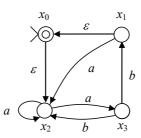
Automi e reti di Petri — Esercitazione 2

18 marzo 2016

Esercizio 1. Si consideri l'AFN G in figura.



- (a) Si determini la rappresentazione algebrica di tale automa.
- (b) Si determini se le seguenti parole sono generate e accettate, dandone tutte le produzioni corrispondenti:

$$w_1 = abb;$$
 $w_2 = aaa;$ $w_3 = aab.$

- (c) Si determinino le componenti fortemente connesse di tale automa e sulla base di tale analisi si determini se esso sia reversibile e bloccante.
- (d) Costruire un AFD G' equivalente a G, indicando chiaramente tutti i passi seguiti durante la procedura di conversione.
- (e) Si discuta se sia possibile usare l'AFD G' come osservatore per determinare senza ambiguità quando il sistema si trova nello stato:

$$(a) \quad x_1; \qquad \qquad (b) \quad x_2.$$

Esercizio 2. Si consideri l'automa finito deterministico G sull'alfabeto $E = \{a, b\}$ con stato iniziale x_0 , insieme di stati finali $X_m = \{x_1, x_2, x_7\}$ e la cui funzione di transizione vale

δ	a	b
x_0	x_1	x_4
x_1	x_5	x_2
x_2	x_3	x_6
x_3	x_3	_
x_4	x_1	x_4
x_5	x_1	x_4
x_6	_	x_7
x_7	x_3	x_6

- (a) Si determini la rappresentazione grafica di tale automa.
- (b) Si determini la relazione di indistinguibilità fra gli stati di tale automa e le sue classi di equivalenza.
- (c) Si discuta se tale automa sia minimo e, in caso contrario, si determini un automa minimo ad esso equivalente.

Esercizio 3. Dato un alphabeto E, sia $L \subseteq E^*$ un linguaggio appartenente alla classe \mathcal{L}_{AFD} . Sia ora $\hat{E} \subseteq E$ un alfabeto contenuto in E. Si discuta se il linguaggio

$$P(L) = \{ \hat{w} \in \hat{E}^* \mid (\exists w \in L) \ \hat{w} = w \uparrow \hat{E} \},\$$

ottenuto da L per proiezione su \hat{E} , sia anch'esso appartenente alla classe \mathcal{L}_{AFD} .

Se la risposta è affermativa si determini una procedura che, a partire da un automa G che accetta L, costruisce un automa G' che accetta P(L).