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This document contain a short introduction to the seminal approach to the diagnosis of au-
tomata developed by Lafortune and coworkers [2]. A more comprehensive presentation of the
approach can be found in [1].

1 The plant model

The system to be diagnosed is modeled as a DFA. Since we are notinterested in the set of final
states, we will denote such an automaton byG = (X,E, δ, x0). The behavior of the system is
described by the prefix-closed languageL(G) generated byG.

The DFAG models both the normal and the faulty behavior. Its alphabetcan be partitioned as
E = Eo ∪ Euo where:

• Eo: is the set ofobservable events;

• Euo: is the set ofunobservable events. The set of unobservable events can be further parti-
tioned asEuo = Ef ∪ Ereg where

– Ef is the set offault events1 ;

– Ereg is the set ofregular eventsthat, although not observable, do not describe a faulty
behavior.

In the rest of the chapter the following assumptions hold.

(A1) The DFAG does not contain dead states.

(A2) The DFAG does not contain cycles of unobservable events.

Assumption (A1) is made for the sake of simplicity. On the contrary, assumption (A2) is
necessary and ensures that the systemG does not generate sequences of unobservable events
whose length can be infinite.

1The set of fault events may also partitioned intom disjoint subsets that represent different of fault classes: Ef =

Ef,1 ∪Ef,2 ∪ . . .∪Ef,r. However, in the rest of this section we will consider a singlefault class for sake of simplicity.
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Figure 1: A DFAG with set of observable eventsEo = {a, b, c}, set of unobservable regular
eventsEreg = {ε1} and set of unobservable fault eventsEreg = {εf}.

Example 1 Consider the automaton in Figure 1. The set of observable events isEo = {a, b, c}
while the set of unobservable events isEuo = {ε1, εf}. In particular the set of regular events is
Ereg = {ε1} and the set of fault events isEreg = {εf}. The automaton satisfies both Assumption
A1 and A2. ⋄

Let us define the projection operator on the set of observableevents.

Definition 1 Given a DFAG with alphabetE = Eo ∪ Euo, theprojection operatoron the set of
observable events is denoted byP : E∗ → E∗

o and is defined as















P (ε) = ε

P (e) = e, if e ∈ Eo ;
P (e) = ε, if e ∈ Euo ;
P (se) = P (s)P (e), s ∈ E∗, e ∈ E .

The inverse projection operator2 with codomain inL(G) is denoted byP−1 : E∗
o → 2L(G)

and is defined as
P−1(w) = {s ∈ L(G) | P (s) = w}.

N

Thus, the projection operator P simply “erases” the unobservable events in a string, while the
inverse projection associates to a sequencew of observable events the set of strings in the language
of G whose projection isw. In the rest of this section we will denote bys ∈ E∗ a string of events
generated by the DFA and byw ∈ E∗

o an observed word, i.e., the observable projection of a
generated string.

Assume that a DFA, starting from the initial state, generates a strings ∈ E∗ thus reaching
a new statex = δ∗(x0, s). Due to the projection mask, an external agent observes a word w =
P (s) ∈ E∗

o , as shown in Figure 2. In general however the external agent may not be able to detect
the exact string that has produced this observation or the exact state that has been reached.

Definition 2 Given a DFAG = (X,E, δ, x0) with alphabetE = Eo∪Euo, for each wordw ∈ E∗
o

we define:
2Properly speaking we should denote this operator byP

−1
L(G) but the subscript will be omitted to avoid a cumber-

some notation.
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Figure 2: Observation of a DFA through a projection mask.

• S(w) = P−1(w) ⊆ L(G) the set ofstrings consistent with observationw, i.e., the set of
strings in the language ofG that produce the observationw;

• X (w) = {x ∈ X | (∃s ∈ S(w)) δ∗(x0, s) = x} the set ofstates consistent with observation
w, i.e., the set of states in whichG may be afterw has been observed. N

Example 2 Consider the automaton in Figure 1 where the set of observable events isEo =
{a, b, c}.

Assume wordbb is observed. Two different evolutions may have produced this observation:

x0
b

−→ x1
ε1−→ x0

b
−→ x1

x0
b

−→ x1
ε1−→ x0

b
−→ x1

ε1−→ x0

Hence for this observation the set of consistent strings isS(bb) = {bε1b, bε1bε1} while the set of
consistent states isX (bb) = {x0, x1}.

Consider wordbc ∈ E∗
o . Since no string generated by the plant can produces this observation

it holdsS(bc) = X (bc) = ∅. ⋄

An additional notation we will use if the following.

Definition 3 Given a strings ∈ E, thesupportof s is

||s|| = {e ∈ E | |s|e > 0} ⊆ E,

and consists of the set of events that appear at least once in the string. N

Example 3 Consider again the automaton in Figure 1 whose alphabet isE = {a, b, c, ε1, εf}.
The support of strings = aεfac ∈ E∗ is ||s|| = {a, c, εf}. ⋄

2 Diagnosis

In a fault diagnosis problem we want to determine, based on the observed wordw ∈ E∗
o , if a fault

has occurred, i.e., if a transition labeled with a symbol inEf has fired. This leads to the definition
a diagnosis problem.

Problem 1 Given a DFAG with alphabetE = Eo ∪ Euo and set of fault eventsEf ⊆ Euo

and given an observed wordw ∈ E∗
o , the diagnosis problemconsists in determining if a fault

has occurred, i.e., if an evolution containing a transitionwith a label inEf has produced the
observationw.

Solving a diagnosis problem requires constructing a diagnosis function.
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Definition 4 Given a DFAG with alphabetE = Eo ∪ Euo and set of fault eventsEf ⊆ Euo, a
diagnosis function

ϕ : E∗
o → {N,F,U}

associates to each observed wordw ∈ E∗
o a diagnosis stateϕ(w) ∈ {N,F,U} as follows.

• ϕ(w) = N (no fault): if for all s ∈ P−1(w) it holds ||s|| ∩Ef = ∅. In such a case no string
s consistent with the observed wordw contains a fault event, hence no fault has occurred.

• ϕ(w) = F (fault): if for all s ∈ P−1(w) it holds ||s|| ∩ Ef 6= ∅. In such a case all strings
s consistent with the observed wordw contain a fault event, hence a fault has certainly
occurred.

• ϕ(w) = U (uncertain): if there exists′, s′′ ∈ P−1(w) such that||s′|| ∩ Ef = ∅ and
||s′′||∩Ef 6= ∅. In such a case there exists two stringss′ ands′′ consistent with the observed
wordw, one containing a fault event and one not containing a fault event. Hence a fault may
or may not have occurred. N

We remarks that when different fault classesEf,1, Ef,2, . . . , Ef,r are given, one wants to diagnose
separately each classi determining if a fault in this class has occurred, i.e., if a transition labeled
with a symbol inEf,i has fired. This can be done solvingr diagnosis problems, i.e., constructing
r diagnosis functionsϕi, for i = 1, 2, . . . , r. However, this case will not be discussed.

Example 4 Consider the automaton in Figure 1 where the set of observable events isEo =
{a, b, c} and the set of fault events isEreg = {εf}. The diagnosis function for this DFA is
partially described in the following table where we have also listed for each observed wordw the
set of consistent stringsS(w) and the set of consistent statesX (w).

w S(w) = P−1(w) X (w) ϕ(w)

ε ε {x0} N

a { a, aεf } {x0, x2} U

b { b, bε1 } {x0, x1} N

aa { aεfa, aεfaεf } {x0, x2} F
...

...
...

...

⋄

A more interesting way of representing a diagnosis functionis by means of adiagnoser, i.e., a
DFA on the alphabet of observable events.

Definition 5 A diagnoserfor DFA G = (X,E, δ, x0) with alphabetE = Eo ∪ Euo and set of
fault eventsEf ⊆ Euo is a DFA

Diag(G) = (Y,Eo, δy, y0)

on alphabetEo such that

• Y ⊆ 2X×{N,F}, i.e., each state of the diagnoser is a set of pairs

y = {(x1, γ1), (x2, γ2), . . . , (xk, γk)},

wherexi ∈ X andγi ∈ {N,F}, for i = 1, 2, . . . , k.
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Figure 3: Diagnoser automatonDiag(G) for the DFAG in Figure 1.

• δ∗y(y0, w) = yw if and only if

yw = {(x,N) | (∃s ∈ S(w)) δ∗(x0, s) = x, ||s|| ∩Ef = ∅}
∪{(x, F ) | (∃s ∈ S(w)) δ∗(x0, s) = x, ||s|| ∪ Ef 6= ∅},

i.e., inDiag(G) starting fromy0 wordw yields a stateyw containing:

(a) all pairs(x,N) wherex can be reached inG executing a string consistent withw that
does not contain a fault event;

(b) all pairs(x, F ) wherex can be reached inG executing a string consistent withw that
contains a fault event.

To each statey = {(x1, γ1), (x2, γ2), . . . (xk, γk)} of Diag(G) we associate a diagnosis value
ϕ(y) such that:

• ϕ(y) = N (no fault state): ifγi = N for all i = 1, 2, . . . , k;

• ϕ(y) = F (fault state): ifγi = F for all i = 1, 2, . . . , k;

• ϕ(y) = U (uncertain state): if there existi, j ∈ {1, 2, . . . , k} such thatγi = N andγj = F .
N

Thus a diagnoser allows one to associate to each observed work w a diagnosis stateϕ(w) = ϕ(yw)
whereyw = δ∗y(y0, w) is the state reached inDiag(G) by executing wordw. Furthermore, the
diagnoser also contains the information on the set of statesconsistent withw, becauseX (w) =
{x ∈ X | yw = δ∗y(y0, w), (x, γ) ∈ yw}.

Example 5 Consider the plant in Figure 1 where the set of observable events isEo = {a, b, c}
and the set of fault events isEf = {εf}. The diagnoser for this DFA is shown in Figure 3, where
we have labeled each statey of Diag(G) with its corresponding diagnosis valueϕ(y) in square
brackets. ⋄
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A formal algorithm for constructing the diagnoser of a plantG is now given. This algorithm
is similar to the algorithm used to compute the observer of a NFA G (i.e., the DFA equivalent to
G). However, we now need to keep track not only of the possible states in which the plant can be
but whether these states can be reached with or without firinga fault transition.

Algorithm 1 Construction of a diagnoser.
Input: A DFA G = (X,E, δ, x0) with E = Eo ∪Euo = Eo ∪ Ereg ∪ Ef

Output: A DiagnoserDiag(G) = (Y,Eo, δy, y0) with L(Diag(G)) = P (L(G)).

1. For all statesx ∈ X of G compute the set

Dreg(x) = {x̄ ∈ X | (∃s ∈ E∗
reg) δ

∗(x, s) = x̄)}

containing all states reachable fromx executing a (possibly empty) sequence of regular
unobservable transitions and the set

Df (x) = {x̄ ∈ X | (∃s ∈ E∗
uo \E

∗
reg) δ

∗(x, s) = x̄}

containing all states reachable fromx executing a sequence of unobservable transitions that
contain at least one fault. Note that by definitionx ∈ Dreg(x). Also note that it may
happen thatDreg(x)∩Df (x) 6= ∅, since a statēx may be reachable fromx by two different
sequence of unobservable transitions, one that does not contain a fault, and one that contains
a fault.

2. Let
y0 = {(x,N) | x ∈ Dreg(x0)} ∪ {(x, F ) | x ∈ Df (x0)},

i.e., the initial state ofDiag(G) is a set of pairs(x, γ) where:

• γ = N (no fault) if x is reachable fromx0 executing a sequence of unobservable
transitions that does not contain a fault;

• γ = F (fault) if x is reachable fromx0 executing a sequence of unobservable transi-
tions that contains a fault.

3. Let Y = ∅ andYnew = {y0}.

(At the end of the algorithmY will contain all states ofDiag(G), while the setYnew contains
at each step the states ofDiag(G) still to be explored.)

4. Select a statey ∈ Ynew.

(a) For all e ∈ Eo:

i. Define the sets:

α(y, e) = {(x′, γ) | (x, γ) ∈ y, x′ = δ(x, e)}

and
β1(y, e) = {(x̄′′, N) | (x′, N) ∈ α(y, e), x′′ ∈ Dreg(x

′)},

β2(y, e) = {(x̄′′, F ) | (x′, N) ∈ α(y, e), x′′ ∈ Df (x
′)},

β3(y, e) = {(x̄′′, F ) | (x′, F ) ∈ α(y, e), x′′ ∈ Dreg(x
′) ∪Df (x

′)}.
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Figure 4: The computation of a new statey′ = δy(y, e) of the diagnoser in step 4.(a) of Algoritm 1.

• Setα(y, e) contains the pairs(x′, γ) such that, with(x, γ) ∈ y ande ∈ E,
statex′ is reachable inG from statex executing exactly onee-transition.

• Setβ1(y, e) contains the pairs(x′′, N) such that, with(x′, N) ∈ α(y, e), state
x′′ is reachable inG from statex′ executing a sequence of regular transitions.
In fact, if x′ is reachable without a fault, such is alsox′′.

• Setβ2(y, e) contains the pairs(x′′, F ) such that, with(x′, N) ∈ α(y, e),
statex′′ is reachable inG from statex′ executing a sequence of unobservable
transitions that contains a fault. In this case, even ifx′ is reachable without a
fault, statex′′ can be reached with a fault.

• Set β3(y, e) contains the pairs(x′′, F ) such that, with(x′, F ) ∈ α(y, e),
statex′′ is reachable inG from statex′ executing a sequence of unobservable
transitions. In this case, sincex′ is reachable with a fault, such is alsox′′.

ii. Let y′ = β1(y, e) ∪ β2(y, e) ∪ β3(y, e) and defineδY (y, e) = y′. i.e., the occur-
rence of evente from statey of Diag(G) yieldsy′.

iii. If y′ 6∈ Y ∪ Ynew then Ynew = Ynew ∪ {y′}.

(b) Let Y = Y ∪ {y} andYnew = Ynew \ {y}.

5. If Ynew 6= ∅ then goto4. �

In Figure 4 a graphical description of the sets computed in step 4.(a) of the algorithm is shown.

We conclude with the following remark.

Proposition 1 Given a plantG with state setX of cardinalitynx, let Diag(G) be its diagnoser
with state setY of cardinalityny. It holdsny < 22nx .

Proof. Each state inY is a non empty subset of elements in the setZ = (X×{N})∪(X×{F})
of cardinality2nx. The number of possible subsets ofZ including the empty set is22nx . �
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3 Diagnosability

Let us now define a fundamental property relative to fault diagnosis.

Definition 6 A DFA G with alphabetE = Eo ∪ Euo and set of fault eventEf ⊆ Euo is diagnos-
able if for all stringsuef ∈ L(G) such thatef ∈ Ef there exists a non negative integern ∈ N

such that

s = uefv ∈ L(G), |v| ≥ n =⇒ 6 ∃s′ ∈ L(G) ∩ (E \Ef )
∗ such thatP (s) = P (s′).

N

This property can also be expressed as follows. Assume that the plant can generate a stringuef
that contains a fault and the evolution continues. After a finite number of stepsn (that may depend
onuef ), when the new observed word iss = uefv there exists no other strings′ in the language of
the plant that contains no fault and generates the same observation ofs. This ensures that whenever
a fault eventef occurs, after a finite number of steps we will detect its occurrence because we will
observe a word that is not consistent with any fault free string.

Problem 2 Given a DFAG with alphabetE = Eo ∪ Euo and set of fault eventEf ⊆ Euo, the
diagnosability problemconsists in determining ifG is diagnosable.

We will show that the diagnoser, that provides a solution to the diagnosis problem, can also
be a useful tool to solve the diagnosability problem. First,however, we need to introduce some
definitions.

Definition 7 Given a diagnoserDiag(G), a cycle

yj1
e1−→ yj2

e2−→ yj3 · · · yjk
ek−→ yj1

is called anuncertain cycleif all its states are uncertain, i.e.,ϕ(yji) = U for i = 1, 2, . . . , k. N

As a preliminary result, we can now state a sufficient condition for diagnosability.

Proposition 2 A DFAG is diagnosable if its diagnoser does not contain uncertain cycles.
Proof. Assume the DFA is not diagnosable. Then the following situation must occur:

• the DFA can generate a strings = uεf containing faultεf ;

• string s can be extended for an arbitrary length generating wordssk = uεfe1e2 . . . ek for
k ≥ 1

• there exists a fault free strings′k ∈ (E \ Ef )
∗ such thatP (sk) = P (s′k) for k ≥ 1.

This means that in the diagnoser the observed wordw = P (s) yields an uncertain stateyj1 and
from that state, ask grows, there exists wordswk = P (sk) of unbounded length (by Assumption
A2) that will always yield an uncertain state. Since the number of states of the diagnoser is finite,
this is only possible if there exists a cycle of uncertain states. �
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Example 6 Consider again the DFA in Figure 1 whose diagnoser was shown in Figure 3. One can
see that there exist in this diagnoser the 6 elementary cycles shown below (we have also reported
the diagnosis state of each state along the cycle for a betterunderstanding):

y1 [U ]
c

−→ y3 [N ]
a

−→ y1 [U ] y3 [N ]
b

−→ y3 [N ] y2 [F ]
b

−→ y4 [F ]
a

−→ y2 [F ]

y2 [F ]
c

−→ y4 [F ]
a

−→ y2 [F ] y2 [F ]
a

−→ y2 [F ] y4 [F ]
b

−→ y4 [F ]

None of these cycles is uncertain, hence we conclude that theDFA is diagnosable. ⋄

Next example shows that this sufficient condition for diagnosability is not necessary however.

Example 7 Consider the DFA in Figure 5 (left) where the set of observable events isEo = {a, b},
the set of regular events is empty and the set of fault events is Ef = {εf}. The diagnoser for
this DFA is shown in Figure 5 (right). One can see that there exists in the diagnoser a cycle of
uncertain states

y1 [U ]
b

−→ y2 [U ]
a

−→ y1 [U ]

However one can easily verify that this DFA is diagnosable. To show this, let us observe that
two different type of faulty sequences may occur.

• Faulty sequences starting with(ab)kεf . In this case, after the fault the system reaches
statex2 and in just two steps, when the sequenceaa occurs, the observed word iss =
(ab)kaa. SinceP−1(s) = {(ab)kεfaa} there exists no fault free strings′ consistent with
this observation and that fault occurrence is detected.

• Faulty sequences starting with(ab)kaεf . In this case, after the fault the system reaches
statex3 and in just two steps, when the sequencebb occurs, the observed word iss =
(ab)kabb. SinceP−1(s) = {(ab)kaεf bb} there exists no fault free strings′ consistent with
this observation and that fault occurrence is detected.

Hence the presence of an uncertain cycle in the diagnoser does not necessarily mean that we can
have an observation of unbounded lengthafter the faultthat is consistent with both fault free and
faulty strings. ⋄

To derive a necessary and sufficient condition for diagnosability we introduce an additional
concept.

Definition 8 (Refined sequence associated to an uncertain cycle) Given a diagnoserDiag(G),
consider an uncertain cycle

uc = yj1
e1−→ yj2

e2−→ yj3
e3−→ · · ·

ek−1
−→ yjk

ek−→ yj1 .

Let y1j1 be therefined diagnoser stateobtained fromyj1 removing all non faulty pairs(x,N).
A refined sequenceassociated touc is a sequence of diagnoser states obtained by applying the
diagnoser construction fromy1j1 for repeated occurrences of the string of eventse1e2 · · · ek:

y1j1
e1−→ y1j2

e2−→ y1j3
e3−→ · · ·

ek−1
−→ y1jk

ek−→ y2j1
e1−→ y2j2

e2−→ · · ·

It is not difficult to show that a refined sequence of diagnoserstates as defined above:

• either will reach a stateykj = yk+1
j and hence can be continued indefinitely;
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Figure 5: The DFA in Example 7 (a) and its diagnoser (b).

• or will eventually halt, reaching a state without a successor.

Definition 9 (Undeterminate cycle) An uncertain cycleuc is called anundeterminate cycleif its
refined sequence can be continued indefinitely. N

We can finally present the following result whose proof follows from [2].

Proposition 3 A DFA G is diagnosable if and only if its diagnoserDiag(G) does non contain
undeterminate cycles. �

Example 8 Consider again the DFA Figure 5 and studied in Example 7. We have already pointed
out that there exists in the diagnoser a single uncertain cycle shown in Figure 6(a):

y1 [U ]
b

−→ y2 [U ]
a

−→ y1 [U ]

wherey1 = {(x1, N), (x2, F ), (x3, F )} and the cyclic sequence isba
To construct the refined sequence of diagnoser states, we start from the refined diagnoser state

y11 = {(x2, F ), (x3, F )} obtained fromy1 removing the pair(x1, N). We proceed to construct the
refined sequence by repeated occurrences of sequenceba.

After the occurrence of eventb we reach statey12 = {(x3, F )} (see Figure 6(b)) from which
eventa cannot occur and the refined sequence halts. Hence the uniqueuncertain cycle of the
diagnoser is not undeterminate. We conclude that the systemis diagnosable, as already discussed
in Example 7. ⋄

Finally we present an example of a non diagnosable DFA.

Example 9 Consider the DFA in Figure 7(a) where the set of observable events isEo = {a, b},
the set of regular events isEreg = {ε1} and the set of fault events isEf = {εf}. The diagnoser for
this DFA is shown in Figure 7(b). One can see that there existsin the diagnoser a single uncertain
cycle shown in Figure 8(a)

y0 [U ]
a

−→ y1 [U ]
b

−→ y0 [U ]
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Figure 6: Uncertain cycle (a) and refined sequence (b) in Example 8.
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Figure 7: The DFA in Example 9 (a) and its diagnoser (b).

wherey0 = {(x0, N), (x3, F )} and the cyclic sequence isab.
To construct the refined sequence of diagnoser states, we start from the refined statey10 =

{(x3, F )} obtained fromy0 removing the pair(x0, N). We proceed to construct the refined se-
quence by repeated occurrences of sequenceab.

After the occurrence of eventa we reach statey11 = {(x3, F )} from which the occurrence
of eventb yields y20 = {(x3, F )} (see Figure 8(b)). Sincey10 = y20 the refined sequence can be
continued indefinitely. Hence the unique uncertain cycle ofthe diagnoser is undeterminate. We
conclude that the system is not diagnosable.

Note in fact that the two stringsεf (ab)k and (aε1b)
k produce the same observation. This

means that if stringεf (ab)k is generated by the system, after the fault we will have an observation
of unbounded length that always produces an uncertain diagnosis state and does not allow to detect
the occurrence of the fault. ⋄
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