}4 = M(W,~k) ∩ {0, 1}4.

We point out that there does not always exist a set of unweighted constraints equivalent to a
set of weighted ones.

Example 7.4. Consider again the system in Figure 7.1a. Let(~w, k) be a GMEC with: ~w =
(1200)T , k = 4. In Figure 7.2 we have represented the projection of the reachability set on the
first two components,M(p1) andM(p2). MarkingsM1 = (2100)T andM2 = (0210)T are legal,
while markingM3 = (1200)T is forbidden by(~w, k).

If there exists a set of unweighted constraints(W,~k) equivalent to(~w, k), then one of the
constraints in this set must be(~w′, k′), with ~w′ = ~1, such thatM1,M2 ∈ M(~w′, k′), andM3 6∈
M(~w′, k′). We will prove, by contradiction, that no such(~w′, k′) may exists. In fact,~w′ ·M1 <
~w′ ·M3 =⇒ w′(p1) < w′(p2), and ~w′ ·M2 < ~w′ ·M3 =⇒ w′(p3) < w′(p1). That is, in order
to have an unweighted constraint that forbidsM3 but that does not forbidM1 andM2 we need
to chose a~w′ such that(∀p) w′(p) ∈ {0, 1} andw′(p3) < w′(p1) < w′(p2). This is clearly
impossible.

For safe systems, however, the following theorem proves that any weighted constraint is equiv-
alent to a set of unweighted constraints.

Theorem 7.1. Let 〈N,M0〉 be a safe system with set of placesP and(~w, k) a weighted GMEC.
There exists a set of unweighted constraints(W,~k) equivalent to(~w, k) wrt 〈N,M0〉.

Proof: Consider the set of vectorsV such that∀~v ∈ V the following conditions are verified:

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 66

C1. ~v ∈ {0, 1}|P |;
C2. Qv ⊆ Qw;

C3. ~wT · ~v > k;

C4. (∀~v′ ∈ {0, 1}|P |, ~v′ < ~v) ~wT · ~v′ ≤ k.

Let (W,~k) be such thatW = (~w1 . . . ~wr) and~k = (k1 . . . kr)T , where

r⋃

i=1

{~wi} = V,

and where(i = 1, . . . , r) ki =|Qwi| −1.
a) Let us proveR(N,M0) ∩M(~w, k) ⊆M(W,~k).

M ∈ R(N, M0) ∩M(~w, k) =⇒ M ≤ ~1 ∧ ~wT ·M ≤ k =⇒ M ≤ ~1 ∧ (∀~v ∈ V) ∃p ∈ Qv 3
M(p) = 0 =⇒ (∀~v ∈ V) ~vT ·M ≤ ki =⇒ M ∈M(W,~k).

b) Let us proveR(N, M0)∩M(W,~k) ⊆M(~w, k). It is enough to prove thatM ∈ R(N, M0)∧
M 6∈ M(~w, k) =⇒ M 6∈ M(W,~k).
M ∈ R(N, M0) ∧ M 6∈ M(~w, k) =⇒ M ≤ ~1 ∧ ~wT · M > k. Let ~v0 be defined as: if
p ∈ Qw thenv0(p) = M(p) elsev0(p) = 0. Clearly~v0 satisfies conditions C1-C3 listed above.
We will show that there exists vector~vj ≤ ~v0 and such that~vj ∈ V . Considerp′ ∈ Qv0 3
(∀p ∈ Qv0)w(p′) ≤ w(p). Let ~v1 be a new vector such that: ifp 6= p′ thenv1(p) = v0(p) else
v1(p) = 0. If ~wT · ~v1 ≤ k stop else repeating this procedure construct~v2, · · · , ~vj+1 such that
M ≥ ~v0 > ~v1 > · · · > ~vj+1 and ~wT · ~vj+1 ≤ k while ~wT · ~vj > k. This means that~vj ∈ V ,
hence~vT

j ·M =|Qvj|=⇒ M 6∈ M(W,~k). ¦
In the rest of this subsection we will compare GMEC with the most general kind of constraint

that can be defined on the markings of a system, theforbidden markingsconstraint [Holloway 92a].
A forbidden marking constraint consists of anexplicit list of markingsF that we want to forbid.

Let us now consider a net system〈N,M0〉 and letF be any set of forbidden markings. Is it
possible to find a set of GMEC(W,~k) equivalent toF , i.e., such thatR(N, M0)\F = R(N,M0)∩
M(W,~k)? In general the answer is no. In fact given three markingsM1,M2,M3 ∈ R(N, M0)
with M3 = (M1 + M2)/2 we have thatM1,M2 ∈ M(W,~k) =⇒ M3 ∈ M(W,~k), since
M(W,~k) is a convex set. HoweverF may be chosen such thatM1,M2 6∈ F andM3 ∈ F . This
proves that there may not exist an GMEC equivalent to a forbidden marking constraint.

However it is possible to prove that for some classes of nets there exists an GMEC equivalent
to any forbidden marking constraint.

Theorem 7.2. Let 〈N, M0〉 be a safe and conservative net system. Then given a set of forbidden
markingsF there exists a set of GMEC(W,~k) such thatR(N, M0)\F = R(N, M0)∩M(W,~k).

Proof: Let us first state two obvious facts.

1. If a net is safe there does not exist two different markings with the same support, i.e.,
M, M ′ ∈ R(N, M0) ∧QM = QM ′ =⇒ M = M ′.

2. If a net is conservative no marking is covering another one, i.e.,(∀M ∈ R(N, M0)) 6 ∃M ′ ∈
R(N, M0) 3 M < M ′.

Then, given a set of forbidden markingsF we may forbid anyM ∈ F with a constraint(~w, k)
where: ~w(p) = 1 if p ∈ QM else~w(p) = 0, andk =|QM | −1. ClearlyM 6∈ M(~w, k) and any
other markingM ′ ∈ R(N, M0) is such thatM ′ ∈ M(~w, k). Thus(W,~k) may be constructed as
the union of all the GMEC constraints forbidding a marking inF . ¦

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 67

Figure 7.3: System in Example 7.6.

The requirement that the net be conservative may be shown necessary by the following exam-
ple.

Example 7.5.Consider the 1-bounded but not conservative system in Figure 7.3. The two possible
markings of the system areM1 = (1) andM2 = (0). Clearly for a set of forbidden markings
F = {(0)} it is not possible to find an equivalent GMEC since(∀~w, k) ~wT ·M2 ≤ ~wT ·M1 ≤ k.

7.2.3 Monitors

A GMEC may be enforced on a system by amonitor.

Definition 7.4. Given a system〈N, M0〉, with N = (P, T, Pre, Post), and a GMEC(~w, k), the
monitor that enforces this constraint is a new placeS to be added toN . The resulting system is
denoted〈NS ,MS

0 〉, with
NS = (P ∪ {S}, T, PreS , PostS).

LetC be the incidence matrix ofN . ThenNS will have incidence matrix

CS =
[

C

−~wT · C
]

.

We are assuming that there are no selfloops containingS in NS , hencePreS andPostS may be
uniquely determined byCS . The initial marking of〈NS , MS

0 〉 is

MS
0 =

(
M0

k − ~wT ·M0

)
.

We assume that the initial markingM0 of the system satisfies the constraint(~w, k).

As an example, in Figure 7.1b we have represented the two monitors corresponding to the two
constraints discussed in Example 7.1.

We will use the following notation for system with monitors. LetX : P ∪ {S} → IN be a
vector. Theprojectionof X on P is the restriction ofX to P and will be denotedX ↑P . This
definition is extended in the usual way to the projection of a set of vectorsX , i.e.,X ↑P = {X ↑P |
X ∈ X}.
Proposition 7.2. Let 〈N, M0〉 be a system,(~w, k) a GMEC, and〈NS , MS

0 〉 the system with the
addition of the corresponding monitorS.

1. The monitorS ensures that the projection onP of the reachability set of〈NS ,MS
0 〉 is

contained in the set of legal reachable markings of〈N, M0〉, i.e.,

R(NS ,MS
0) ↑P⊆ R(N, M0) ∩M(~w, k).

2. The monitorS ensures that the projection onP of the potentially reachable set of〈NS ,MS
0 〉

is identical to the set of legal potentially reachable markings of〈N, M0〉, i.e.,

PR(NS ,MS
0) ↑P = PR(N,M0) ∩M(~w, k).

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 68

3. The monitorS minimally restricts the behavior of〈NS , MS
0 〉, in the sense that it prevents

only transition firings that yield forbidden markings.

4. The monitorS is a structurally implicit place inNS if and only if all places inQw are
structurally bounded.

5. The monitorS is an implicit place in〈NS ,MS
0 〉 if and only if (~w, k) is redundant in

〈N,M0〉.
Proof:
1] ClearlyR(NS , MS

0) ↑P⊆ R(N,M0), since the addition of a place can only further con-
strain the behavior of a system. To proveR(NS ,MS

0) ↑P⊆M(~w, k), letMS ∈ R(NS ,MS
0) and

M = MS ↑P . ThenMS = MS
0 + CS · ~σ or, equivalently,

M = M0 + C · ~σ,

MS(S) = MS
0 (S)− ~wT · C · ~σ = k − ~wT · (M0 + C · ~σ) ≥ 0.

Hence~wT ·M = ~wT · (M0 + C · ~σ) ≤ k, i.e.,M ∈M(~w, k).
2] With the same reasoning of the previous point we can immediately conclude thatPR(NS , MS

0) ↑P⊆
PR(N, M0) ∩M(~w, k). Let us prove the reverse inclusion. LetM ∈ PR(N,M0) ∩M(~w, k),
i.e.,∃~σ ≥ 0 such that

M = M0 + C · ~σ,

~wT ·M ≤ k.

This implies that~wT (M0 + C · ~σ) ≤ k, i.e.,k − ~wT · (M0 + C · ~σ) ≥ 0. Then we also have that

MS =
(

M

k − ~wT · (M0 + C · ~σ)

)

is a non negative solution ofMS = MS
0 + CS · ~σ, i.e.,MS ∈ PR(NS ,MS

0).
3] Let σt ∈ L(N,M0) be such that:M0[σ〉M [t〉M ′ and σ ∈ L(NS ,MS

0) be such that:
MS

0 [σ〉MS . We need to prove thatσt 6∈ L(NS ,MS
0) =⇒ ~wT ·M ′ > k. LetC(·, t) be the column

of C corresponding to transitiont. ThenPreS(S, t)− PostS(t, S) = −CS(S, t) = ~wT · C(·, t).
Sincet is not enabled by markingMS and since there are no selfloops containingS, it follows
that

0 ≤ MS(S) < PreS(S, t) =⇒ PostS(t, S) = 0,

i.e.,PreS(S, t) = ~wT · C(·, t). Then

k − ~wT ·M = MS(S) < PreS(S, t) = ~wT · C(·, t),

from which follows
~wT ·M ′ = ~wT · [M + C(·, t)] > k.

4] As shown in [Colom 89],S is structurally implicit inNS if and only if ∃Y ≥ ~0 such that
Y T · CS ≤ CS(S, ·), whereCS(S, ·) = −~wT · C is the incidence vector ofS in CS . Then: All
places inQw are structurally bounded⇐⇒ ∃Y ′ ≥ ~0 such thatQY ′ ⊇ Qw, Y ′T · C ≤ ~0 ⇐⇒
∃a ∈ IR+ such thatY = (aY ′ − ~w) ≥ ~0, Y T · CS ≤ −~wT · C ⇐⇒ S is structurally implicit in
NS .

5] Only if. S is implicit ⇐⇒ L(N, M0) = L(NS ,MS
0) =⇒ R(N,M0) = R(NS ,MS

0) ↑P⊆
M(~w, k)⇐⇒ (~w, k) is redundant in〈N,M0〉.
If. We just need to prove that if(~w, k) is redundant in〈N, M0〉 thenL(N,M0) = L(NS ,MS

0).
ClearlyL(N, M0) ⊇ L(NS ,MS

0), so we will prove that redundancy impliesL(N, M0) ⊆ L(NS ,MS
0).

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 69

Figure 7.4: A system not live under constraint.

Let σt ∈ L(N, M0) be such that:M0[σ〉M [t〉M ′ andσ ∈ L(NS ,MS
0) be such that:MS

0 [σ〉MS .
Note that redundancy implies~wT ·M ′ = ~wT · [M + C(·, t)] ≤ k. ThenMS(S) = k− ~wT ·M ≥
~wT ·C(·, t) = PreS(S, t)−PostS(t, S) and by the hypothesis thatS is not contained in a selfloop
we have:MS(S) ≥ PreS(S, t). This proves thatσt ∈ L(NS ,MS

0). ¦
The addition of a monitor to the net structure modifies the behavior of a system, in order to

avoid reaching markings that do not satisfy the corresponding GMEC. We pinpoint three facts:

• The addition of a monitor does not always preserve liveness of the system. In the system in
Figure 7.4, e.g., a monitor has been added to enforce the constraintM(p3) + M(p4) ≤ 1.
The system reaches a deadlock after the firing of a single transition.

• Not all markings that satisfy the GMEC may be reached on the net with the addition of a
monitor. In the net in Figure 7.4, e.g., the marking(000011)T may not be reached even if
it satisfies the constraintM(p3) + M(p4) ≤ 1 because the net reaches a deadlock. In the
net in Figure 7.5, a monitor has been added to enforce the constraintM(p1) + M(p3) ≤ 1.
From the initial markingMS

0 = (000111)T the markingMS = (100010)T will never be
reached even if the net is live.

• Even if liveness is preserved, the system may lose reversibility, as shown in the system in
Figure 7.5. In the same figure is shown the reachability graph of the original system (all
arcs and states) and of the system with monitor (only continuous arcs). The initial marking,
that satisfies the constraint, will never be reached again in the system with monitor.

7.2.4 Nets With Uncontrollable Transitions

We assume, now, that the set of transitionsT of a net is partitioned into the two disjoints subsets
Tu, the set ofuncontrollabletransitions, andTc, the set ofcontrollabletransitions. A controllable
transition may be disabled by the supervisor, a controlling agent which ensures that the behavior
of the system is within a legal behavior. An uncontrollable transition represents an event which
may not be prevented from occurring by a supervisor.

Given a system〈N,M0〉 and a set of GMEC(W,~k), the set of legal markings is given as a
linear domain:

M(W,~k) = {M ∈ IN |P | | W T ·M ≤ ~k}.

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 70

Figure 7.5: A system not reversible under constraint.

In the presence of uncontrollable transitions, we need to further restrict the behavior of the sys-
tem, avoiding all those markings from which a forbidden marking may be reached by firing only
uncontrollable transitions. The set of legal marking is in this case:

Mc(W,~k) = M(W,~k) \ {M ∈ IN |P | | ∃M ′ 6∈ M(W,~k) 3 M [σ〉M ′ ∧ σ ∈ T ∗u},
i.e., we do not consider legal the markings that satisfy(W,~k) but from which a forbidden marking
may be reached by firing only uncontrollable transitions. We need to introduce this restriction
because a firing sequenceσ ∈ T ∗u may not be prevented by a controlling agent.

It is possible to prove that there does not always exist a GMEC(W,~k) such thatR(N,M0) ∩
M(W,~k) = R(N, M0) ∩Mc(~w, k). Thus we may have cases in which does not exist a monitor-
based solution to a given mutual exclusion problem.

Example 7.6. In the net in Figure 7.6, we have represented as empty boxes the controllable tran-
sitions t1, t2, t5. Assume we want to enforce a constraint(~w, k) with ~w = (00100010)T and
k = 1, i.e., such thatM(p5) + M(p7) ≤ 1. Is is easy to see that the markingsM1 = (2002001)T

andM2 = (0220001)T are inMc(~w, k), but M = (1111001)T = (M1 + M2)/2 is not. This
proves that there does not exists a GMEC(W,~k) such thatR(N, M0 ∩M(W,~k) = R(N,M0) ∩
Mc(~w, k).

This shows that in presence ofuncontrollabletransitions, a problem of mutual exclusion is
transformed into a more generalforbidden marking problem, which is a qualitatively different
problem, in the sense that it may not always be solved with the same techniques used in the case
that all transitions are controllable. Note, however, that for safe and conservative systems the result
of Theorem 7.2 ensures that, even if some transitions are not controllable,(~w, k) may be enforced
by a set of monitors.

We also discuss the concept ofmaximally permissible control policy[Krogh 87]. When all
transitions are controllable, we have proved that a monitor is capable of enforcing a given GMEC
(~w, k), in the sense that it can ensure that only markings inM(~w, k) will be reached by the system
under control (Proposition 7.2, part 1). It is also the case that whenever a transitiont is prevented
from firing by the monitor at a given markingM thenM [t〉M ′∧M ′ 6∈ M(~w, k) (Proposition 7.2,
part 3). Thus any transition firing that yields a legal marking is not forbidden and the behavior of
the system under control is the largest behavior that satisfies the constraint. We call this behaviour
maximally permissiblefollowing [Krogh 87].

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 71

Figure 7.6: A mutual exclusion problem with uncontrollability that does not admit a monitor-based
solution.

In the case of uncontrollable transitions, the maximally permissible control policy should en-
sure that:a) only markings inMc(~w, k) will be reached by the system under control;b) all
transition firings that yield a marking inMc(~w, k) should be allowed.

7.3 Generalized Mutual Exclusion Constraints on Marked Graphs

In this section we focus on a class of nets, the marked graphs (MG). In the first subsection we
study the properties of marked graphs with the addition of monitors. In the second subsection
we present a general formalism for enforcing generalized mutual exclusion constraints on MG
with uncontrollable transitions. In the third subsection we restrict our attention to a particular
subclass of MG for which a solution to a mutual exclusion problem may be efficiently derived. In
Section 7.4 and Section 7.5 we will show several control structure capable of enforcing generalized
mutual exclusion constraints, in the presence of uncontrollable transitions, for this subclass.

7.3.1 Marked Graphs with Monitors

In the rest of this chapter, we will consider systems whose underlying net is a strongly connected
marked graph (MG). Strongly connected MG are structurally live and bounded.

Proposition 7.3 ([Murata 89]). Let 〈N, M0〉 be a MG system. Then

PR(N, M0) = B(N,M0).

If 〈N, M0〉 is a live MG system, then we also have that

R(N, M0) = PR(N, M0).

Proposition 7.4. Let 〈N, M0〉 be an MG system,(W,~k) be a set of GMEC, and let〈NS , MS
0 〉 be

the system with the addition of the corresponding monitors. ThenPR(NS ,MS
0) ↑P = B(N, M0)∩

M(W,~k).
Proof: Follows from Proposition 7.2, part 2, and Propositon 7.3. ¦
According to this proposition it is possible to represent the potential reachability set of〈NS ,MS

0 〉
as a set of linear inequalities where the firing count vector~σ does not appear.

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 72

Proposition 7.5 ([Murata 89]). A connected MG has a single minimal t-semiflow,X = ~1.

The introduction of a set of monitors corresponding to a set of GMEC does not change this
property. The resulting net will be amono-t-semiflownet [Campos 91]. For mono-t-semiflow nets
deadlock-freenessis equivalent toliveness. The following proposition gives a sufficient condition
for liveness.

Proposition 7.6. Let 〈N, M0〉 be a live MG system,(W,~k) a set of GMEC, and〈NS ,MS
0 〉 the

system with the addition of the corresponding monitors.〈NS ,MS
0 〉 is live if ∀M ∈ B(N,M0) ∩

M(W,~k), M is not a dead marking.
Proof: If no dead marking exists inPR(NS , MS

0) then no dead marking exists inR(NS ,MS
0)

and the system is deadlock-free. This in turn implies liveness, since the net is a mono-t-semiflow
net. ¦

Note that there may exist dead markings inB(N,M0) ∩ M(W,~k) that are not reachable
under control. These markings are calledkilling spurious markingsin structural jargon. Thus the
previous proposition gives a sufficient but not necessary condition for liveness. The next example
shows that, unfortunately, killing spurious markings may exists on marked graphs with monitors.

Example 7.7.Consider the system in Figure 7.7, whose reachability graph is also shown. Assume
we want to enforce the two constraints:3M(p1) + M(p3) ≤ 9, andM(p2) + 3M(p4) ≤ 9.
The legal marking of this system under the constraints are shown in Figure 7.8. Let the initial
marking beM0 = (2130)T . The dead markingM = (3003)T is in PR(NS ,MS

0) ↑P , since
M ∈ B(N, M0) ∩M(W,~k), but since it is never reachable the system is live.

Proving reversibility for a MG with monitors〈NS ,MS
0 〉 is a harder task. Liveness and the

existence of repetitive sequence firable fromM0 are not sufficient conditions for reversibility, as
shown in the following example.

Example 7.8. In the system in Figure 7.7 we want to enforce the two constraints:2M(p1) +
3M(p4) ≤ 9, and2M(p2) + 3M(p3) ≤ 9. The legal marking of this system under the constraints
are shown in Figure 7.9. The system is live from any legal initial marking. However, from initial
markingM0 = (0303)T the system is not reversible, even if there exist a repetitive sequence
firable fromM0.

7.3.2 Control Subnet

In this subsection we discuss a general methodology for enforcing constraints on systems with
uncontrollable transitions. To enforce a constraint we need to prevent some transition firing. Un-
fortunately, we cannot prevent the firing of an uncontrollable transitiont ∈ Tu. We may, however,
prevent the firing of a set of controllable transitions (calledcontrol transitions oft) whose firing is
required prior to the firing oft.

Definition 7.5. LetN = (P, T, Pre, Post) be a net, and letti ∈ Tu be an uncontrollable transi-
tion.

Thecontrol subnetfor ti is the subnetNi = (Pi, Ti, P rei, Posti) wherePi ⊆ P is the set of
places connected tot by a path containing only uncontrollable transitions,Ti = •Pi ∩ P •

i , and
Prei = Pre ∩ (Pi × Ti), Posti = Post ∩ (Pi × Ti).

The set ofcontrol transitionsfor t is the setAi = •Pi \ P •
i . It is obvious thatAi ⊆ Tc.

We may extend this definition to controllable transitions as well. Given a netN = (P, T, Pre, Post)
and a controllable transitionti ∈ Tc, the control subnet forti is not defined but the set of control

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 73

Figure 7.7: A marked graph system and its reachability graph.

Figure 7.8: Legal markings for the system in Figure 7 under the set of constraints shown.

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 74

Figure 7.9: Legal markings for the system in Figure 7 under the set of constraints shown.

transitions forti is the setAi = {ti}, i.e., the transition itself. This will allows us, in the following,
to use the same formalism for both controllable and uncontrollable transitions.

For marked graphs systems if it possible to analytically compute the dependency between the
firing of an uncontrollable transition and the firing of its control transitions. The advantage is that
this computation may be done on the structure of net, without resorting to the construction of the
space of reachable markings.

Proposition 7.7.Let〈N, M0〉 be an MG system andti one of its transitions. LetNi = (Pi, Ti, P rei, Posti)
be the control subnet forti, and letAi be the set of control transitions forti.

1. Ti ⊆ Tu. This means thatAi ∩ Ti = ∅.
2. Given a markingM ∈ R(N, M0), the maximum number of times we may fireti without

firing any transition inAi (thedeviation boundbetweenti andAi) is

DB(M, ti, Ai) = min{td(M, t′, ti) | t′ ∈ Ai},
wheretd(M, t′, ti) is the token distance between transitionst′ and ti, i.e., the minimum
token content among all possible direct paths fromt′ to ti at markingM .

Proof:
1] By contradiction, ift′ ∈ Ti∩Tc, then the input place oft′ cannot be inPi, as its only output

transition is controllable, hencet′ 6∈ Ti.
2] See Murata [Murata 89]. Note that the token distanceDB(M, t, Ai) may be computed

solely from the analysis ofNi and its marking. Note also that ifti is controllableDB(M, ti, Ai) =
DB(M, ti, ti) = 0. ¦

We want to apply the ideas developed so far to the problem of enforcing GMEC on marked
graph systems. Given a constraint(~w, k), the problem is that of controlling the firing of the input
transition of all places inQw to ensure that the constraint is always verified. We will use the
following notation. Given a placepi ∈ Qw we will denote:

• toi its output transition;

• ti its input transition;

• Ni = (Pi, Ti, P rei, Posti) the control subnet forti;

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 75

Figure 7.10: Control subnets for the input transitions of placesp1, p2, p3.

• Ai = {t1i , · · · , tni
i } the set of control transitions forti.

Example 7.9. In Figure 7.10 placesp1, p2, p3 belong to the support of a GMEC. We have rep-
resented the control subnets for their input transitions, with the corresponding control transitions.
The remaining structure of the marked graph is not shown.

The deviation bound between an uncontrollable transition and its set of control transitions may
be used to define the set of legal markingsMc(~w, k) for a GMEC(~w, k) on marked graphs, under
the hypothesis discussed in the following.

Proposition 7.8. Let 〈N, M0〉 be an MG system and(~w, k) a GMEC. For each placepi ∈ Qw, let
its input transition beti. Assume that:(

⋃
pi∈Qw

Pi) ∩Qw = ∅. Then the set of legal markings is

Mc(~w, k) = {M ∈ IN |P | | ~wT · (M + DM) ≤ k},

whereDM (pi) = DB(M, ti, Ati) if pi ∈ Qw elseDM (pi) = 0.
Proof: Proposition 7.7, part 1, and the assumption that no placepi belongs to the subnet of

anyti, implies that by firing only uncontrollable transitions we may reach a new markingM ′ such
thatM ′(pi) = M(pi) + DM (pi). ¦

The previous proposition may be used to define themaximally permissible control policythat
enforces the constraint(~w, k). Given a marked graph system〈N, M0〉, the maximally permissible
control may be computed step by step as follows. LetA = (

⋃
pi∈Qw

Ai). Then from any marking
M ∈ R(N, M0):

• For each firablet ∈ A, computeM ′ 3 M [t〉M ′. If ~wT · (M ′ + DM ′) ≤ k thent should be
left free to fire else it should be disabled;

• All transitions inTc \A may be left free to fire.

7.3.3 Control Safe Places

We will consider in the following a special class of MG systems introduced in the next definition.

Definition 7.6. A placepi of an MG system〈N,M0〉 is said to becontrol safeif given its input
transitionti and its output transitiontoi , the deviation bound between any control transition inAi

and bothti andtoi is at most one for any reachable marking, i.e.,

(∀M ∈ R(N,M0) ∧ ∀t′ ∈ Ai) [DB(M, t′, ti) ≤ 1 ∧DB(M, t′, toi) ≤ 1].

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 76

It is possible to check for control safeness of a place, based solely on the net structure.

Proposition 7.9. Let 〈N,M0〉 be a live and bounded MG system. A placepi is control safe if and
only if ∀t ∈ Ai there exists a cycle that containspi and t and this cycle is marked with a single
token.

Given a GMEC(~w, k), we will assume that the places inQw are control safe. We have
seen that if the net is safe there exists a monitor-based solution to any GMEC, even if not all
transitions are controllable. The restriction that the places inQw be control safe has a similar
purpose. It will permit a simplification of the problem, in the sense that will allow us to derive
other control structures, often more efficient than a set of monitors. The different solutions are
shown in Section 7.4 and Section 7.5.

The idea here is that to check whether a placepi ∈ Qw may be marked by a firing sequence
of uncontrollable transitions we need to check only how many firings of transitions inAi have
occurred.

Proposition 7.10. Let 〈N, M0〉 be a MG system, andpi a control safe place ofN . Let ti be the
input transition ofpi, toi the output transition ofpi, andAi the set of control transitions ofti, with
ni =|Ai|. Then∀M ∈ R(N,M0):

1. (∀t ∈ Ai)[td(M, t, toi) ≤ 1];

2. M(pi) + DM (pi) ≤ 1;

3. M(pi) + DM (pi) = 1 ⇐⇒ (∀t ∈ Ai)[td(M, t, toi) = 1].

Proof: Follows from the definition of control safe place. ¦
We discuss a particular case that may arise for a given constraint(~w, k). Assume thatpj1 ∈ Qw

is in the control subnet of placepj2 ∈ Qw. Thenpj1 andpj2 are in structural mutual exclusion,
i.e., by the hypothesis that their are control safe, they will never be marked simultaneously. Hence
M(w, k) = M(~w1, k) ∩M(~w2, k), where: ~wi(p) = 0 if p = pj1 else ~wi(p) = ~w(p), i.e., the
constraint(~w, k) is equivalent to the set of constraints(W,k · ~1) = {(~w1, k), (~w2, k)}. Proof:
Trivially M(~w, k) ⊆ M(~w1, k) ∩ M(~w2, k). To prove the reverse inclusion, assumeM ∈
M(~w1, k) ∩M(~w2, k). Then: if M(pj2) > 0 then M(pj1) = 0, andM ∈ M(~w1, k) =⇒ M ∈
M(~w, k) elseM ∈M(~w2, k) =⇒ M ∈M(~w, k). ¦

In the next section we will assume, without loss of generality, that no placep in Qw, p belongs
to the control subnet of another placep′ in Qw.

7.4 Fully Compiled Models

In this section we present two different ways of enforcing a GMEC on MG systems with control
safe places. Both solutions are fully compiled, i.e., the corresponding control structure is a net
system as well.

7.4.1 Model 1: Monitor-based Controller

Definition 7.7. Let 〈N,M0〉 be a MG system and(~w, k) be an unweighted mutual exclusion
constraint, i.e.,~w ≤ ~1, defined on it. We assume thatM0 ∈ Mc(~w, k). LetQw = {p1, . . . , pr}
be a set of control safe places ofN and assume thatr =|Qw |= k + 1. Givenpi ∈ Qw let
Ai = {t1i , . . . , tni

i } be the set of control transitions forti andtoi be the output transition ofpi. The
monitorthat enforces this constraint consists of a placeS to be added to the original net with arcs
as follows:

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 77

Figure 7.11: Example of monitor.

• Pre(S, t) = 1 if t ∈ Ai elsePre(S, t) = 0;

• Post(S, t) = ni if t = toi elsePost(S, t) = 0.

The initial marking will assigns− 1 tokens to placeS where

s =| {t | t ∈ Ai ∧ td(M0, t, t
o
i) = 0} |

i.e., s counts the number of control transitions that must fire prior to the marking of all places in
Qw.

The previous definition assume that no transition will be selflooped with the monitor place.
E.g., a transitiont will be selflooped if∃i, j 3 t = toi ∧ t ∈ Aj . In this case we need to eliminate
the arcs in selfloop from the pre-incidence and post-incidence matrices.

Example 7.10. In Figure 7.11 we want to enforce the constraint

M(p1) + M(p2) + M(p3) ≤ 2

over the net in Figure 7.10. We have added a placeS to the original system with the arcs shown
in dotted lines.

It is easy to see that a monitor constructed as in Definition 7.7 enforces the maximally permis-
sible policy that ensures that the constraint(~w, k) will be satisfied. In fact the monitor prevents
only transition firings that lead to all markingsM such that

(∀i = 1, . . . , r)(∀t ∈ Ai)[td(M, t, toi) = 1],

which by Proposition 7.10 are the only illegal markings for unweighted constraints of this kind.
A set of constraints(W,~k) of this form may be enforced by adding several monitors.
Assume now(~w, k), with ~w ≤ ~1, is such that|Qw|> k + 1. The previous construction may

not be used. However the original constraint may be rewritten as a set of constraints according to
the following proposition.

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 78

Proposition 7.11. Let (~w, k) be a mutual exclusion constraint, with~w ≤ ~1, and|Qw |> k + 1.
Then,

M(~w, k) =
⋂

~w′∈Ik+1

M(~w′, k),

whereIk+1 = {~w ∈ {0, 1}P | ~w′ ≤ ~w, |Qw′|= k + 1}.
Proof: (⊆) is trivial. Let us prove (⊇). Any markingM ∈ ⋂

~w′∈Ik+1
M(~w′, k) marks at most

k places inQw, otherwise there exists~w′′ ∈ Ik+1 3 Qw′′ ⊆ {p | M(p) > 0} andM 6∈ M(~w′′, k).
Let ~w′′′ ∈ Ik+1, be a weight vector whose support contains all the places marked byM . Clearly
M ∈M(~w′′′, k) =⇒ M ∈M(~w, k). ¦

The previous proposition shows that the unweighted constraint(~w, k), with ~w ≤ ~1 and|Qw|>
k + 1, is equivalent to the set of constraints(W,k · ~1) = {(~w′, k) | ~w′ ∈ Ik+1}, hence may be

enforced by a set of monitors. However the problem is that there are

(|Qw|
k + 1

)
different subsets

of Qw of cardinalityk + 1. Thus in the worst case the number of monitors is exponential with
respect to the cardinality ofQw.

The monitor based construction may also be used, when the weight of the places is not unitary,
explicitly rewriting the set of unweighted constraints equivalent to the single weighted constraint.
We have proved in Theorem 7.1 that this is always possible for the class of nets considered here.

7.4.2 Model 2: Compiled Supervisor

In this section we consider a net supervisor, capable of enforcing a set of GMEC. We assume that
the supervisor observes the execution of the unconstrained system and at any given instant provides
a control pattern, i.e., specifies which controllable transitions are allowed to fire. The control
pattern is implicit in the transition structure of the supervisor, in the sense that a controllable
transition that belongs to the supervisor structure is enabled by the control pattern if and only if it
is enabled by the marking of the supervisor net.

Definition 7.8. Let 〈N,M0〉 be a MG system and(~w, k) be a GMEC. We assume thatM0 ∈
Mc(~w, k). Let Qw = {p1, . . . , pr} be a set of control safe places. Givenpi ∈ Qw let Ai =
{t1i , . . . , tni

i } be the set of control transitions forti and toi be the output transition ofpi. The
compiled supervisorthat enforces this constraint isS = (PS , TS , P reS , PostS) with:

• PS = {p0, p
′
1, p

′′
1, p

′′′
1 , p′2, . . . , p

′
r, p

′′
r , p

′′′
r };

• TS = A′1 ∪ A′′1 ∪ A′2 . . . ∪ A′r ∪ A′′r ∪ {to1, . . . , tor} whereA′i andA′′i are sets of transitions
synchronized withAi;

• PreS andPostS are such that:

– PreS(p0, t) = w(pi) if t ∈ A′′i elsePreS(p0, t) = 0;

– PostS(p0, t) = w(pi) if t = toi elsePostS(p0, t) = 0;

– PreS(p′i, t) = 1 if t ∈ A′i elsePreS(p′i, t) = 0;

– PostS(p′i, t) = ni − 1 if t = toi elsePostS(p′i, t) = 0;

– PreS(p′′i , t) = ni − 1 if t ∈ A′′i elsePreS(p′′i , t) = 0;

– PostS(p′′i , t) = 1 if t ∈ A′i elsePostS(p′′i , t) = 0;

– PreS(p′′′i , t) = 1 if t = toi elsePreS(p′′′i , t) = 0;

– PostS(p′′′i , t) = 1 if t ∈ A′′i elsePostS(p′′′i , t) = 0.

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 79

Figure 7.12: Example of compiled supervisor.

The initial marking ofS is MS
0 such that,∀i = 1, . . . , r,

if [M0(pi) + DM0(pi) = 1]
then [MS

0 (p′i) = MS
0 (p′′i) = 0 ∧MS

0 (p′′′i) = 1]
else [MS

0 (p′i) =| {t ∈ Ai | td(M0, t, t
o
i) = 0} | −1

∧MS
0 (p′′i) = ni − 1−MS

0 (p′i)
∧MS

0 (p′′′i) = 0],

andMS
0 (p0) = k −∑r

i=1 w(pi)MS
0 (p′′′i).

Example 7.11. In Figure 7.12 we show the supervisor that may be used to enforce the constraint
w(p1)M(p1) + w(p2)M(p2) + w(p3)M(p3) ≤ k over the net shown in Figure 7.10.

In the example in Figure 7.12 we have represented the set of parallel transitionsA′i andA′′i as
a single transition. Whenever the system executes a transitiont ∈ Ai, the corresponding transition
in A′i or A′′i will fire. Note that the behavior is deterministic, since if a transition inA′i is enabled,
the corresponding transition inA′′i is not, and conversely. For the computation of the control
pattern, a transition inAi is enabled by the control pattern if the corresponding transition inA′i or
in A′′i is enabled.

In the previous definition we have assumed that:

• (∀i = 1, . . . , r) ni > 1. If ni = 1 we may remove the placesp′i andp′′i and the set of
transitionsA′i.

• (∀i 6= j) Ai ∩Aj = ∅. If this is not the case, we need to slightly change the structure of the
supervisor by merging the transitions ofA′i andA′′i in common withA′j andA′′j

We want to show that the supervisor constructed according to Definition 7.8 enforces the
required maximally permissible policy. We note first that given a markingM of the system and a
corresponding markingMS of the supervisor we have that(∀i = 1, . . . , r)[M(pi) + DM (pi) =
MS(p′′′i)]. Since the placep0 is enforcing the constraint

∑r
i=1 w(pi)MS(p′′′i) ≤ k we have, by

Proposition 7.8, that the supervisor enforces the required policy.
In the case of a set of constraints(W, k̄) = {(~w1, k1), . . . , (~wm, km)} we need to construct a

supervisor for each single constraint(~wi, ki). Should a controllable transition belong to more that
one supervisor, saySi1 andSi2 , it will be enabled by the control pattern if and only if it is enabled
on bothSi1 andSi2 .

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 80

7.5 Partially Compiled Models

The net structure of the supervisor may be further simplified. For instance we may avoid repeating
the set of transitionsAi. However we need to add additional control structure by introducing
transitions with an associated interpretation. This partially destroys the possibility of analyzing
the net with traditional PN techniques. The advantage, however, is that the “partially interpreted”
supervisors that we discuss here may be easily modified to enforce constraints on any kind of MG
system. We will not discuss these modifications.

7.5.1 Model 3: Non-Deterministic Partially Compiled Supervisor

Definition 7.9. Let 〈N,M0〉 be a MG system and(~w, k) be a GMEC. We assume thatM0 ∈
Mc(~w, k). Let Qw = {p1, . . . , pr} be a set of control safe places. Givenpi ∈ Qw let Ai =
{t1i , . . . , tni

i } be the set of control transitions forti andtoi be the output transition ofpi. Thenon-
deterministic partially compiled supervisorthat enforces this constraint isS = (PS , TS , P reS , PostS)
with:

• PS = {p0, p
′
1, p

′′
1, p

′′′
1 , p′2, . . . , p

′
r, p

′′
r , p

′′′
r };

• TS = A1 ∪A2 ∪ . . .∪Ar ∪ {to1, . . . , tor} ∪ {π1, π2, . . . , πr} where eachπi is a transition to
which a predicate is associated;

• PreS andPostS are such that:

– PreS(p0, t) = w(pi) if t = πi elsePreS(p0, t) = 0;

– PostS(p0, t) = w(pi) if t = toi elsePostS(p0, t) = 0;

– PreS(p′i, t) = 1 if t = πi elsePreS(p′i, t) = 0;

– PostS(p′i, t) = 1 if t = toi elsePostS(p′i, t) = 0;

– PreS(p′′i , t) = 1 if t ∈ Ai elsePreS(p′′i , t) = 0;

– PostS(p′′i , t) = ni − 1 if t = toi
else[PostS(p′′i , t) = 1 if t = πi elsePostS(p′′i , t) = 0];

– PreS(p′′′i , t) = ni if t = toi elsePreS(p′′′i , t) = 0;

– PostS(p′′′i , t) = 1 if t ∈ Ai elsePostS(p′′′i , t) = 0;

The initial marking ofS is MS
0 such that,∀i = 1, . . . , r,

if [M0(pi) + DM0(pi) = 1]
then [MS

0 (p′i) = MS
0 (p′′i) = 0 ∧MS

0 (p′′′i) = ni]
else [MS

0 (p′i) = 1
∧MS

0 (p′′i) =| {t ∈ Ai | td(M0, t, t
o
i) = 0} | −1

∧MS
0 (p′′′i) = ni −MS

0 (p′i)−MS
0 (p′′i)],

andMS
0 (p0) = k −∑

j∈J w(pi), whereJ = {i | MS
0 (p′i) = 0}.

The predicate associated to the transitionsπi are used to implement the control policy. The
firing of transitionπi will allow placepi to be marked.

Example 7.12. In Figure 7.13 we show the supervisor that may be used to enforce the constraint
w(p1)M(p1) + w(p2)M(p2) + w(p3)M(p3) ≤ k over the net shown in Figure 7.10.

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 81

Figure 7.13: Example of non-deterministic partially compiled supervisor.

The supervisor constructed according to Definition 7.9 will permit the system to reach only
legal markings. In fact, given a markingM of the system and a corresponding markingMS of the
supervisor we have that(∀i = 1, . . . , r)[M(pi) + DM (pi) = 1 ⇐⇒ MS(p′′′i) = ni]. Since the
placep0 is enforcing the constraint

∑
i∈J w(pi) ≤ k, with J = {i | MS(p′′i) + MS(p′′′i) = ni},

we have, by Proposition 7.8, that the supervisor will allow only legal markings to be reached.
This control policy is also maximally permissible, as shown in [Krogh 91], if two or more control
transitions may fire simultaneously.

The supervisor has been callednon-deterministicbecause we decide a priori which place in
Qw will be allowed to be marked.

7.5.2 Model 4: Deterministic Partially Compiled Supervisor

Definition 7.10. Let 〈N, M0〉 be a MG system and(~w, k) be a GMEC. We assume thatM0 ∈
Mc(~w, k). Let Qw = {p1, . . . , pr} be a set of control safe places. Givenpi ∈ Qw let Ai =
{t1i , . . . , tni

i } be the set of control transitions forti andtoi be the output transition ofpi. Thedeter-
ministic partially compiled supervisorthat enforces this constraint isS = (PS , TS , P reS , PostS)
with:

• PS = {p0, p
′
1, p

′′
1, p

′
2, . . . , p

′
r, p

′′
r};

• TS = A1 ∪ A2 ∪ . . . ∪ Ar ∪ {to1, . . . , tor} ∪ {π′1, π′′1 , π′2, . . . , π
′
r, π

′′
r } whereπ′i andπ′′i are

transitions to which a predicate is associated;

• PreS andPostS are such that:

– PreS(p0, t) = 1 if t = π′i elsePreS(p0, t) = 0;

– PostS(p0, t) = 1 if [t = toi or t = π′′i] elsePostS(p0, t) = 0;

– PreS(p′i, t) = 1 if t ∈ Ai elsePreS(p′i, t) = 0;

– PostS(p′i, t) = ni − 1 if t = toi
else[PostS(p′i, t) = 1 if t = π′i elsePostS(p′i, t) = 0];

– PreS(p′′i , t) = ni if t = toi elsePreS(p′′i , t) = 0;

– PostS(p′′i , t) = 1 if t ∈ Ai elsePostS(p′′i , t) = 0;

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 82

Figure 7.14: Example of deterministic partially compiled supervisor.

The initial marking ofS is MS
0 such that,∀i = 1, . . . , r,

if [M0(pi) + DM0(pi) = 1]
then [MS

0 (p′i) = 0 ∧MS
0 (p′′i) = ni]

else MS
0 (p′i) =| {t ∈ Ai | td(M0, t, t

o
i) = 0} | −1

∧MS
0 (p′′i) = ni −MS

0 (p′i)],

andMS
0 (p0) = r− | {i | MS

0 (p′′i) = ni} |.
The predicate associated to the transitionsπ′1 andπ′′1 are used to implement the control policy.

LetJ = {i | M(p′′i) = ni} and letv =
∑

i∈J w(pi). Then:

• π′i = TRUEif [M(p′i) + M(p′′i) = ni − 1] ∧ [v + w(pi) ≤ k] elseπ′i = FALSE;

• π′′i = TRUEif [M(p′i) + M(p′′i) = ni] ∧ [v + w(pi) > k] elseπ′′i = FALSE.

Example 7.13. In Figure 7.14 we show the supervisor that may be used to enforce the constraint
w(p1)M(p1) + w(p2)M(p2) + w(p3)M(p3) ≤ k over the net shown in Figure 7.10. Note that
the structure of the supervisor does not depend on the weight vector~w and on the integerk, that
affect only the value of the predicatesπ′1 andπ′′1 .

It is difficult to show that this supervisor is actually implementing the maximally permissible
control policy because of the predicates associated to the transitionsπ′i andπ′′i . Note however that
given a markingM of the system and a corresponding markingMS of the supervisor, we have
that(∀i = 1, . . . , r)[M(pi) + DM (pi) = 1 ⇐⇒ MS(p′′i) = ni]. The transitionsπ′′i will remove
the token necessary to reachMS(p′′i) = ni whenever the marking of placepi would violate the
constraint.

7.6 Comparison of the Models

The monitor-based controlleris an extension to systems with uncontrollable transitions of the
controller studied in Section 7.2 for nets with only controllable transitions. Thus all the structural
properties of monitors may be used to analyze the system under control. The drawback is that it
may require an exceedingly large number of monitors. However, in those cases in which it may
be used efficiently, it is the simpler and most straightforward solution.

CHAPTER 7. GENERALIZED MUTUAL EXCLUSION CONSTRAINTS 83

Thecompiled supervisorhas the advantage of always requiring a compact structure that grows
linearly with the number of places in the support of the weight vector. However, since it requires
all control transitions to be represented twice, it leads to a closed-loop model which is difficult to
analyze.

The non-deterministic partially compiled supervisorimplements a policy slightly different
from all other models. This policy is the same derived by Holloway and Krogh [Holloway 92a].
However our model does not require on-line computation, since the structure of the supervisor
ensures that only legal markings may be reached. The predicates associated to the transitions may
be used to implement different run-time policies, as suggested in [Krogh 91].

The deterministic partially compiled supervisorhas the simpler structure but its behavior
strongly depends on the predicates associated to the transitions. Thus it is at the same time the
simpler model to implement and the most difficult to analyze.

7.7 Conclusions

We have presented and studied a class of specifications, called generalized mutual exclusion con-
straints. These specifications on a net system where all transitions are controllable may be easily
enforced by a set of places called monitors. Unfortunately, we have shown that this technique is
not always applicable when some of the transitions of the net are uncontrollable.

For some classes of nets, we have proved that GMEC may always be enforced by monitors,
even in the presence of uncontrollable transitions. For one of these particular classes, marked
graphs with control safe places, we compared a monitor-based solution of mutual exclusion prob-
lems with several supervisory based solutions.

Chapter 8

CONCLUSIONS AND FUTURE
RESEARCH

8.1 Original Contributions

The thesis has discussed the use of Petri nets as discrete event models for Supervisory Control. The
approach we have followed is different from previous Petri net based approaches [Holloway 90,
Ushio 89]. In fact, we use Petri net models to represent not only the system under control but the
supervisor as well.

The original contributions consist of four major parts.

1. Petri net languages for Supervisory Control.

2. Design of supervisors.

3. Validation of Petri net supervisors.

4. Efficient construction of control structure.

8.1.1 Petri Net Languages for Supervisory Control

We have explored the closure properties of Petri net languages under the operators used in Super-
visory Control: prefix closure, and supremal controllable sublanguage. Our results show that Petri
net languages are not closed under these operators.

It was known from previous work [Wonham 87] that regular languages are closed under these
operators. Thus, we face a trade-off. If we restrict ourselves to the use of bounded or conservative
PN models, which have a finite reachability set and generate regular languages, we are sure to
have a Petri net supervisor for any given control problem. If we want to use of the full language
power of Petri nets models, we may consider unbounded Petri net models, but now not all control
problems may be solved by a Petri net supervisor.

We have also defined a new class of Petri net languages, called DP-closed languages and
denotedLDP . The languages in this class are those L-type Petri net languages (terminal Petri net
languages) whose prefix language is a P-type Petri net language (prefix Petri net language). Unlike
all other known classes of Petri net languages, the classLDP is not closed under intersection.

As a final result, we have given necessary and sufficient conditions for the existence of Petri
net supervisors when the system’s behavior and the legal behavior are deterministic Petri net lan-
guages.

The closed behaviorL(G) of systemG may be restricted to a legal behaviorL ⊆ L(G) if and
only if L is: a) a prefix Petri net language; b) deterministic; c) controllable. The marked behavior

84

CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH 85

Lm(G) of systemG may be restricted to a legal behaviorL ⊆ Lm(G) if and only if L is: a) a
DP-closed Petri net language; b)Lm(G)-closed; c) controllable.

8.1.2 Supervisory Design

Based on the monolithic supervisory design, as formulated in [Wonham 88a], we have presented
a design based on the concurrent composition operator. This design is well suited for Petri nets
models.

The design requires two steps. In the first step, a coarse structure for a supervisor is synthe-
sized by means of concurrent composition of different modules, representing the system and the
specifications we want to enforce on the system’s behavior.

This composition may be easily performed, using Petri net models, by merging transitions
labeled by the same symbols. Since the composition is performed on the structure of the net, the
same finite procedure may be used to compose nets with finite or infinite reachability sets. The
final Petri net model represents a closed loop model of the controlled system in which it is still
possible to identify the composed modules.

The generator constructed in the first step of the algorithm will be a proper supervisor if it
is nonblocking and if the language it generates is controllable. These properties may be easily
expressed in term of net properties, as we have seen.

In the second step, the generator constructed in the first step of the algorithm is refined to
obtain a nonblocking and controllable generator. In particular, we have discussed how to refine
a coarse structure for a supervisor, by introducing new arcs and possibly duplicating transitions,
to avoid reaching undesirable markings.. This procedure may always be applied when the net is
conservative. In this refinement, the modular structure of the net is preserved, but in some cases it
may be necessary to introduce a large number of transitions.

We have also compared Petri nets and state machines models, showing the advantages of using
Petri nets for the design of supervisors.

8.1.3 Validation of Petri Net Supervisors

A well known Petri net analysis technique is based on the incidence matrix analysis. We have stud-
ied how this technique may be used to validate supervisors obtained by concurrent composition of
several modules.

We have defined a class of P/T net, called Elementary Composed State Machine (ECSM) nets,
showing how to derive a set of linear inequalities that exactly define the set of reachable markings.
ECSM nets are nets obtained by concurrent composition of state machine modules. We restrict the
type of compositions considered, in order to guarantee some important properties. The two basic
compositions are: a) compositions of nets along a simple path; b) compositions of nets along a
set of simple paths that are looped in one of the nets. The class of Elementary Composed State
Machines can model both choice and concurrent behavior.

We have also discussed the difference of our approach with respect to other classical methods
based on incidence matrix analysis. We use a set of linear inequalities to define the reachability set;
these inequalities are obtained by the computation of the basic traps of the state machine modules
that compose an ECSM, and by the firing bounds of the composed transitions.

Important properties of the net, such as the absence of blocking states or controllability, may
be studied by Integer Programming techniques. We have shown how this approach may be used
to validate ECSM supervisors.

CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH 86

8.1.4 Efficient Construction of Control Structure

We have presented and studied a class of specifications for Petri net models, called generalized
mutual exclusion constraints (GMEC), that may be used to express the concurrent use of a finite
number of resources, shared among different processes.

A GMEC limits a weighted sum of tokens contained in a subset of places; all markings that
do not satisfy the constraint are called forbidden. GMEC are a mild generalization of mutual
exclusion constraints considered by other authors [Krogh 91, Zhou 91], due to the fact that the
weights we consider are defined inIN , rather than in{0, 1}. We have presented a methodology,
based on linear algebraic techniques, to compare and simplify GMEC. An equivalence notion
among GMEC has been introduced and studied from the point of view of structural net theory.

A single GMEC may be easily implemented by amonitor, i.e., a place whose initial marking
represents the available units of a resource and whose outgoing and incoming transitions represent,
respectively, the acquisition and release of units of the resource.

In the framework of Supervisory Control, the complexity of enforcing a GMEC is enhanced by
the presence ofuncontrollabletransitions, i.e., transitions that may be observed but not prevented
from firing by a control agent. To enforce a given GMEC, it is necessary to prevent the system
from reaching a superset of the forbidden markings, containing all those markings from which a
forbidden one may be reached by firing a sequence of uncontrollable transitions. Unfortunately,
in this case we have proven that the set of legal markings cannotalwaysbe represented by a linear
domain in the marking space, thus there exist problems which do not have a “monitor-based”
solution.

In this context, we have discussed GMEC for systems represented as marked graphs with con-
trol safe places. The goal is that of constructing a supervisor capable of enforcing the constraints.
A solution to this problem has been given by Holloway and Krogh [Krogh 91]. In their approach,
which may be defined asfully interpreted, the control policy is efficiently computed by an on-line
controller as a feedback function of the marking of the system. We have studied, instead, how
a net structure for the supervisor may be constructed. We have discussed and compared several
solutions. Some of these models arefully compiled, i.e., the corresponding supervisor is repre-
sented by a P/T net, others arepartially compiled, i.e., the corresponding supervisor is given as an
interpreted net in which the firing of some transitions depends not only on the marking of the net
but on the value of some boolean expressions as well.

The advantages of fully compiling the supervisor action in a net structure are:

• The computation of the control action is faster, since it does not require separate on-line
computation.

• The same Petri net system execution algorithms may be used for both the original system
and the supervisor.

• A closed-loop model of the system under control may be built with standard net composition
constructions and analyzed for properties of interest. Moreover, structure theory of Petri
nets may be used to prove, without an exhaustive state space search, that the system under
control enjoys the properties.

On the other hand, partially compiled models are more flexible in the sense that some inter-
pretations may be used to implement complex control policies, whose corresponding net structure
may be exceedingly large.

CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH 87

8.2 Future Research

It may be possible to extend this research in several parts. We give a list of the problems that may
be addressed in the future.

8.2.1 Petri Net Languages for Supervisory Control

Find a characterization of the classLDP in terms of some pumping lemma, or other particular
properties of these languages.

Characterize the class of nonregular Petri net languages that are closed under the supremal
controllable sublanguage operator.

8.2.2 Supervisory Design

Determine a refinement procedure based on the coverability tree of a Petri net, rather than on its
reachability tree. Since the coverability tree is always finite, this may permit the refinement of nets
with infinite reachability set in all those cases in which the refined model may be given as a Petri
net.

8.2.3 Validation of Petri Net Supervisors

Extend the method used to study the reachability set of ECSM to a larger class of nets. In particu-
lar, the method may be extended to other types of compositions, following the approach presented
by [Koh 92] where the composition of partially overlapping paths is considered. Additionally, it
may be interesting to consider the composition Macroplace/Macrotransition nets [Jungnitz 92],
which are a superset of state machines.

8.2.4 Efficient Construction of Control Structure

Derive the supervisory structure for enforcing GMEC on classes of nets more general than control
safe place marked graphs. Here the use of interpreted nets should prove a key factor in deriving a
simple supervisory structure.

Consider classes of specification different from GMEC, e.g.,sequencing specifications[Holloway 92b],
and derive the corresponding supervisor using a structural based approach.

Bibliography

[Aveyard 74] R.L. Aveyard, “A Boolean Model for a Class of Discrete Event Systems,”
IEEE Trans. on Systems, Man, and Cybernetics, Vol. SMC-4, No. 3, pp. 249–
258, May, 1974.

[Avrunin 91] G.S. Avrunin, U.A. Buy, J.C. Corbett, L.K. Dillon, J.C. Wileden, “Automated
Analysis of Concurrent Systems with the Constrained Expression Toolset,”
IEEE Trans. Software Engineering, Vol. 17, No. 11, pp. 1204–1222, Novem-
ber, 1991.

[Baker 72] H. Baker, Jr., “Petri Nets and Languages,”Computation Structures Group
Memo 68, Project MAC, Massachusetts Institute of Technology (Cambridge,
Massachusetts), May, 1972.

[Baker 73] H. Baker, Jr., “Equivalence Problems of Petri Nets,”Master’s thesis, Dept. of
Electrical Engineering, Massachusetts Institute of Technology (Cambridge,
Massachusetts), May, 1973.

[Banaszak 90] Z.A. Banaszak, B.H. Krogh, “Deadlock Avoidance in Flexible Manufactur-
ing Systems with Concurrently Competing Process Flows,”IEEE Trans. on
Robotics and Automation, Vol. RA-6, No. 6, pp. 724–734, December, 1990.

[Beck 86] C.L Beck, B.H. Krogh, “Models for Simulation and Discrete Control of Man-
ufacturing Systems,”IEEE Int. Conf. Robotics and Automation, pp. 305–310,
April, 1986.

[Berthelot 86] G. Berthelot, “Checking Properties of Nets Using Transformations,”Advances
in Petri Nets 1985, G. Rosenberg (ed.), Lecture Notes in Computer Sciences,
Vol. 85, pp. 19–40, Springer-Verlag, 1986.

[Berthelot 87] G. Berthelot, “Transformations and Decompositions of Nets,”Petri Nets:
Central Models and Their Properties, Advances in Petri Nets 1986, W. Brauer,
W. Reisig and G. Rosenberg (eds.), Lecture Notes in Computer Sciences, Vol.
254-I, pp. 359–376, Springer-Verlag, 1987.

[Berthomieu 87] B. Berthomieu, “Methods for Carrying Proofs on Petri Nets Using their Struc-
tural Properties,”Technical Report, Laboratoire d’Automatique et d’Analyse
des Systèmes du CNR (Toulouse, France), January, 1987.

[Best 86] E. Best, C. Fernández, “Notation and Terminology on Petri Net Theory,”
Arbeitspapiere der Gesellschaft für Math. und Datenverarbeitung, No. 195,
1986.

[Best 91] E. Best, “Design Methods Based on Nets: Esprit Basic Research Action
DEMON” Advances in Petri nets, 1990, G. Rozenberg (ed.), pp. 487–506,
Springer-Verlag, 1991.

88

BIBLIOGRAPHY 89

[Brave 90] Y. Brave, M. Heymann, “Stabilization of Discrete-Event Processes,”Int. J.
Control, Vol. 51, No. 50, pp. 1101–1117, 1990.

[Campos 91] J. Campos, G. Chiola, M. Silva, “Ergodicity and Throughput Bounds of Petri
Nets with Unique Consistent Firing Count Vector,”IEEE Trans. on Software
Engineering, Vol. SE-17, No. 2, pp. 117–125, February, 1991.

[Cieslak 91] R. Cieslak, C. Desclaux, A.S. Fawaz, P. Varaiya, “Supervisory Control of
Discrete-Event Processes with Partial Observations,”IEEE Trans. on Auto-
matic Control, Vol. AC-33, No. 3, pp. 249–260, March, 1991.

[Chen 91] E. Chen, S. Lafortune, “Dealing with Blocking in Supervisory Control of Dis-
crete Event Systems,” to appear inIEEE Trans. on Automatic Control, 1991.

[Colom 89] J.M. Colom, “Análisis Estructural de Redes de Petri, Programación Lineal
y Geometria Convexa,”Tesis Doctoral, Universidad de Zaragoza (Zaragoza,
Spain), 1989.

[Crockett 87] D. Crockett, A. Desrochers, F. DiCesare, T. Ward, “Implementation of a
Petri Net Controller for a Machining Workstation,”Proc. IEEE Int. Conf. on
Robotics and Automation(Raleigh, North Carolina), pp. 1861–1867, April,
1987.

[Datta 84] A.K. Datta, S. Gosh, “Synthesis of a Class of Deadlock-Free Petri Nets,”Jour.
of the Association for Computing Machinery, Vol. 31, No. 3, pp. 486-506,
July, 1984.

[Datta 86] A.K. Datta, S. Gosh, “Modular Synthesis of Deadlock-Free Control Struc-
tures,” Foundation of Software Technology and Theoretical Computer Sci-
ence, Vol. 241, G. Goos and J. Hartmanis (eds.), Springer-Verlag, pp. 288–
318,1986.

[De Cindio 82] F. De Cindio, G. De Michelis, L. Pomello, C. Simone, “Superposed Automata
Nets,” Application and Theory of Petri Nets, C. Girault and W. Reisig (eds.),
Informatik-Fachberichte, Vol. 52, pp. 269–279, Springer-Verlag, 1982.

[De Cindio 83] F. De Cindio, G. De Michelis, L. Pomello, C. Simone, “Milner’s Commu-
nicating Systems and Petri Nets,”Application and Theory of Petri Nets, A.
Pagnoni and G. Rozenberg (eds.), Informatik-Fachberichte, Vol. 66, pp. 40–
59, Springer-Verlag, 1983.

[DiCesare 91] F. DiCesare, A. Fanni, A. Giua, “Controllo dei sistemi ad eventi discreti me-
diante reti di Petri,”Ricerca Operativa, No. 58, pp. 2–47, 1991.

[Giua 90a] A. Giua, “Petri Net Languages for the Control of Discrete Event Systems,”
Master’s Thesis, Dept. Electrical Computer and Systems Engineering, Rens-
selaer Polytechnic Institute (Troy, New York), 1990.

[Giua 90b] A. Giua, F. DiCesare, “Easy Synchronized Petri Nets as Discrete Event Mod-
els,” Proc. 29th IEEE Int. Conf. on Decision and Control(Honolulu, Hawaii),
pp. 2839–2844, December, 1990.

[Giua 91] A. Giua, F. DiCesare, “Supervisory Design Using Petri Nets,”Proc. 30th
IEEE Int. Conf. on Decision and Control(Brighton, England), pp. 385–390,
December, 1991.

BIBLIOGRAPHY 90

[Giua 92a] A. Giua, F. DiCesare, “GRAFCET and Petri Nets in Manufacturing,” will ap-
pear inProgramming Environments for Computer Integrated Manufacturing,
W.A. Gruver and J.C. Boudreaux (Eds.), Springer-Verlag, 1992.

[Giua 92b] A. Giua, F. DiCesare, M. Silva, “Generalized Mutual Exclusion Constraints
for Petri Nets with Uncontrollable Transitions,” will appear inProc. 1992
IEEE Int. Conf. on Systems, Man, and Cybernetics(Chicago, Illinois), Octo-
ber, 1992.

[Giua 92c] A. Giua, F. DiCesare, “On the Existence of Petri Nets Supervisors,” submitted
to 31th IEEE Int. Conf. on Decision and Control(Tucson, Arizona), Decem-
ber, 1992.

[Giua 92d] A. Giua, F. DiCesare, “Petri Net Incidence Matrix Analysis for Supervisory
Control,” Working Paper, Rensselaer Polytechnic Institute (Troy, New York),
1992.

[Golaszewski 88] C.H. Golaszewski, P.J. Ramadge, “Mutual Exclusion Problems for Discrete
Event Systems with Shared Events,”Proc. IEEE 27th Int. Conf. on Decision
and Control(Austin, Texas), pp. 234–239, December, 1988.

[Hack 72] M. Hack, “Analysis of Production Schemata by Petri Nets,”Technical Report
94, Project MAC, Massachusetts Institute of Technology (Cambridge, Mas-
sachusetts), February, 1972.

[Hack 74] M. Hack, “Extended State Machine Allocatable Nets, an Extension of
Free Choice Petri Nets Results,”Computation Structures Group Memo 78-
1, Project MAC, Massachusetts Institute of Technology (Cambridge, Mas-
sachusetts), 1974.

[Hack 75a] M. Hack, “Petri Nets Languages,”Computation Structures Group Memo
124, Project MAC, Massachusetts Institute of Technology (Cambridge, Mas-
sachusetts), June, 1975.

[Hack 75b] M. Hack, “Decidability Questions for Petri Nets,”Ph.D. dissertation, Dept.
of Electrical Engineering, Massachusetts Institute of Technology (Cambridge,
Massachusetts), December, 1975.

[Hailpern 83] B.T. Hailpern, S.S. Owicki, “Modular Verification of Computer Communica-
tion Protocols,”IEEE Trans. on Communication, Vol. COM-31, No. 1, pp.
56–68, January, 1983.

[Heymann 90] M. Heymann, “Concurrency and Discrete Event Control,”IEEE Control Sys-
tems Magazine, pp. 103–112, June, 1990.

[Holloway 90] L.E. Holloway, B.H. Krogh, “Synthesis of Feedback Control Logic for a Class
of Controlled Petri Nets,”IEEE Trans. on Automatic Control, Vol. AC-35, No.
5, pp. 514–523, May, 1990.

[Holloway 92a] L.E. Holloway, B.H. Krogh, “On Closed-loop Liveness of Discrete Event Sys-
tems Under Maximally Permissible Control,”IEEE Trans. on Automatic Con-
trol, Vol. AC-37, No. 5, pp. 692–697, May, 1992.

[Holloway 92b] L.E. Holloway, F. Hossain, “Feedback Control for Sequencing Specifications
in Controlled Petri Nets,”3rd Int. Conf. on Computer Integrated Manufactur-
ing (Troy, New York), pp. 242–251, May, 1992.

BIBLIOGRAPHY 91

[Hoare 85] C. A. R. Hoare, “Communicating Sequential Processes,” Prentice-Hall, 1985.

[Ichikawa 85] A. Ichikawa, K. Yokoyama, S. Kurogy, “Reachability and Control of Discrete
Event Systems Represented by Conflict-Free Petri Net,”Proc. IEEE Int. Symp.
Circuits and Systems(Kyoto, Japan), pp. 487–490, May, 1985.

[Ichikawa 88a] A. Ichikawa, K. Hiraishi, “Analysis and Control of Discrete Event Systems
Represented by Petri Nets,”Discrete Events Systems: Models and Applica-
tions, P. Varaiya and A.B. Kurzhanski (eds.), Lecture Notes in Control and
Information Sciences, Vol. 103, pp. 115–134, Springer-Verlag, 1988.

[Ichikawa 88b] A. Ichikawa, K. Hiraishi, “A Class of Petri Nets That a Necessary and Suffi-
cient Condition for Reachability is Obtainable,”Trans. Society of Instrument
and Control Engineers, SICE(in Japanese), Vol. 24, No. 6, 1988.

[Inan 88] K. Inan, P. Varaiya, “Finitely Recursive Process Models for Discrete Event
Systems,”IEEE Trans. on Automatic Control, Vol. AC-33, No. 7, pp. 626–
639, July, 1988.

[Johnen 87] C. Johnen, “Analyse Algorithmique des Réseaux de Petri: Verification
d’Espace d’Accueil, Systemès de Réécriture,”Thèse Doctoral, Université
Paris–Sud (Paris, France), 1987.

[Jantzen 87] M. Jantzen, “Language Theory of Petri Nets,”Petri Nets: Central Models and
Their Properties, Advances in Petri Nets 1986, W. Brauer, W. Reisig and G.
Rosenberg (eds.), Lecture Notes in Computer Sciences, Vol. 254-I, pp. 397–
412, Springer-Verlag, 1987.

[Jungnitz 92] H. Jungnitz, “Approximation Methods for Stochastic Petri Nets,”Ph.D. The-
sis, Rensselaer Polytechnic Institute (Troy, New York), May, 1992.

[Kasturia 88] E. Kasturia, F. DiCesare, A. Desrochers, “Real Time Control of Multilevel
Manufacturing Systems Using Colored Petri Nets,”Proc. IEEE Int. Conf. on
Robotics and Automation(Philadelphia, Pennsylvania), pp. 1114–1119, April,
1988.

[Koh 92] I. Koh, “A Transformation Theory for Petri Nets and Their Applications to
Manufacturing Automation,”Ph.D. Thesis, Rensselaer Polytechnic Institute
(Troy, New York), December, 1991.

[Krogh 86] B.H. Krogh, C.L Beck, “ Synthesis of Place/Transition Nets for the Simula-
tion and Control of Manufacturing Systems,”Proc. 4th IFAC/IFORS Symp. on
Large Scale Systems(Zurich, Switzerland), August, 1986.

[Krogh 87] B.H. Krogh, “Controlled Petri Nets and Maximally Permissible Feedback
Logic,” Proc. 25th Allerton Conf. on Communications, Control, and Com-
puting(Urbana-Champaign, Illinois), pp. 317–326, September, 1987.

[Krogh 91] B.H. Krogh, L.E. Holloway, “Synthesis of Feedback Control Logic for Dis-
crete Manufacturing Systems,”Automatica, Vol. 27, No. 4, pp. 641–651, July-
August, 1991.

[Lafortune 90a] S. Lafortune, E. Chen, “The Infimal Closed Controllable Superlanguage and
Its Application in Supervisory Control,”IEEE Trans. on Automatic Control,
Vol. AC-35, No. 4, pp. 398–405, April, 1990.

BIBLIOGRAPHY 92

[Lafortune 90b] S. Lafortune, H. Yoo, “Some Results on Petri net Languages,”IEEE Trans. on
Automatic Control, Vol. AC-35, No. 4, pp. 482–485, April, 1990.

[Lafortune 91] S. Lafortune, F. Lin, “On Tolerable and Desirable Behaviors in Supervisory
Control of Discrete Event Systems,”J. of Discrete Event Dynamic Systems,
January, 1991.

[Li 88] Y. Li, W.M. Wonham, “Controllability and Observability in the State-
Feedback Control of Discrete-Event Systems,”Proc. 27th IEEE Conf. De-
cision and Control(Austin, TX), pp. 203–208, December, 1988.

[Lin 88] F. Lin, W.M. Wonham, “Decentralized Control and Coordination of Discrete-
Event Systems,”Proc. 27th IEEE Conf. Decision and Control(Austin, TX),
pp. 1125–1130, December, 1988.

[Lin 90] F. Lin, W.M. Wonham, “Decentralized Control and Coordination of Discrete-
Event Systems with Partial Observation,”IEEE Trans. on Automatic Control,
Vol. AC-35, No. 12, pp. 1330–1337, December, 1990.

[Milne 79] G. Milne, R. Milner, “Concurrent Processes and Their Syntax,”Jour. ACM,
Vol. 26, No. 2, pp. 302–321, April, 1979.

[Milner 80] R. Milner, “A Calculus of Communicating Systems,” Lecture Notes in Com-
puter Science 92, Springer-Verlag, 1980.

[Murata 77] T. Murata, “Circuit Theoretic Analysis and Synthesis of Marked Graphs,”
IEEE Trans. on Circuits and Systems, Vol. CAS-24, No. 7, pp. 400–405, July,
1977.

[Murata 86] T. Murata, N. Komoda, K. Matsumoto, K. Haruna, “A Petri Net-Based Con-
troller for Flexible and Maintainable Sequence Control and its Application in
Factory Automation,”IEEE Trans. on Industrial Electronics, Vol. IE-33, No.
1, pp. 1–8, February, 1986.

[Murata 89] T. Murata, “ Petri Nets: Properties, Analysis and Applications,”Proceedings
IEEE, Vol. PROC-77, No. 4, pp. 541–580, April, 1989.

[Narahari 85] Y. Narahari, N. Viswanadham, “A Petri Net Approach to the Modeling and
Analysis of Flexible Manufacturing Systems,”Annals of Operations Re-
search, Vol. 3, pp. 449–472, 1985.

[Ostroff 90a] J.S. Ostroff, W.M. Wonham, “A Framework for Real-Time Discrete Event
Control,” IEEE Trans. on Automatic Control, Vol. AC-35, No. 4, pp. 386–
397, April, 1990.

[Ostroff 90b] J.S. Ostroff, “A logic for Real-Time Discrete Event Processes,”IEEE Control
Systems Magazine, pp. 95–102, June, 1990.

[Özveren 90] C.M. Özveren, A.S. Willsky, “Observability of Discrete Event Dynamic Sys-
tems,” IEEE Trans. on Automatic Control, Vol. AC-35, No. 7, pp. 797–806,
July, 1990.

[Parigot 86] M. Parigot, E. Peltz, “A Logical Formalism for the Study of the Finite Behav-
ior of Petri Nets,”Advances in Petri Nets 1985, Lecture Notes in Computer
Science 222, G. Rozenberg (ed.), Springer-Verlag, pp. 346–361, 1986.

BIBLIOGRAPHY 93

[Peltz 86] E. Peltz, “Infinitary Languages of Petri Nets and Logical Sentences,”Proc.
7th European Workshop on Application and Theory of Petri Nets(Oxford,
England), Sheffield City Polytech., pp. 224–237, 1986.

[Peterson 81] J.L. Peterson, “Petri Net Theory and the Modeling of Systems,” Prentice-Hall,
1981.

[Pnueli 79] A. Pnueli, “The Temporal Semantics of Concurrent Programs,”Proc. Int.
Symposium on Semantics of Concurrent Computation(Evian, France), Lec-
ture Notes in Computer Science 70, Springer-Verlag, pp. 1–20, 1979.

[Ramadge 83] P.J. Ramadge, “Control and Supervision of Discrete Event Processes,”Ph.D.
Thesis, Dept. Electrical Engineering, Univ. Toronto (Toronto, Ontario), 1983.

[Ramadge 86] P.J. Ramadge, W.M. Wonham, “Modular Supervisory Control of Discrete-
Event Systems,”Proc. 7th Int. Conf. Analysis and Optimization of Systems
(Antibes, France), pp. 202–214, June, 1986.

[Ramadge 87] P.J. Ramadge, W.M. Wonham, “Supervisory Control of a Class of Discrete-
Event Processes,”SIAM Jour. Control and Optimization, Vol. 25, No. 1, pp.
206–230, January, 1987.

[Ramadge 88] P.J. Ramadge, “Supervisory Control of Discrete Event Systems: A Survey
and Some New Results,”Discrete Event Systems: Models and Applications,
Varaiya and Kurzhanski (eds.), Lecture Notes in Control and Information Sci-
ences, N. 103, pp. 69-80, Springer-Verlag, 1988.

[Ramadge 89a] P.J. Ramadge, “Some Tractable Supervisory Control Problem for Discrete-
Event Systems Modeled by Büchi Automata,”IEEE Trans. on Automatic Con-
trol, Vol. AC-34, No. 1, pp. 10–19, January, 1989.

[Ramadge 89b] P.J. Ramadge, W.M. Wonham, “The Control of Discrete Event Systems,”Pro-
ceedings IEEE, Vol. PROC-77, No. 1, pp. 81–98, January, 1989.

[Reisig 85] W. Reisig, “Petri Nets: An Introduction,”EATCS Monographs on Theoretical
Computer Science, Vol. 4, W. Brauer, G. Rozenberg and A. Salomaa (eds.),
Springer-Verlag, 1885.

[Silva 80] M. Silva, “Simplification des rèseaux de Petri par elimination des places im-
plicites,” Digital Processes, Vol. 6, pp. 245–256, 1980.

[Silva 83] M. Silva, S. Velilla, “Programmable Logic Controllers and Petri nets: a com-
parative study,”IFAC Conference on Software for Computer Control, E.A.
Puente and Ferrate (Eds.), pp. 83–88, Pergamon Press, 1983.

[Silva 85] M. Silva, Las redes de Petri en la Automatica y la Informatica, Ed. AC,
Madrid, Spain, 1985.

[Silva 89a] M. Silva, J.M. Colom, “On the Computation of Structural Synchronic Invari-
ants in P/T Nets”Advances in Petri nets, 1988, G. Rozenberg ed., pp. 386–
417, Springer-Verlag, 1989.

[Silva 89b] M. Silva, “Logic Controllers,”Proc. IFAC Int. Symp. on Low Cost Automation
(Milan, Italy), pp. 157–165 bis, November, 1989.

BIBLIOGRAPHY 94

[Silva 92] M. Silva, J.M. Colom, J. Campos, “Linear Algebraic Techniques for the Anal-
ysis of Petri Nets,”Proc. Int. Symp. on Mathematical Theory of Networks and
Systems, MITA Press (Tokyo, Japan), (to appear) 1992.

[Sreenivas 92] R.S. Sreenivas, B.H. Krogh, “On Petri Net Models of Infinite State Supervi-
sors,” IEEE Trans. on Automatic Control, Vol. AC-37, No. 2, pp. 274–277,
February, 1992.

[Tadmor 89] G. Tadmor, O. Maimon, “Control of Large Discrete Event Systems: Construc-
tive Algorithms,” IEEE Trans. on Automatic Control, Vol. AC-34, No. 11, pp.
1164–1168, November, 1989.

[Tsitsiklis 87] J.N. Tsitsiklis, “On the Control of Discrete-Event Dynamical Systems,”Proc.
26th IEEE Int. Conf. Decision and Control(Los Angeles, California), pp.
419–422, December, 1987.

[Ushio 88] T. Ushio, R. Matsumoto, “State Feedback and Modular Control Synthesis in
Controlled Petri Nets,”Proc. 27th Int. Conf. Decision and Control(Austin,
Texas), pp. 1502–1507, December, 1988.

[Ushio 89] T. Ushio, “On the Controllability of Controlled Petri Nets,”Control-Theory
and Advanced Technology, Vol. 5, No. 3, pp. 265–275, September, 1989.

[Ushio 90] T. Ushio, “On The Existence of Finite State Supervisors in Discrete-Event
Systems,” Proc. 29th IEEE Int. Conf. Decision and Control(Honolulu,
Hawaii), pp. 2857–2860, December, 1990.

[Viswanadham 90]N. Viswanadham, Y. Narahari, T.J. Johnson, “Deadlock Prevention and Dead-
lock Avoidance in Flexible Manufacturing Systems Using Petri Net Models,”
IEEE Trans. on Robotics and Automation, Vol. RA-6, No. 6, pp. 713–723,
December, 1990.

[Wonham 87] W.M. Wonham, P.J. Ramadge, “On the Supremal Controllable Sublanguage
of a Given Language,”SIAM Jour. Control and Optimization, Vol. 25, No. 3,
pp. 637–659, May, 1987.

[Wonham 88a] W.M. Wonham, “A Control Theory for Discrete-Event Systems,”Advanced
Computing Concepts and Techniques in Control Engineering, M.J. Denham
and A.J. Laub (eds.), Springer-Verlag, pp. 129–169, 1988.

[Wonham 88b] W.M. Wonham, P.J. Ramadge, “Modular Supervisory Control of Discrete-
Event Systems,”Math. Control Signals Systems, Vol. 1, No. 1, pp. 13–30,
1988.

[Zhou 90] M.C. Zhou, “A Theory for the Synthesis and Augmentation of Petri Nets
in Automation,” Ph.D. Thesis, Rensselaer Polytechnic Institute (Troy, New
York), May, 1990.

[Zhou 91] M.C. Zhou, F. DiCesare, “Parallel and Sequential Mutual Exclusions for
Petri Net Modeling of Manufacturing Systems with Shared Resources,”IEEE
Trans. on Robotics and Automation, Vol. RA-7, No. 4, pp. 515–527, August,
1991.

Appendix A

PETRI NET LANGUAGES

A.1 Petri Net Generators

A labeled Petri net(or Petri net generator) is a 4-tupleG = (N, `, M0, F) where [Jantzen 87,
Peterson 81]:

• N = (P, T, Pre, Post) is a Petri net structure;

• ` : T → Σ ∪ {λ} is a labeling functionthat assigns to each transition a label from the
alphabet of eventsΣ or assigns the empty string as a label;

• M0 is an initial marking;

• F is a finite set of final markings.

We will use Petri net generators to representdiscrete event systems. Thus we will use the word
systemto refer to a Petri net generator.

Three different type oflabeling functionsare usually considered.

• In a free-labeledPN all transitions are labeled distinctly and none is labeledλ, i.e.,(∀t, t′ ∈
T) [t 6= t′ =⇒ `(t) 6= `(t′)] and(∀t ∈ T) [`(t) 6= λ].

• In aλ-free labeledPN no transition is labeledλ.

• In aarbitrary labeledPN no restriction is posed oǹ.

The labeling function may be extended to a function` : T ∗ → Σ∗ defining: `(λ) = λ and
(∀t ∈ T,∀σ ∈ T ∗) [`(σt) = `(σ)`(t)].

Four languages are associated withG depending on the different notions of terminal strings.

• The L-type or terminal language1 is defined as the set of strings generated by firing se-
quences that reach a final marking, i.e.,

LL(G) = {`(σ) | M0 [σ〉 Mf ∈ F}.

• TheG-typeor covering languageor weak languageis defined as the set of strings generated
by firing sequences that reach a markingM covering a final marking, i.e.,

LG(G) = {`(σ) | M0 [σ〉 M ≥ Mf ∈ F}.
The D-type or deadlock languageis defined as the set of strings generated by firing se-
quences that reach a marking at which no transition is enabled, i.e.,

LD(G) = {`(σ) | M0 [σ〉 M ∧ (∀t ∈ T)¬M [t〉}.
1This language is called marked behavior in the framework of Supervisory Control and is denotedLm(G).

95

APPENDIX A. PETRI NET LANGUAGES 96

Figure A.1: Free-labeled systemG in Example A.1.

• The P-typeor prefix language2 is defined as the set of strings generated by any firing se-
quence, i.e.,

LP (G) = {`(σ) | M0 [σ〉 }.

Example A.1. The systemG in Figure A.1 is free-labeled. The initial marking, also shown in
the figure, isM0 = (1000)T . The set of final markings isF = {(0010)T }. The languages of this
system are:

LL(G) = {amcbm | m ≥ 0};
LG(G) = {amcbn | m ≥ n ≥ 0};
LD(G) = {amcbnd | m ≥ n ≥ 0};

LP (G) = {am | m ≥ 0} ∪ {amcbn | m ≥ n ≥ 0} ∪ {amcbnd | m ≥ n ≥ 0}.

A.2 Classes of Petri Net Languages

The classes of Petri net languages are denoted as follows.

• Lf (resp.Gf , Df , Pf) denotes the class of terminal (resp. covering, deadlock, prefix) lan-
guages generated by free-labeled PN generators.

• L (resp.G,D, P) denotes the class of terminal (resp. covering, deadlock, prefix) languages
generated byλ-free labeled PN generators.

• Lλ (resp.Gλ, Dλ, Pλ) denotes the class of terminal (resp. covering, deadlock, prefix) lan-
guages generated by arbitrary labeled PN generators.

The following table shows the relationship among these classes. Here→ represents set inclu-
sion⊇.

Some of these relations are easily proved. As an example, anyP-typelanguage of a generator
G may also be obtained as aG-typelanguage defining as a set of final markingsF = {~0}.

2This language is called closed behavior in the framework of Supervisory Control and is denotedL(G).

APPENDIX A. PETRI NET LANGUAGES 97

Lλ → L → Lf

↓↑ ↓↑
Dλ → D → Df

↓ ↓
Gλ → G → Gf

↓ ↓ ↓
Pλ → P → Pf

Table A.1: Known relations among classes of Petri net languages. An arc→ represents the set
inclusion.

Figure A.2: Nondeterministic systemG′ in Example A.2.

A.3 Deterministic Languages

A PN generatorG is deterministicif the labeling functioǹ and the behavior ofG are such that
∀t, t′ ∈ T , with t 6= t′ and∀M ∈ R(N, M0), M [t〉∧M [t′〉 =⇒ [`(t) 6= `(t′), `(t) 6= λ, `(t′) 6=
λ].

This means that the knowledge of the string generated by the system from the initial marking
is sufficient to determine the actual marking of the system.

We can then define twelve new classes of PN languages. For each of the previously defined
classes we will denote with the subscriptd the corresponding deterministic subclass. ThusLd will
denote the subclass ofL generated bydeterministicPetri nets, etc.

The relations among the subclasses of deterministic languages are different from those re-
ported in Table A.1 for the general classes. Table A.1 shows thatP ⊂ L. However, the next
example shows thatPd 6⊂ Ld.

Example A.2. Consider again the deterministic systemG in Figure A.1 with set of final markings
F = {(0001)T }. HereLP (G) = {am | m ≥ 0} ∪ {amcbn | m ≥ n ≥ 0} ∪ {amcbnd | m ≥
n ≥ 0} is a deterministicP − type PN language. We want to construct a new systemG′ such
thatLL(G′) = LP (G). A possible solution is the system in Figure A.2 with set of final states
F = {(1000)T , (0010)T , (0001)T }. HoweverG′ is nondeterministic, since the two transitions
labeleda are both enabled at the initial marking. It is intuitively clear that no deterministic Petri
net may generateLP (G) as a terminal language ifF is finite.

In the framework of Supervisory Control, we will consider theL − type andP − type lan-
guage generated by deterministic systems. A new subclass ofL, calleddeterministic P-closedis
discussed in Chapter 4. This class, denotedLDP , will play a major role in deriving necessary
and sufficient conditions for the existence of supervisors represented as deterministic Petri net
generators.

APPENDIX A. PETRI NET LANGUAGES 98

Figure A.3: Relations among the classL and other classes of formal languages.

A.4 Closure Properties and Relations with Other Classes

Parigot and Peltz have defined PN languages as regular languages with the additional capability of
determining if a string of parenthesis is well formed. If we consider the classL of PN languages,
it is possible to prove thatL is a strict superset of regular languages and a strict subset of context-
sensitive languages. In the diagram in Figure A.3, the setL is denoted “L PN languages”.

It is possible to prove thatL and the class of context-free languages are not commensurable.
An example of a language inL that is not context-free:L = {ambmcm | m ≥ 0}. An example of
a language that is context-free but is not inL: L = {wwR | w ∈ Σ∗}3 if |Σ| > 1.

The classL is closed under: concatenation, union, intersection, concurrent composition. The
classL is not closed under: Kleene star, prefix closure4.

A.5 Concurrent Composition and System Structure

In this section we will review the counterpart of language operators on the structure of a PN
generator. We will consider only the concurrent composition operator, since other operators of
interest, such as the intersection and shuffle operators may be considered as a special case of
concurrent composition.

Let G1 = (N1, `1,M0,1, F1) andG2 = (N2, `2,M0,2, F2) be two PN generators. Their
concurrent composition, denoted alsoG = G1 ‖ G2, is the systemG = (N, `, M0, F) that
generatesLL(G) = LL(G1) ‖ LL(G2) andLP (G) = LP (G1) ‖ LP (G2).

The structure ofG may be determined as follows. LetPi, Ti andΣi (i = 1, 2) be the place
set, transition set, and the alphabet ofGi.

• The place setP of N is the union of the place sets ofN1 andN2, i.e.,P = P1 ∪ P2.

• The transition setT of N and the corresponding labels are computed as follows.

– Let a ∈ Σ1 \ Σ2 (a ∈ Σ2 \ Σ1) be the label of a transitiont ∈ T1 (t ∈ T2). Thena
labels a transition inT with the same input and output bag oft.

– Let a ∈ Σ1 ∩ Σ2 be labelingm1 transitions inT1 andm2 transitions inT2. Then
m1 × m2 transitions inT will be labeleda. The input (output) bag of each of these
transitions is the sum of the input (output) bags of one transition inT1 and of one
transition inT2.

• M0 = [MT
0,1 MT

0,2]
T .

3The stringwR is the reversal of stringw.
4As proved in Section 4.2.

APPENDIX A. PETRI NET LANGUAGES 99

Figure A.4: Two systemsG1, G2 and their concurrent compositionG in Example A.3.

• F is the cartesian product ofF1 andF2, i.e.,F = {[MT
1 MT

2]T | M1 ∈ F1,M2 ∈ F2}.
Note that while the set of places grows linearly, the set of transitions and of final markings may

grow faster. The composition of more than two systems may computed by repeated application of
the procedure for composing two systems.

Example A.3. Let G1 = (N1, `1,M0,1, F1) andG2 = (N2, `2,M0,2, F2) be two systems in
Figure A.4. HereF1 = {(10)T } andF2 = {(10)T , (01)T }. Their concurrent compositionG =
G1 ‖ G2 is also shown in Figure A.4. The initial marking ofG is M0 = (1010)T and its set of
final markings isF = {(1010)T , (1001)T }.

We will use the following structural notation for composed systems.
Let G1 = (N1, `1,M0,1, F1) andG2 = (N2, `2, M0,2, F2) be two PN generators andG =

G1 ‖ G2 = (N, `, M0, F) their concurrent composition. LetN = (P, T, Pre, Post) andNi =
(Pi, Ti, P rei, Posti), (i = 1, 2). We define:

• Theprojection ofP on netNi, (i = 1, 2), asP ↑i= Pi.

• Theprojection ofT on netNi, (i = 1, 2), asT ↑i= {t ∈ T | (•t ∪ t•) ∩ P ↑i 6= ∅}. Note
thatT ↑i may be different fromTi, since additional transitions may have been introduced
by composing systems in which the same symbol is labeling more than one transition.

• Theprojection ofPre on netNi, (i = 1, 2), denotedPre ↑i, as the restriction ofPre to
P ↑i ×T ↑i.

• Theprojection ofPost on netNi, (i = 1, 2), denotedPost ↑i, as the restriction ofPost to
P ↑i ×T ↑i.

Also letM be a marking,~σ be a firing count vector, andσ a firing sequence defined on netN .
Theprojection ofM onNi, (i = 1, 2), denotedM ↑i, is the vector obtained fromM by removing

APPENDIX A. PETRI NET LANGUAGES 100

all the components associated to places not present inNi. Theprojection of~σ overNi, (i = 1, 2),
denoted~σ ↑i, is the vector obtained by~σ removing all the components associated to transitions not
present inNi. Theprojection ofσ onNi, (i = 1, 2), denotedσ ↑i, is the firing sequence obtained
by σ removing all the transitions not present inNi.

Appendix B

AN INTRODUCTION TO
SUPERVISORY CONTROL

B.1 Discrete Event Systems and Properties

In the supervisory control theory developed by Ramadge, Wonham, et al., a DES is simply a
generator of a formal language, defined on an alphabetΣ. The two languages associated with a
DESG are:

• The closed behaviorL(G) ⊆ Σ∗, a prefix-closed language that represents the possible
evolutions of the system.

• Themarked behaviorLm(G) ⊆ L(G), that represents the evolutions corresponding to the
completion of certain tasks.

Although Ramadge and Wonham have used in their seminal papers a state machine based rep-
resentation for DES, the theory they built is very general. Any other formalism that can represent
the closed and marked behavior of a system may be used in this framework. In the examples pre-
sented in this section we will use state machine models to be consistent with the original notation.
When relevant, however, we will mention Petri nets.

Example B.1. The state machine in Figure B.1 represents a discrete event systemG. The initial
state is denoted by an arrow, the final states (just one in this example) are denoted by a double
circle. The languages associate toG are:

Lm(G) = {abcn | n ≥ 0} = abc∗;

L(G) = {λ} ∪ {a} ∪ {abcn | n ≥ 0} = abc∗ = Lm(G),

where the overline bar represent the prefix closure operator.

We have discussed in Appendix A how the closed and marked behavior may be associated
with a Petri net.

Figure B.1: A discrete event system modeled by a finite state machine.

101

APPENDIX B. AN INTRODUCTION TO SUPERVISORY CONTROL 102

Figure B.2: A blocking discrete event system and its trimmed structure in Example B.1.

A DES is said to benonblockingif any stringw ∈ L(G) can be completed into a string
wx ∈ Lm(G), i.e., into a string that belongs to the marked language. More formally, a DESG is
nonblocking ifLm(G) = L(G).

This property may be restated for state machines as follows. Let us define asreachablea state
that may be reached from the initial state, and ascoreachablea state from which it is possible
to reach a final state. Then a state machine is nonblocking if and only if all reachable states are
coreachable.

Example B.2. In Figure B.2 we have a blocking systemG1. The strings “ab” and “aca” cannot
be completed into a string that belongs to the marked language. Equivalently, from stateq it is not
possible to reach a final marking.

Note that the DES may betrimmedremoving the stateq and the transitions entering it. In this
case we obtain the new DESG2 with

Lm(G2) = Lm(G1),

L(G2) = Lm(G2) = Lm(G1) ⊂ L(G1).

Similarly, a Petri net is nonblocking if from any reachable marking it is possible to reach a fi-
nal marking. Note that this property is significantly different fromdeadlock-freenessandliveness.
Deadlock-freeness means that the reachability set does not contain a dead marking, i.e., a marking
that enables no transition. However a nonblocking system may have a dead marking (if it is a final
marking). Liveness implies that from any reachable marking there exists a firing sequence con-
taining all transitions. The following example shows nets with different combinations of liveness
and nonblocking properties (deadlock-freeness is implied by liveness, so we will not discuss it).

Example B.3. In Figure B.3 are shown: a) a live and nonblocking system; b) a non-live and
nonblocking system; c) a live and blocking system; d) a nonlive and blocking system. The set of
final markingsF is also given in the figure for each net.

B.2 Controllable Events and Supervisor

The events labels inΣ are partitioned into two disjoint subsets: the setΣc of controllable events
(that can be disabled if desired), and the setΣu of uncontrollable events(that cannot be disabled
by an external agent).

It often required to restrict the behavior of a system within the limits of aspecification lan-
guage. We may only enable and disable the controllable events to achieve this behavior. The agent
who specifies which events are to be enabled and disabled is called asupervisor.

Let us define acontrol inputas a subsetγ ⊆ Σ satisfyingΣu ⊆ γ (i.e., all the uncontrollable
events are present in the control input). Ifa ∈ γ, the eventa is enabled byγ (permitted to occur),

APPENDIX B. AN INTRODUCTION TO SUPERVISORY CONTROL 103

Figure B.3: Combinations of nonblocking and liveness properties for Petri nets with set of final
markingsF in Example B.2.

Figure B.4: A closed loop controlled discrete event system.

otherwisea is disabled byγ (prohibited from occurring); the uncontrollable events are always
enabled. LetΓ ⊆ 2Σ denote the set of all the possible control inputs.

A supervisor controls a DESG by switching the control input through a sequence of elements
γ1, γ2, . . . ∈ Γ, in response to the observed string of previously generated events.

A closed loop block diagram showing a system under supervision is shown in Figure B.4. A
point that should be stressed is the fact that the supervisor is implementing atrace feedback, rather
than astate feedback. That is, the control input is not a function of the present state of the system,
but of the string of events generated. If the system is deterministic, as generally assumed, it is
possible to reconstruct its state from the string of events generated. Thus trace feedback is more
general than state feedback.

Example B.4. Consider the system in Figure B.5, whereΣc = {a, c} and Σu = {b}. The
controllable transitions are denoted with a “:”. Assume we want a terminal string to contain the
eventb exactly twice. Table B.1 summarizes the required control inputγ after a stringw has been
generated, and the corresponding state of the system. Note that in stateq0 the control input is
different depending on the value ofw.

A supervisor may be given as a functionf : L(G) → Γ specifying the control inputf(w)

APPENDIX B. AN INTRODUCTION TO SUPERVISORY CONTROL 104

Figure B.5: System in Example B.4

state w γ

q0 λ {a, b}
q1 a {a, b, c}
q0 ab {a, b}
q1 aba {a, b, c}
q0 abab {b, c}
q2 ababc {b, c}

Table B.1: Control inputs in Example B.4.

to be applied for each possible string of eventsw generated by the systemG. It also possible to
represent a supervisor as another DESS, that runs in parallel with the systemG, i.e., whenever an
event occurs inG the same event will be executed byS. The events enabled at a given instant on
S determine the control input.

Example B.5. In Example B.4 the supervisor has been described in tabular format. A transition
structure for the same supervisor is shown in Figure B.6.

The closed loop system under control will be denotedS/G and may be considered as a new
discrete event system [Ramadge 87]. Let us assume in the following that the supervisor is given
as a DESS. Then, the closed behavior ofS/G is

L(S/G) = L(G) ∩ L(S),

i.e., the subset of the uncontrolled behavior that survives under supervision. For what regards the
language accepted byS/G there are two possible definitions. IfShas a set of final states we may
define as marked behavior ofS/G as

Lm(S/G) = Lm(G) ∩ Lm(S),

i.e., all marked strings ofG that are also marked byS. If we assume that the supervisor does not
mark strings, i.e., it has no final states,Lm(S) is not defined. In this case, we call the supervisor
non markingand we defineLm(S/G) as

Lm(S/G) = Lm(G) ∩ L(S/G),

Figure B.6: Supervisor in Example B.5

APPENDIX B. AN INTRODUCTION TO SUPERVISORY CONTROL 105

Figure B.7: Closed loop systemS/G in Example B.6.

Figure B.8: SystemsG, S1, andS2 in Example B.7.

i.e., the subset of the uncontrolled marked behavior that survives under supervision, and call it
controlled behavior1.

Example B.6. The DES in Figure B.7 represented the closed loop systemS/G for the system
and supervisor discussed in Example B.5. Here the closed and marked behavior ofS/G are
L(S/G) = ababc, andLm(S/G) = abab + ababc, as can be derived from the figure. If we had
considered a supervisor with no final states, we would have considered, in place of the marked
behavior, the controlled behaviorLm(S/G) = λ + ab + abab + ababc.

Now let us assume that we are given two DESG andS. S qualifies as a proper supervisor for
G if the two following properties are ensured.

• controllability: S does not disable any uncontrollable event that may occur inG, i.e.,(∀w ∈
L(S/G), ∀a ∈ Σu) [wa ∈ L(G) =⇒ wa ∈ L(S/G)].

• nonblockingness(or properness): the behavior of the system under supervision must be
nonblocking, i.e.,L(S/G) = Lm(S/G).

Example B.7. Let G, S1, andS2 be the DES in Figure B.8. HereΣc = {b, c}. S1 is not a
supervisor forG because in the initial state it disables the uncontrollable eventa that is enabled
in the initial state ofG. S2 is not a proper supervisor forG because if the eventa is executed it
prevents the system from reaching the final state (in fact the eventb is never enabled).

B.3 Supervisory Control Problem

Controlling a DES consists in restricting its open loop behavior within a givenspecificationlan-
guage. Thus we may state the two following Supervisory Control Problems.

1The notation is unfortunately ambiguous. In [Ramadge 87]Lm(S/G) denotes the marked behavior ofS/G, while
Lc(S/G) denotes the controlled behavior. In [Ramadge 89b] and in the work of other authors, however,Lm(S/G) has
been used to denote the controlled behavior ofS/G, since only non marking supervisors are considered. We will use
Lm(S/G) to denote the language accepted by the closed loop system, specifying whenever necessary if it represents
the marked or controlled behavior.

APPENDIX B. AN INTRODUCTION TO SUPERVISORY CONTROL 106

Figure B.9: System to control in Example B.8.

SCP1 Given a DESG and a specification languageL ⊆ L(G), there exists a supervisorS such
thatL(S/G) = L?

SCP2 Given a DESG and a specification languageL ⊆ Lm(G), there exists a nonblocking
supervisorS such thatLm(S/G) = L? (Here we assume thatS does not mark strings, i.e.,
Lm(S/G) is the controlled behavior ofS/G.)

The solution of these two problems is based on the notions of controllable language and
Lm(G)-closure, defined in the following.

A languageK ⊂ Σ∗ is said to becontrollable(with respect toL(G) andΣu) if KΣu∩L(G) ⊆
K. This means that it is always possible, preventing the occurrence of controllable transitions, to
restrictL(G) within K.

A languageK ⊂ Lm(G) is said to beLm(G)-closedif K = K ∩ Lm(G). This means that
any marked string ofG that is the prefix of some string ofK is also a string ofK.

The following two theorems, due to Ramadge and Wonham [Ramadge 87, Ramadge 89b],
give necessary and sufficient conditions for the existence of a supervisor.

Theorem B.1 ([Ramadge 87], P. 5.1).For nonemptyL ⊆ L(G) there exists a supervisorS such
thatL(S/G) = L if and only ifL is prefix closed and controllable.

Theorem B.2 ([Ramadge 87], T. 6.1).For nonemptyL ⊆ Lm(G) there exists a nonblocking
supervisorS such thatLm(S/G) = L if and only ifL is Lm(G)-closed and controllable.

Example B.8. The DESG in Figure B.9 has closed behaviorL(G) = (a(b + cd))∗, and marked
behaviorLm(G) = (a(b + cd))∗.

1. Let L = (ab)∗ be the desired closed behavior of the closed loop system.

(a) If Σu = {a, d}, L is controllable and may be enforced by a supervisor. The supervisor
simply needs to disable the controllable eventc whenever the system is in stateq1.

(b) If Σu = {b, c}, L is not controllable and cannot be enforced by a supervisor. In fact the
supervisor cannot disable the eventc, which is now uncontrollable, when the system
is in stateq1.

2. Let L = (abab)∗ be the desired controlled behavior of the closed loop system and assume
Σu = {a, d}. L is controllable, but is notLm(G)-closed. Hence there does not exit a
supervisorS such thatLm(S/G) = L.

This can be also be shown by contradiction in this particular example. By definition of
controlled language,Lm(S/G) = Lm(G) ∩ L(S/G). Now assumeLm(S/G) = L;
thenw = abab ∈ Lm(S/G) ⊆ L(S/G) andw′ = ab 6∈ Lm(S/G). Howeverw ∈
L(S/G) =⇒ w′ ∈ L(S/G), i.e.,w′ ∈ Lm(G) ∩ L(S/G) = Lm(S/G), a contradiction.

APPENDIX B. AN INTRODUCTION TO SUPERVISORY CONTROL 107

Another important result due to Ramadge and Wonham is concerned with the existence of
finite state machine supervisors.

Theorem B.3 ([Wonham 87], T. 3.1).LetG be a finite state machine (i.e., its closed and marked
behavior areregularlanguages) and letL be aregularspecification language. IfL satisfies the
conditions of Theorem B.1, the supervisorS such thatL(S/G) = L may be represented as a
finite state machine. IfL satisfies the conditions of Theorem B.2, the supervisorS′ such that
Lm(S′/G) = L may be represented as a finite state machine.

B.4 Supremal Controllable Sublanguage

Assume we want to restrict the closed behavior of a systemG within the limits of a legal language
L that is not controllable. By Theorem B.1 a supervisorS such thatL(S/G) = L does not
exist. However we may consider a controllable sublanguageK ⊆ L that may be enforced by a
supervisorS′. Thus the behavior of the closed loop system is nowL(S′/G) = K ⊂ L, i.e., it is a
subset of the legal behavior.

We also want to minimally restrict the behavior of the system, i.e., we want to construct the
supervisor which allows the largest behavior of the system within the limits given by the specifi-
cationL. This behavior is called thesupremal controllable sublanguage.

Let us defineC(G) = {K | KΣu ∩ L(G) ⊆ K} as the set of all languages controllable with
respect toL(G) andΣu. Given a languageL we will define the supremal controllable sublanguage
of L as

L↑ = sup{K | K ⊆ L,K ∈ C(G)}
Theorem B.4 ([Ramadge 87], P. 7.1).The supremal controllable sublanguage for a given super-
visory control problem exists and is unique.

However it may well be the case thatL↑ contains only the empty string or is even the empty
language.

Example B.9. For the problem in Example B.8.1bL↑ = {λ}.
Since the supremal controllable sublanguage may be too restrictive, other controllable approx-

imations toL have been defined. An extension by Lafortune and Chen [Lafortune 90a] to the
standard Supervisory Control Problem, called SCPB (SCP with Blocking) considers a different
approximation of the desired behaviour in terms ofInfimal Controllable Superlanguagedefined as

L↓ = inf{K | K ⊇ L,K ∈ C(G)}.

This may, however, generate blocking. We will not consider SCPB in this thesis.
Ramadge and Wonham have also shown that in the regular case (i.e., when both the system be-

havior and the specification behavior are regular languages) the supremal controllable sublanguage
is a regular language and can be computed in a finite number of steps.

As a final remark, we note that the supremal controllable sublanguage is optimal from a logical
point of view but not necessarily from the performance point of view.

Example B.10. The Petri net system in Figure B.10 has a delay associated with each event (i.e.,
each transition). The placep0 represents the effect of the supervisor that ensures that placesp2

andp6 are never marked at the same time. In order to minimally restrict the behavior we allow the
initial firing of either “ab” or “ de”. Assume the delays are the following.

event a b c d e f
delay [s] 0 10 10 0 8 4

APPENDIX B. AN INTRODUCTION TO SUPERVISORY CONTROL 108

Figure B.10: A timed Petri net model in Example B.10.

If the sequence “ab” is initially executed, we have that the required time to reach the final marking
(0001001)T is 22 seconds, while if the sequence “de” is initially executed the final marking is
reached in28 seconds. Clearly, if it is required that the system reaches the final marking in the
shortest time, it would be better to further restrict the system’s behavior allowing only the firing of
the sequence “ab” from the initial marking.

Appendix C

NOTATION

a, b, c, . . . Symbols of an alphabet, events.

B A basis of nonnegative P-invariants.

C = Post− Pre The incidence matrix of a P/T net.

C(G) The set of languages controllable with respect toL(G) andΣu, i.e., the
set{K | KΣu ∩ L(G) ⊆ K}.

E = G ‖ H Discrete event systemG constrained by specificationH

F A set of final markings of a P/T net.

G A discrete event system. A Petri net model of a discrete event system is
G = (N, `, M0, F).

H A discrete event system representing a specification.

K A controllable language.

` : T → Σ A labeling function that assigns to each transition of a net a label from
the alphabetΣ.

L A language.

L The prefix-closure of languageL.

L↑ The supremal controllable sublanguage of languageL.

L(N, M0) The set of firing sequence of〈N, M0〉.
L(G) The closed behavior of the discrete event systemG. If G is given as

a Petri net model, the closed behavior is also called P-type Petri net
language ofG.

Lm(G) The marked behavior of the discrete event systemG. If G is given as
a Petri net model, the marked behavior is also called L-type Petri net
language ofG.

L,Ld,LDP The sets of L-type, deterministic L-type, and DP-closed Petri net lan-
guages.

M : P → IN A marking of a P/T net (M0 is an initial marking,Mf is a final marking).

M(~w, k) The set of marking satisfying a generalized mutual exclusion constraint,
i.e., the set{M ∈ IN |P | | ~wT ·M ≤ k}.

N = (P, T, Pre, Post) A P/T net.

NR The reversal of a P/T netN .

109

APPENDIX C. NOTATION 110

NS A P/T netN with the addition of a monitor placeS, i.e. the net(P ∪
{S}, T, PreS , PostS).

IN The set of nonnegative integers.

〈N,M0〉 A marked net, i.e., a netN with initial markingM0.

p A place of a P/T net.
•p, p• The sets of input and output transitions of placep.

P A set of places of a P/T net.

Post : P × T → IN The post-incidence matrix of a P/T net.

Pre : P × T → IN The pre-incidence matrix of a P/T net.

PR(N, M0) The set of markings{M ∈ IN |P | | (∃~σ ∈ IN |T |)[M = M0 + C · ~σ}
(potentially reachable set).

PRA(N,M0) The set of markings{M ∈ IN |P | | A ·M ≥ A ·M0}.
PRB(N,M0) The set of markings{M ∈ IN |P | | BT ·M = BT ·M0}.
P,Pd The sets of P-type, and deterministic P-type Petri net languages.

QX The support of a vectorX : A → IN , i.e., the set{a ∈ A | X(a) > 0}.
R(N, M0) The set of reachable markings of〈N, M0〉 (reachability set).

S A supervisor.

S A siphon of a P/T net.

S/G The closed-loop system composed by the systemG under the action of
supervisorS.

t A transition of a P/T net.
•t, t• The sets of input and output places of transitiont.

T A set of transitions of a P/T net.

T A trap of a P/T net.

w, x, y, z Strings of a language, sequences of events.

(~w, k) A generalized mutual exclusion constraint.

(W,~k) A set of generalized mutual exclusion constraints.

X : A → IN A vector.

Y A nonnegative P-invariant (P-semiflow) of a P/T net.

γ A control input determined by a supervisor.

Γ The set of all possible control inputs determined by a supervisor.

θ A simple path of a P/T net.

λ The empty string.

σ A firing vector of transitions.

~σ : T → IN A firing count vector of a marked net.

Σ An alphabet.Σc is an alphabet of controllable events;Σu is an alphabet
of uncontrollable events.

Σ∗ The Kleene star of alphabetΣ, i.e., the language containing all strings
composed with symbols inΣ and the empty stringλ.

APPENDIX C. NOTATION 111

↑ The projection operator.

‖ The concurrent composition operator.

‖d The shuffle operator (concurrent composition over disjoint alphabets).

¦ Denotes the end of a proof.

