Analisi dei Sistemi — Esercitazione 5

27 Novembre 2006

Esercizio 1. Il modello ingresso-uscita del circuito RLC studiato nella Esercitazione 2 vale:

$$\frac{d^2}{dt^2}y(t) + 50\frac{d}{dt}y(t) + 625y(t) = \frac{1}{10}\frac{d}{dt}u(t),$$

dove y(t) è la corrente [A] e u(t) la tensione applicata [V].

- 1. Si determini la funzione di trasferimento del sistema e, antitrasformando, la risposta impulsiva.
- 2. Si determini mediante l'uso delle trasformate di Laplace la risposta indiciale di tale sistema indicando, se possibile, il termine transitorio e il termine di regime.

Esercizio 2. È dato un sistema descritto dal modello in termini di variabili di stato

$$\begin{cases}
\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u(t) \\
y(t) = \begin{bmatrix} 4 & 2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}
\end{cases}$$
(1)

- 1. Si calcoli la matrice risolvente di tale sistema e, antitrasformando, la matrice di transizione dello stato.
- 2. Si calcoli la funzione di trasferimento.
- 3. Si determini un modello ingresso-uscita equivalente alla rappresentazione in variabili di stato.
- 4. Si determini, con l'uso delle trasformate di Laplace, l'evoluzione libera dello stato e dell'uscita a partire dallo stato iniziale $x(0) = [1 \ 1]^T$.
- 5. Si determini, con l'uso delle trasformate di Laplace, l'evoluzione forzata dello stato e dell'uscita in conseguenza dell'applicazione dell'ingresso $u(t) = e^{-t}\delta_{-1}(t)$.
- 6. Si discuta se sia possibile scomporre la risposta forzata in un termine transitorio e in un termine di regime. I modi che compongono la riposta forzata sono quelli attesi? sono quelli

Esercizio 3. Si determini la matrice di trasferimento per il sistema in figura, caratterizzato dalle funzioni di trasferimento dei singoli blocchi e il valore della risposta forzata che consegue all'applicazione di un ingresso $u_1(t) = 0$ e $u_2(t) = 2e^{-3t}\delta_{-1}(t)$.

