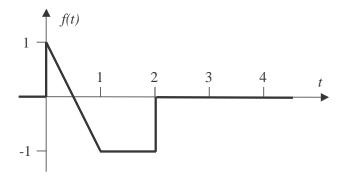
Elementi di Analisi dei Sistemi — Esercitazione 3

6 aprile 2022

Esercizio 1. Calcolare la trasformata di Laplace delle seguenti funzioni del tempo:

$$f_a(t) = (1 + 4te^{3t}) \, \delta_{-1}(t);$$
 $f_b(t) = 7(t^2 + 1)^2 \, \delta_{-1}(t);$ $f_c(t) = \cos(t + \frac{\pi}{3}) \, \delta_{-1}(t).$

Esercizio 2. Trasformare secondo Laplace la seguente funzione assegnata graficamente:



Esercizio 3. Antitrasformare le seguenti funzioni di s:

$$F_a(s) = \frac{3s - 2}{s^3 - 4s^2 + 20s};$$
 $F_b(s) = \frac{5s^2 - s - 3}{2s^2 + 2s - 12}.$

Esercizio 4. Si consideri l'equazione differenziale:

$$\frac{d^2}{dt^2}y(t) + 4\frac{d}{dt}y(t) + 3y(t) = \frac{d}{dt}u(t).$$

Si determini mediante l'uso delle trasformate di Laplace l'evoluzione y(t) per $t \geq 0$ a partire dalle condizioni iniziali

$$y_0 = y(t)|_{t=0} = 3,$$
 $y'_0 = \frac{dy(t)}{dt}\Big|_{t=0} = 1,$

e supponendo che il segnale u(t) valga

$$u(t) = \begin{cases} 2t & t \ge 0, \\ 0 & \text{altrove.} \end{cases}$$

Si indichi il termine che corrisponde all'evoluzione libera e alla evoluzione forzata e si tracci l'andamento di tali segnali.

Esercizio 5. Data la funzione

$$\mathcal{L}[f(t)] = F(s) = \frac{9s + 10}{s^2 + 5s}$$

si discuta se esista il $\lim_{t\to\infty} f(t)$ e, se esiste, lo si determini applicando il teorema del valore finale. Si antitrasformi la funzione data e si verifichi il risultato ottenuto.

Funzione del tempo		Trasformata di Laplace
Impulso unitario	$\delta(t)$	1
Gradino unitario	$\delta_{-1}(t)$	$\frac{1}{s}$
Rampa lineare	$t \delta_{-1}(t)$	$\frac{1}{s^2}$
Polinomiale	$\frac{t^k}{k!} \delta_{-1}(t)$	$\frac{1}{s^{k+1}}$
Esponenziale	$e^{at} \delta_{-1}(t)$	$\frac{1}{s-a}$
Seno	$\sin(\omega t) \delta_{-1}(t)$	$\frac{\omega}{s^2 + \omega^2}$
Coseno	$\cos(\omega t) \delta_{-1}(t)$	$\frac{s}{s^2 + \omega^2}$
Sinusoide smorzata	$e^{at}\sin(\omega t)\;\delta_{-1}(t)$	$\frac{\omega}{(s-a)^2 + \omega^2}$
Cosinusoide smorzata	$e^{at}\cos(\omega t)\;\delta_{-1}(t)$	$\frac{s-a}{(s-a)^2 + \omega^2}$
Rampa esponenziale (o cisoide)	$\frac{t^k}{k!}e^{at}\delta_{-1}(t)$	$\frac{1}{(s-a)^{k+1}}$