

Automi e reti di Petri — Esercitazione 6

14 Dicembre 2004

Esercizio 1. E' data la rete marcata $\langle N, M_0 \rangle$ in figura. Si discuta se per essa valga $R(N, M_0) = PR(N, M_0)$ o se viceversa $R(N, M_0) \subsetneq PR(N, M_0)$; in quest'ultimo caso si dia un esempio di marcatura spuria.

Esercizio 2. Si consideri la rete marcata in figura.

- (a) Si determinino i *P*-invarianti e i *T*-invarianti minimali di tale rete e si verifichi di quali proprietà strutturali essa goda.
- (b) Detta X la matrice che ha per colonne i P-invarianti, si caratterizzi l'insieme delle marcature invariantemente raggiungibili $I_X(N,M_0)$ mediante le equazioni lineari che tali marcature devono soddisfare.
- (c) Si consideri la matrice X' ottenuta da X rimuovendo l'ultima colonna. Che relazione c'è tra l'insieme di raggiungibilità $R(N, M_0)$, l'insieme $I_X(N, M_0)$ e l'insieme $I_{X'}(N, M_0)$?
- (d) Si dimostri in base alla caratterizzazione determinata al punto (b) che la rete non è bloccante senza costruire il suo grafo di raggiungibilità.
 - Suggerimento: se la rete fosse bloccante dovrebbe esistere una marcatura raggiungibile M in cui tutte le transizioni sono morte. Dunque: $M(p_1)=0$ (affinché t_1 sia morta), $M(p_2)=0$ oppure $M(p_6)=0$ (affinché t_3 sia morta), ecc.