Analisi dei Sistemi

Compito del 28 Febbraio 2008

Esercizio 1. (9 punti) Un sistema stabile del secondo ordine ha il diagramma di Bode rappresentato nella figura sul retro di questo foglio.

- (a) (3 punti) Si determini, se esiste, il modulo, la pulsazione e la fase alla risonanza di tale sistema indicando che significato fisico hanno tali parametri.
- (b) (3 punti) Si determini, se esiste, la banda passante a 20 db di tale sistema, indicando che significato fisico ha tale grandezza.
- (c) (3 punti) Si discuta come sia possibile, dall'analisi del diagramma, determinare in maniera approssimativa che valore assume la risposta a regime $y_r(t)$ del sistema considerato quando viene applicato un segnale di ingresso $u(t) = 3\cos(4t)$ e si calcoli tale risposta.

Esercizio 2 (8 punti). È dato un sistema lineare e stazionario la cui risposta impulsiva vale

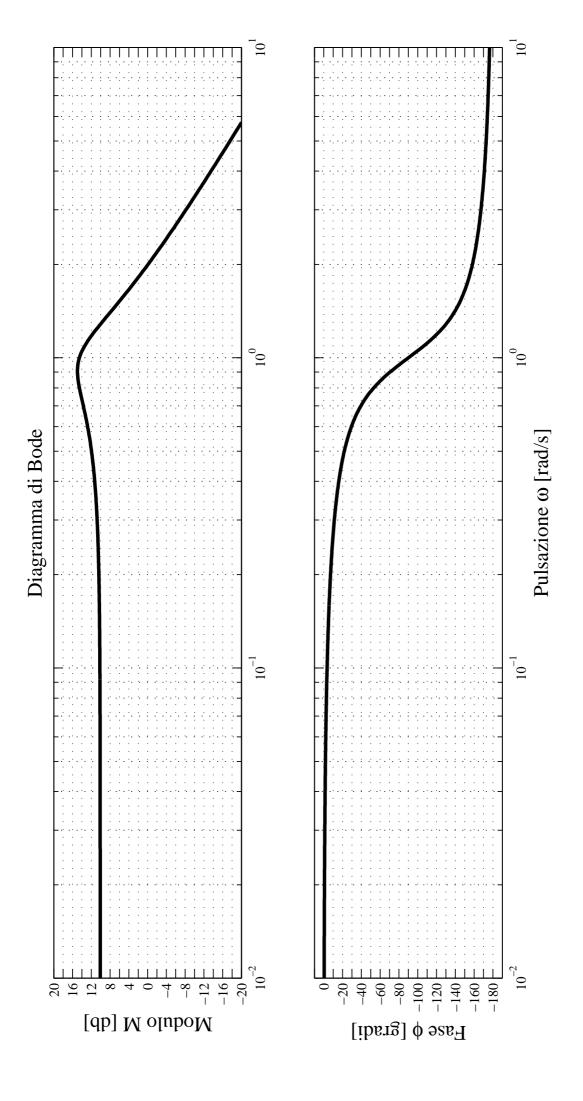
$$w(t) = (1 - e^{-2t}) \delta_{-1}(t).$$

- (a) (4 punti) Si determini la risposta indiciale di tale sistema.
- (b) (4 punti) Si consideri il segnale di ingresso

$$u(t) = \begin{cases} 0 & \text{per } t < 2; \\ 2 & \text{per } t \ge 2. \end{cases}$$

Tracciatone il grafico, si calcoli, mediante l'integrale di Duhamel, quanto vale la risposta forzata del sistema dato conseguente all'applicazione del segnale u(t).

Esercizio 3. (8 punti)


È data la rappresentazione in termini di variabili di stato di un sistema lineare e stazionario a parametri concentrati

$$\begin{cases}
\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 3 \end{bmatrix} u(t) \\
y(t) = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}
\end{cases}$$

- (a) (5 punti) Si determini l'evoluzione libera dello stato e dell'uscita dato lo stato iniziale $x_0 = [1 \ 2]^T$.
- (b) (3 punti) Si calcoli la matrice di trasferimento W(s) di tale sistema.

Esercizio 4. (5 punti) È dato il modo pseudoperiodico $e^{-t}\cos(3t)$.

- (a) (1 punti) Si tracci l'andamento qualitativo di tale modo.
- (b) (2 punti) Dopo aver ricordato la definizione di pulsazione naturale e di coefficiente di smorzamento, si calcolino tali parametri per il modo dato.
- (c) (2 punti) Si determini analiticamente il tempo di assestamento al 5% di tale modo indicando come tale valore possa anche determinarsi dal grafico tracciato al punto (a).

